JP3684354B2 - Method for producing Al alloy thin film and sputtering target for forming Al alloy thin film - Google Patents

Method for producing Al alloy thin film and sputtering target for forming Al alloy thin film Download PDF

Info

Publication number
JP3684354B2
JP3684354B2 JP2002025610A JP2002025610A JP3684354B2 JP 3684354 B2 JP3684354 B2 JP 3684354B2 JP 2002025610 A JP2002025610 A JP 2002025610A JP 2002025610 A JP2002025610 A JP 2002025610A JP 3684354 B2 JP3684354 B2 JP 3684354B2
Authority
JP
Japan
Prior art keywords
thin film
alloy thin
alloy
resistance
iva
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002025610A
Other languages
Japanese (ja)
Other versions
JP2002322557A (en
Inventor
勝寿 高木
隆 大西
栄治 岩村
正剛 山本
一男 吉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2002025610A priority Critical patent/JP3684354B2/en
Publication of JP2002322557A publication Critical patent/JP2002322557A/en
Application granted granted Critical
Publication of JP3684354B2 publication Critical patent/JP3684354B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Electrodes Of Semiconductors (AREA)
  • Liquid Crystal (AREA)
  • Physical Vapour Deposition (AREA)

Description

【0001】
【産業上の利用分野】
本発明はAl合金薄膜の製造方法およびAl合金薄膜形成用スパッタリングターゲットに関し、特には、液晶表示パネルのゲートバスライン或いはソースバスライン用の薄膜配線、同パネルのスイッチング素子部の配線或いは電極として好適なアルミニウム合金薄膜(Al合金薄膜)の製造方法に関する。
【0002】
【従来の技術】
液晶表示パネル:Liquid Cristal Display(以降 LCDという)は、従来のブラウン管に比べ、薄型化・軽量化・低消費電力化がはかれ、しかも高い解像度の画像が得られる可能性が大きいことから、近年、その用途が拡大しつつある。かかるLCD として最近では、更に画像品質を高めるために、 LCDのスイッチング素子として半導体装置である薄膜トランジスター:Thin Film Transister(以降 TFTという)を組み込んだ構造の LCDが提案され、広く用いられている。
【0003】
上記 TFTを搭載した LCD(以降 TFT-LCDという)の配線材料はTFT 製造プロセス中に比較的高温下(300〜400 ℃程度)にさらされるため、一般の半導体装置の集積回路の電極・配線材料として多用されている純AlやAl基合金を LCDの配線として用いると、これらは耐熱性が不充分であることから、ヒロック(半球状の配線のふくれ)やボイドといわれる配線表面上の微小凸凹が生じる。従って、 LCDの配線材料にはTa, Mo, Cr, Ti等の高融点金属が多用されている。しかし、近年 LCDは大型化・高精細化して、各 TFT素子を結ぶアドレス配線が増長化し、それに伴って電気抵抗及び容量が増大しているため、薄膜状態で約50μΩcm以上(Taで約180 、Moで約50、Crで約50、Tiで約80μΩcm)の高比抵抗を有する上記の高融点金属ではアドレスパルスの遅延が起こり、これらの材料の使用が難しくなってきている。
【0004】
現在、かかるアドレスパルスの遅延を起こさないためには、 LCDの配線材料の比抵抗としては略30μΩcm以下であることが望まれ、これを充たす金属種としてはAu、Cu、Alが挙げられる。しかし、Auはシート状配線膜の成膜後に所定パターン形状にするのに必要なエッチングの特性が悪いと共に高価であり、Cuは膜の密着性及び耐食性に問題があり、又、Alは前述の如くヒロック等を生じるので、いづれも配線材料としての実用が困難とされている。
【0005】
そこで、上記の問題点を解決し得る配線・電極材料、即ち比抵抗:30μΩcm以下であると共に耐熱性に優れてヒロック発生等を防止できる配線・電極材料として、Al-Ta 2元系合金薄膜及びAl-Ti 2元系合金薄膜が提案され、 LCDの配線材料に使用されるようになってきた。しかし、今後、 LCDが更に大型化・高精細化された場合、これらの耐熱性低比抵抗材料を用いたとしても、アドレスパルスの遅延が起こることが予想され、これを解決するには更に10μΩcm以下の程度に低比抵抗化する必要がある。従って、今後のLCD の大型化・高精細化に対応するため、上記従来のLCD 用配線・電極材料(Al-Ta 又はAl-Ti 2元系Al合金薄膜)と同等の優れた耐熱性を有し、且つ比抵抗:10μΩcm以下であるLCD 用の新規配線・電極材料(薄膜)の開発が望まれている現状にある。
【0006】
【発明が解決しようとする課題】
本発明はこの様な事情に着目してなされたものであって、その目的は従来のものがもつ以上のような問題点を解消し得る高機能の新規Al合金薄膜、即ち、比抵抗:10μΩcm以下であると共に、前記従来のLCD 用配線・電極材料(Al-Ta 又はAl-Ti 2元系Al合金薄膜)と同様に、耐熱性に優れてヒロック等が生じ難く、また、耐食性、膜の密着性及びエッチングの特性(所定パターン形状への加工性)に優れて、LCD 用配線・電極等として好適に使用し得るAl合金薄膜の製造方法および該Al合金薄膜の形成用スパッタリングターゲットを提供しようとするものである。
【0007】
【課題を解決するための手段】
上記の目的を達成するために、本発明に係るAl合金薄膜の製造方法およびAl合金薄膜形成用スパッタリングターゲットは、請求項1記載のAl合金薄膜の製造方法、請求項2記載のAl合金薄膜形成用スパッタリングターゲットとしており、それは次のような構成としたものである。
【0008】
即ち、請求項1記載のAl合金薄膜の製造方法は、IVa, Va, VIa, VIIa 族の遷移元素のうちの1種または2種以上を合計で0.1〜5.0at%含有すると共に、Geを0.1〜5.0at%含有するAl合金薄膜の製造方法であって、AlにIVa, Va, VIa, VIIa族の遷移元素のうちの1種または2種以上と、Geとを固溶させたAl合金薄膜を基板上に形成させた後、該Al合金薄膜中の固溶元素の一部または全部を加熱温度:100〜600℃の熱処理により金属間化合物として析出させ、電気抵抗値:10μΩcm以下のAl合金薄膜を得ることを特徴とするAl合金薄膜の製造方法である。
【0009】
請求項2記載のAl合金薄膜形成用スパッタリングターゲットは、請求項1記載のAl合金薄膜の製造方法における基板上へのAl合金薄膜形成のために用いるスパッタリングターゲットであって、IVa, Va, VIa, VIIa族の遷移元素のうちの1種または2種以上を合計で0.1〜5.0at%含有すると共に、Geを0.1〜5.0at%含有するAl合金よりなるAl合金薄膜形成用スパッタリングターゲットである。
【0010】
【0011】
【0012】
【作用】
本発明者等は、Alに種々の元素を添加したAl合金スパッタリングターゲットを製作し、これらターゲットを使用して、スパッタリング法により種々の組成のAl合金薄膜を形成し、その組成、及び、耐熱性、耐ヒロック性、比抵抗、耐食性、密着性及びエッチング特性等の諸特性を調べた。その結果、IVa, Va, VIa, VIIa族の遷移元素(以降、IVa 〜VIIa族遷移元素という)、Geの添加が上記特性の向上に有効であり、これらの元素を添加したAl合金薄膜はLCD 用配線・電極(LCD 等でのゲートバスライン或いはソースバスライン用の薄膜配線、又は、アクティブマトリックス型LCD 等のスイッチング素子部での配線或いは電極)材料等としての優れた特性を有することを見出した。
【0013】
即ち、AlにIVa 〜VIIa族遷移元素のうちの1種又は2種以上を添加すると、その添加量の増大に伴って耐熱性及び耐食性が向上するが、比抵抗が高くなる。従って、この遷移元素含有Al合金では、耐熱性及び耐食性等は充分であるものの、比抵抗:10μΩcm以下という要件を充たし得ない。しかし、この遷移元素含有合金に更にGeを添加し、遷移元素及びGe含有Al合金にすると、比抵抗が低下し、耐熱性及び耐食性等の要件を充たした状態で、比抵抗:10μΩcm以下という要件をも充たし得ることがわかった。尚、かかる遷移元素及びGeの添加により、膜の密着性及びエッチング特性(所定パターン形状への加工性)が特に低下することはなく、前記従来のLCD 用配線・電極材料(Al-Ta 又はAl-Ti 2元系Al合金薄膜)と同様に優れたものであることも確認された。
【0014】
また、上記の如き遷移元素およびGe含有合金よりなるAl合金薄膜を合金成分を固溶させた状態で基板上に形成させると、その固溶量が多い程、比抵抗は高くなるが、所謂固溶効果により強化され、耐熱性及び耐食性等が高められ、従来のLCD 用配線・電極材料(Al-Ta 又はAl-Ti 2元系Al合金薄膜)よりも優れたものとなる。この成膜の後、熱処理を施すと、Al合金薄膜中の固溶元素が金属間化合物(遷移元素とGeとの金属間化合物)として析出し、比抵抗増大の要因である固溶状態の元素の総固溶量が減少するため、比抵抗を更に低下させることが可能であることもわかった。かかるプロセスは、成膜後の加熱過程を熱処理として積極的に利用し、その加熱過程(熱処理)前後で各々必要な高耐熱性及び低比抵抗の条件(高耐熱性は加熱過程での要件、低比抵抗は加熱過程後の要件である)を充たすものであり、それらをより一層高める手段として極めて合理的である。
【0015】
そこで、本発明に係るAl合金薄膜の製造方法は、前記知見に基づき、IVa, Va, VIa, VIIa 族の遷移元素( IVa VIIa 族遷移元素)のうちの1種または2種以上を合計で0.1〜5.0at%含有すると共に、 Ge を0.1〜5.0at%含有する Al 合金薄膜の製造方法であって、AlにIVa 〜VIIa族遷移元素(IVa, Va, VIa, VIIa族の遷移元素)のうちの1種または2種以上と、Geとを固溶させたAl合金薄膜を基板上に形成させた後、該Al合金薄膜中の固溶元素の一部または全部を加熱温度:100〜600℃の熱処理により金属間化合物として析出させ、電気抵抗値:10μΩcm以下のAl合金薄膜を得ることを特徴とするAl合金薄膜の製造方法としている。この方法は、前述の如く、加熱過程(熱処理)前後で各々必要な高耐熱性及び低比抵抗の条件を確実に充たすことができ、それらをより一層高める手段として極めて合理的なプロセスである。
【0016】
ここで、熱処理により金属間化合物として固溶元素の全部を析出させるか、一部を析出させるか、又、一部の場合にはその量(全部に対する一部の割合)をどの程度とするかは、熱処理前の固溶元素量や所要電気抵抗値等に応じて設定すればよい。熱処理の際の加熱温度を100〜600℃としているのは、100℃未満では金属間化合物の析出が起こり難く、そのため電気抵抗値:10μΩcm以下を充たし得ず、600℃超では熱処理時にヒロックが生じるからである。
【0017】
上記Al合金薄膜はスパッタリング法により形成されていることが望ましく、その理由は下記の通りである。即ち、IVa 〜VIIa族遷移元素は平衡状態ではAlに対する固溶限が極めて小さいが、スパッタリング法により形成されたAl合金薄膜では、スパッタリング法固有の気相急冷によって非平衡固溶が可能になることから、その他の通常の薄膜形成法により形成されるAl合金薄膜と比較して、より耐熱性及び耐食性を著しく向上し得るからである。
【0018】
上記Al合金薄膜の形成をスパッタリング法により行う場合、そのスパッタリングターゲットとしては、IVa 〜VIIa族遷移元素(IVa, Va, VIa, VIIa族の遷移元素)の1種または2種以上を合計で0.1〜5.0at%含有すると共に、Geを0.1〜5.0at%含有するAl合金よりなるものを使用すればよい。かかるAl合金製ターゲットは、複合ターゲット等に比し、形成されるAl合金薄膜の組成が安定し易く、又、酸素量を低くし得る等の利点を有している。
【0019】
前記Al合金薄膜(遷移元素及びGe含有Al合金)におけるIVa 〜VIIa族遷移元素のうちの1種または2種以上の含有量は合計で0.1〜5.0at%、Geの含有量は0.1〜5.0at%にしている。その理由は次の通りである。IVa 〜VIIa族遷移元素量:0.1at%未満またはGeの量:0.1at%未満では、固溶元素量が少な過ぎて耐熱性が不充分であり、加熱過程(熱処理)でヒロック発生等の支障が生じ、IVa 〜VIIa族遷移元素量:5.0at%超またはGeの量:5.0at%超では、固溶元素量が多過ぎて加熱過程(熱処理)で金属間化合物の析出が起こっても、熱処理後の固溶元素の残留量が多く、そのため比抵抗:10μΩcm以下という要件を充たし得なくなるからである。
【0020】
なお、IVa 族の元素はTi,Zr,Hf、Va族の元素はV,Nb,Ta、 VIa族の元素はCr,Mo,W、VIIa族の元素はMn,Tc,Reである。
【0021】
【実施例】
(実施例1)
純Alターゲット(純度99.999%)上に5mm角のTa(Va族遷移元素)のチップ及びSi或いはGeのチップを所定量設置した複合ターゲット、又、Ta及びSi或いはGeを所定量含有する溶製Al合金スパッタリングターゲットを用いて、DCマグネトロンスパッタリング法により、厚さ:0.5mmのガラス基板上に厚さ:3000ÅのAl-Ta-Si3元系Al合金薄膜、Al-Ta-Ge3元系Al合金薄膜を形成した。次いで、該薄膜をフォトリソグラフィ、ウェットエッチングにより幅 100μm,長さ10mmのストライプパターン形状に加工した後、所定温度(100, 200, 300, 400, 500 ℃)で1時間加熱する真空熱処理を施した。
【0022】
そして、上記薄膜について4端子(探針)法により比抵抗値を室温にて測定した。その結果を真空熱処理温度と比抵抗との関係にして図1に示す。Al-Ta-Si3元系Al合金薄膜及びAl-Ta-Ge3元系Al合金薄膜の比抵抗は、Al-Ta 2元系Al合金薄膜の比抵抗と比較して低く、比抵抗が低下していることがわかる。
【0023】
(実施例2)
実施例1と同様の方法により同様のAl-Ta-Si3元系Al合金薄膜を同様のガラス基板上に形成し、次いで同様の方法により幅10μm のストライプパターン形状に加工した後、同様の条件で真空熱処理をした。そして、耐熱性を評価するため、上記熱処理の後、ストライプパターン表面上に発生するヒロック(半球状の突起物)数を測定し、ヒロック密度(単位面積当りのヒロック数)を求めた。その結果を熱処理温度とヒロック密度との関係図にして図2に示す。Al-Ta-Si3元系Al合金薄膜は、Al-Ta 2元系Al合金薄膜と比較して、ヒロック密度が小さく、従って耐熱性に優れていることがわかる。更に、Si添加量が多いほどヒロック密度が小さく、耐熱性に優れていることがわかる。
【0024】
(実施例3)
実施例1でのTaに代えてMn(VIIa族遷移元素)を用い、Si或いはGeをGeとし、その点を除き実施例1と同様のターゲットを用いて、同様の方法により同様厚みのAl-Mn-Ge3元系Al合金薄膜を同様のガラス基板上に形成した。次いで、実施例1と同様の方法により同様のストライプパターン形状に加工した後、同様の条件で真空熱処理をした。そして実施例1と同様の方法により比抵抗値を測定した。その結果を図3に示す。Al-Mn-Ge3元系Al合金薄膜は、Al-Mn 2元系Al合金薄膜に比して比抵抗が低く、又、Ge添加量が多いほど比抵抗が低いことがわかる。
【0025】
(実施例4)
実施例3と同様の方法により同様のAl-Mn-Ge3元系Al合金薄膜を同様のガラス基板上に形成し、次いで同様の方法により幅10μm のストライプパターン形状に加工した後、同様の条件で真空熱処理をした。そして、実施例2と同様の方法によりヒロック密度を求めた。その結果を図4に示す。Al-Mn-Ge3元系Al合金薄膜は、Al-Mn 2元系Al合金薄膜と比較してヒロック密度が小さく、耐熱性に優れており、又、Si添加量が多いほどヒロック密度が小さく、耐熱性に優れていることがわかる。
【0026】
(実施例5)
実施例1でのTaに代えてTi(IVa 族遷移元素)、Si或いはGeに代えてSiを用いた。かかる点を除き実施例1と同様のターゲットを用い、同様法により同様厚みのAl-Ti-Si3元系Al合金薄膜を形成した後、同様法により同様のストライプパターン形状に加工した後、同様条件の真空熱処理をした。そして実施例1と同様法により比抵抗値を測定した。その結果を図5に示す。Al-Ti-Si3元系Al合金薄膜は、Al-Ti 2元系Al合金薄膜に比して比抵抗が低く、又、Si添加量が多いほど比抵抗が低いことがわかる。
【0027】
尚、以上の実施例では合金成分としてのIVa 〜VIIa族遷移元素はその1種を添加しており、上述の如き効果が得られているが、このような効果はIVa 〜VIIa族遷移元素の2種以上を添加した場合も得られる。
【0028】
(実施例6)
溶製Al合金スパッタリングターゲットを用いて、DCマグネトロンスパッタリング法により、SiO2(厚さ:100nm)/Si(厚さ:0.25mm)基板上に、Ta量:1.5at%及びSi量:3.0at%を含有する膜厚:0.5μm のAl合金薄膜A1を形成し、又、膜厚:0.5μm のAl薄膜R1(比較例)を形成した。これら薄膜について、5℃/min の速度で25℃から500 ℃まで昇温し、次いで500 ℃から25℃まで降温する加熱冷却過程において、各温度における膜応力を測定した。ここで、膜応力は基板の反り量をレーザーで測ることによって求めた。その結果を図6に示す。昇温時に比較例R1が200 ℃で降伏するのに対して、A1は400 ℃で降伏する。降伏点以上の温度域で膜は塑性変形をするので、A1の方が塑性変形量が少ない。このため、降温時に生じる引張応力(金属配線膜と層間絶縁膜との熱膨張差に起因)はA1の方が小さく、SM(ストレスマイグレーション)が起こり難いこと(即ち耐SM性に優れていること)がわかる。
【0029】
(実施例7)
前記Al合金薄膜AでのTa量を0.1, 0.8, 1.5, 2.3, 3.0at%、Si量を0.1, 1.5, 3.0, 4.5, 6.0at%に変化させたものA2(例A2)、又、Ta量を0.08,3.2at%、Si量を0.08,6.5at%に変化させたものR2(例R2)について、実施例6と同様の試験を行った。その結果、例A2は比較例R1、例R2に比較して耐SM性に優れていることが確認された。
【0030】
(実施例8)
実施例6と同様の方法により、SiO2(厚さ:100nm)/Si(厚さ:0.25mm)基板上に、実施例6と同様組成、同様膜厚のAl合金薄膜A1、R1(比較例)を形成した。次に、これら薄膜について、400 ℃で60分間加熱する熱処理を行った後、フォトリソグラフィ及びエッチングにより所定テストパターン形状(幅1μm,長さ3mmの直線パターン)に加工した。しかる後、この薄膜を200 ℃に加熱し、5×106 A/cm2 の定電流を流す通電試験を行い、故障時間(断線が起こるまでの時間)を測定した。この結果を、故障時間と累積故障率(ある時間までに故障したサンプルの全体に対する割合)との関係にして図7に示す。A1は、比較例のものR1に比較し、平均故障時間(累積故障率が50%となる時間)が約10倍長く、従って耐EM性(耐エレクトロマイグレーション性)に優れていることがわかる。
【0031】
又、上記熱処理条件を400 ℃×60分間に代えて 200℃×30分間、200 ℃×60分間、300 ℃×30分間、300 ℃×60分間、400 ℃×30分間、600 ℃×30分間、600 ℃×60分間としたものについて、上記と同様の加工及び通電試験を行った。その結果、A1において、これらの熱処理を施したものはいづれも比較例のものR1に比較して耐EM性に優れていることが確認された。
【0032】
(実施例9)
実施例6のA1でのTaに代えて他のIVa, Va, VIa族の元素を用いたものA3、更にSiに代えてGeを用いたものA4(本発明例)について、実施例6、8と同様の試験を行った。その結果、実施例6、8と同様の傾向が得られ、A3およびA4は比較例R1に比較し、耐SM性及び耐EM性に優れていた。又、A3,A4において、IVa, Va, VIa族の元素の種類により、耐SM性および耐EM性はあまり異ならないが、特には IVa, Va族の場合に優れ、その中でもVa族の場合に優れていた。
【0033】
上記実施例6〜9では合金成分としてのIVa, Va, VIa族元素はその1種を用いており、上述の如き効果が得られているが、このような効果はIVa, Va, VIa族元素の2種以上を添加した場合も得られる。
【0034】
【発明の効果】
本発明は以上の如き構成を有し作用をなすものであって、本発明に係るAl合金薄膜の製造方法は、優れた特性を有するAl合金薄膜〔即ち、比抵抗が10μΩcm以下であると共に、従来のLCD 用配線・電極材料(Al-Ta 又はAl-Ti 2元系Al合金薄膜)と同様に、耐熱性に優れてヒロック等が生じ難く、又、耐食性、膜の密着性及びエッチング特性(所定パターン形状への加工性)に優れ、LCD (液晶表示パネル)用配線・電極材料として好適に用いることができ、従って、これら各機器の高機能化及び品質向上を図ることができ、更に、今後のLCD の大型化・高精細化に対応し得、それに寄与し得るというAl合金薄膜〕を確実に製造し得、特に、Al合金薄膜の加熱過程前後で各々必要な高耐熱性及び低比抵抗の条件を確実且つ充分に充たすことができ、それらをより一層高め得るようになるという効果を奏する。
【0035】
本発明に係るスパッタリングターゲットは、上記Al合金薄膜の形成をスパッタリング法により行う場合に好適に使用し得、形成されるAl合金薄膜の組成が安定し易く、又、酸素量を低くし得る等の利点を有し、より特性の安定したAl合金薄膜が得られるようになるという効果を奏する。
【図面の簡単な説明】
【図1】 実施例1に係るAl合金薄膜の製造方法での熱処理温度と比抵抗との関係を示す図である。
【図2】 実施例2に係るAl合金薄膜の製造方法での熱処理温度とヒロック密度との関係を示す図である。
【図3】 実施例3に係るAl合金薄膜の製造方法での熱処理温度と比抵抗との関係を示す図である。
【図4】 実施例4に係るAl合金薄膜の製造方法での熱処理温度とヒロック密度との関係を示す図である。
【図5】 実施例5に係るAl合金薄膜の製造方法での熱処理温度と比抵抗との関係を示す図である。
【図6】 実施例6に係るAl合金薄膜の製造方法により得られたAl合金薄膜についての加熱冷却時の温度と膜応力との関係を示す図である。
【図7】 実施例8に係るAl合金薄膜の製造方法により得られたAl合金薄膜についての故障時間と累積故障率との関係を示す図である。
[0001]
[Industrial application fields]
The present invention relates to a method for producing an Al alloy thin film and a sputtering target for forming an Al alloy thin film, and particularly suitable as a thin film wiring for a gate bus line or a source bus line of a liquid crystal display panel, a wiring or an electrode of a switching element portion of the panel. The present invention relates to a method for producing a simple aluminum alloy thin film (Al alloy thin film).
[0002]
[Prior art]
Liquid crystal display panel: Liquid Cristal Display (hereinafter referred to as “LCD”) is thinner, lighter, and consumes less power than conventional CRTs. Their uses are expanding. Recently, in order to further improve image quality, LCDs having a structure in which a thin film transistor (hereinafter referred to as TFT) as a semiconductor device is incorporated as a switching element of the LCD have been proposed and widely used.
[0003]
Wiring materials for LCDs with the above TFTs (hereinafter referred to as TFT-LCDs) are exposed to relatively high temperatures (about 300-400 ° C) during the TFT manufacturing process. When using pure Al or Al-based alloys, which are widely used as LCD wiring, as they have insufficient heat resistance, they have minute irregularities on the wiring surface called hillocks (hemispherical wiring blisters) and voids. Occurs. Therefore, refractory metals such as Ta, Mo, Cr, and Ti are frequently used as LCD wiring materials. However, in recent years, LCDs have become larger and higher in definition, and the address wiring connecting each TFT element has been increased. As a result, the electrical resistance and capacitance have increased, so about 50 μΩcm or more in the thin film state (about 180 for Ta, The above refractory metals having high specific resistance (about 50 for Mo, about 50 for Cr, and about 80 μΩcm for Ti) cause delay of address pulses, making it difficult to use these materials.
[0004]
At present, in order not to cause such address pulse delay, it is desired that the specific resistance of the wiring material of the LCD is approximately 30 μΩcm or less, and examples of metal species satisfying this include Au, Cu, and Al. However, Au is poor in etching characteristics and expensive to form a predetermined pattern shape after the formation of a sheet-like wiring film, Cu has a problem in film adhesion and corrosion resistance, and Al has the above-mentioned problem. Since hillocks and the like are generated as described above, it is difficult to use them as wiring materials.
[0005]
Therefore, as a wiring / electrode material that can solve the above-described problems, that is, a specific resistance: 30 μΩcm or less and a wiring / electrode material that has excellent heat resistance and can prevent generation of hillocks, Al-Ti binary alloy thin films have been proposed and used for LCD wiring materials. However, in the future, when LCDs are further increased in size and definition, address pulse delays are expected to occur even if these heat resistant low specific resistance materials are used. It is necessary to reduce the specific resistance to the following extent. Therefore, it has excellent heat resistance equivalent to the above conventional LCD wiring / electrode materials (Al-Ta or Al-Ti binary Al alloy thin film) in order to cope with future increases in LCD size and definition. However, the development of a new wiring / electrode material (thin film) for LCD having a specific resistance of 10 μΩcm or less is desired.
[0006]
[Problems to be solved by the invention]
The present invention has been made paying attention to such a situation, and the purpose thereof is a novel high-performance Al alloy thin film that can solve the above-described problems of conventional ones, that is, a specific resistance: 10 μΩcm. As well as the above-mentioned conventional LCD wiring / electrode materials (Al-Ta or Al-Ti binary Al alloy thin film), it is excellent in heat resistance and hardly causes hillocks, etc. Provide an Al alloy thin film manufacturing method and a sputtering target for forming the Al alloy thin film that have excellent adhesion and etching characteristics (processability to a predetermined pattern shape) and can be suitably used as wiring and electrodes for LCDs. It is what.
[0007]
[Means for Solving the Problems]
To achieve the above object, a manufacturing method and an Al alloy thin film-forming sputtering target of an Al alloy thin film according to the present invention, a method of manufacturing an Al alloy thin film according to claim 1, Al alloy thin film formation according to claim 2, wherein Sputtering target for use, which has the following configuration.
[0008]
That is, the method for producing an Al alloy thin film according to claim 1 contains one or more of IVa, Va, VIa, and VIIa group transition elements in a total amount of 0.1 to 5.0 at%, A method for producing an Al alloy thin film containing 0.1 to 5.0 at% Ge, wherein Al is one or more of IVa, Va, VIa, and VIIa group transition elements and Ge is solidified. After forming the melted Al alloy thin film on the substrate, a part or all of the solid solution element in the Al alloy thin film is deposited as an intermetallic compound by a heat treatment at a heating temperature of 100 to 600 ° C. A method for producing an Al alloy thin film characterized by obtaining an Al alloy thin film of 10 μΩcm or less.
[0009]
A sputtering target for forming an Al alloy thin film according to claim 2 is a sputtering target used for forming an Al alloy thin film on a substrate in the method for producing an Al alloy thin film according to claim 1, comprising: IVa, Va, VIa, For forming an Al alloy thin film made of an Al alloy containing 0.1 to 5.0 at% of a total of one or more of VIIa group transition elements and 0.1 to 5.0 at% of Ge It is a sputtering target.
[0010]
[0011]
[0012]
[Action]
The present inventors manufactured Al alloy sputtering targets in which various elements were added to Al, and formed Al alloy thin films having various compositions by sputtering using these targets. Various characteristics such as hillock resistance, specific resistance, corrosion resistance, adhesion and etching characteristics were examined. As a result, the addition of IVa, Va, VIa, and VIIa group transition elements (hereinafter referred to as IVa to VIIa group transition elements) and Ge are effective in improving the above characteristics. It has been found that it has excellent characteristics as a material for wiring and electrodes (thin film wiring for gate bus lines or source bus lines in LCDs, or wiring or electrodes in switching elements such as active matrix LCDs). It was.
[0013]
That is, when one or more of IVa to VIIa group transition elements are added to Al, the heat resistance and corrosion resistance are improved with an increase in the amount added, but the specific resistance is increased. Therefore, although this transition element-containing Al alloy has sufficient heat resistance and corrosion resistance, it cannot satisfy the requirement of specific resistance of 10 μΩcm or less. However, when Ge is further added to this transition element-containing alloy to make a transition element and Ge-containing Al alloy, the specific resistance is reduced and the specific resistance is 10 μΩcm or less in a state satisfying the requirements of heat resistance and corrosion resistance. It was found that can also be satisfied. In addition, the addition of the transition element and Ge does not particularly deteriorate the adhesion and etching characteristics of the film (processability to a predetermined pattern shape), and the conventional LCD wiring / electrode material (Al-Ta or Al -Ti binary Al alloy thin film) was also confirmed to be excellent.
[0014]
In addition, when an Al alloy thin film made of a transition element and a Ge-containing alloy as described above is formed on a substrate in a state where the alloy components are in solid solution, the specific resistance increases as the amount of the solid solution increases. Strengthened by the melting effect, heat resistance, corrosion resistance, etc. are improved, and it is superior to conventional LCD wiring / electrode materials (Al-Ta or Al-Ti binary Al alloy thin films). When heat treatment is performed after this film formation, the solid solution element in the Al alloy thin film precipitates as an intermetallic compound (intermetallic compound of transition element and Ge), and the element in the solid solution state is a factor in increasing the specific resistance. It has also been found that the specific resistance can be further reduced because the total solid solution amount of is reduced. This process actively uses the heating process after film formation as a heat treatment, and requires high heat resistance and low specific resistance conditions before and after the heating process (heat treatment) (high heat resistance is a requirement in the heating process, Low specific resistance is a requirement after the heating process), and is extremely reasonable as a means for further enhancing them.
[0015]
Therefore, the method for producing an Al alloy thin film according to the present invention is based on the above knowledge and includes one or more of IVa, Va, VIa, and VIIa group transition elements ( IVa to VIIa group transition elements) in total. A method for producing an Al alloy thin film containing 0.1 to 5.0 at% and containing 0.1 to 5.0 at% of Ge , wherein Al is a IVa to VIIa group transition element (IVa, Va, VIa, VIIa After forming an Al alloy thin film in which one or more of the group transition elements) and Ge and Ge are dissolved on the substrate, a part or all of the solid solution elements in the Al alloy thin film are formed. A method for producing an Al alloy thin film is characterized in that an Al alloy thin film having an electric resistance value of 10 μΩcm or less is obtained by precipitation as an intermetallic compound by a heat treatment at a heating temperature of 100 to 600 ° C. As described above, this method can surely satisfy the necessary high heat resistance and low specific resistance conditions before and after the heating process (heat treatment), and is an extremely rational process as a means for further enhancing them.
[0016]
Here, whether all of the solid solution elements are deposited as an intermetallic compound by heat treatment, or a part thereof is deposited, and in some cases, how much is the amount (a part of the total) May be set in accordance with the amount of the solid solution element before heat treatment, the required electric resistance value, or the like. The heating temperature during the heat treatment is set to 100 to 600 ° C. When the temperature is less than 100 ° C., it is difficult for the intermetallic compound to be precipitated. Because.
[0017]
The Al alloy thin film is preferably formed by a sputtering method for the following reason. That is, transitional elements of group IVa to VIIa have a very small solid solution limit with respect to Al in the equilibrium state, but Al alloy thin films formed by sputtering can be non-equilibrium dissolved by vapor phase quenching inherent to sputtering. This is because the heat resistance and corrosion resistance can be remarkably improved as compared with Al alloy thin films formed by other ordinary thin film forming methods.
[0018]
When the Al alloy thin film is formed by the sputtering method, the sputtering target is a total of one or more of IVa to VIIa group transition elements (IVa, Va, VIa, and VIIa group transition elements) . What is necessary is just to use what consists of Al alloy which contains 1 to 5.0 at% and contains Ge at 0.1 to 5.0 at% . Such an Al alloy target has advantages in that the composition of the formed Al alloy thin film is easily stabilized and the amount of oxygen can be reduced, compared to a composite target or the like.
[0019]
The content of one or more of IVa to VIIa transition elements in the Al alloy thin film (transition element and Ge- containing Al alloy) is 0.1 to 5.0 at% in total, and the Ge content is 0. It is to .1~5.0at%. The reason is as follows. IVa to VIIa group transition element amount: less than 0.1 at% or Ge amount: less than 0.1 at%, the amount of solid solution element is too small and heat resistance is insufficient, and hillock is generated in the heating process (heat treatment). When the amount of transition elements IVa to VIIa exceeds 5.0 at% or the amount of Ge exceeds 5.0 at%, the amount of solid solution elements is too large, and precipitation of intermetallic compounds occurs during the heating process (heat treatment). This is because even if it occurs, the residual amount of the solid solution element after the heat treatment is large, so that the requirement of specific resistance: 10 μΩcm or less cannot be satisfied.
[0020]
The IVa group elements are Ti, Zr, Hf, the Va group elements are V, Nb, Ta, the VIa group elements are Cr, Mo, W, and the VIIa group elements are Mn, Tc, and Re.
[0021]
【Example】
(Example 1)
Composite target with a predetermined amount of 5 mm square Ta (Va group transition element) chips and Si or Ge chips placed on a pure Al target (purity 99.999%), or melting containing a predetermined amount of Ta, Si or Ge Using an Al alloy sputtering target, a DC magnetron sputtering method is used to deposit an Al-Ta-Si ternary Al alloy thin film and an Al-Ta-Ge ternary Al alloy thin film on a glass substrate with a thickness of 0.5 mm. Formed. Next, the thin film was processed into a stripe pattern shape having a width of 100 μm and a length of 10 mm by photolithography and wet etching, followed by vacuum heat treatment for heating at a predetermined temperature (100, 200, 300, 400, 500 ° C.) for 1 hour. .
[0022]
And the specific resistance value was measured at room temperature by the 4-terminal (probe) method about the said thin film. The result is shown in FIG. 1 as the relationship between the vacuum heat treatment temperature and the specific resistance. The specific resistance of the Al-Ta-Si ternary Al alloy thin film and the Al-Ta-Ge ternary Al alloy thin film is lower than that of the Al-Ta binary Al alloy thin film. I understand that.
[0023]
(Example 2)
A similar Al-Ta-Si ternary Al alloy thin film is formed on the same glass substrate by the same method as in Example 1, and then processed into a stripe pattern shape having a width of 10 μm by the same method. Vacuum heat treatment was performed. And in order to evaluate heat resistance, after the said heat processing, the number of hillocks (hemispherical protrusion) which generate | occur | produces on the stripe pattern surface was measured, and the hillock density (number of hillocks per unit area) was calculated | required. The result is shown in FIG. 2 as a relationship diagram between the heat treatment temperature and the hillock density. It can be seen that the Al—Ta—Si ternary Al alloy thin film has a lower hillock density and therefore better heat resistance than the Al—Ta binary Al alloy thin film. Furthermore, it can be seen that the greater the amount of Si added, the smaller the hillock density and the better the heat resistance.
[0024]
(Example 3)
Instead of Ta in Example 1, Mn (group VIIa transition element) was used, Si or Ge was changed to Ge, and except that point, the same target was used as in Example 1, and Al- An Mn-Ge ternary Al alloy thin film was formed on the same glass substrate. Next, after processing into a similar stripe pattern shape by the same method as in Example 1, vacuum heat treatment was performed under the same conditions. The specific resistance value was measured by the same method as in Example 1. The result is shown in FIG. It can be seen that the Al—Mn—Ge ternary Al alloy thin film has a lower specific resistance than the Al—Mn binary Al alloy thin film, and the specific resistance is lower as the Ge addition amount is larger.
[0025]
(Example 4)
A similar Al-Mn-Ge ternary Al alloy thin film is formed on the same glass substrate by the same method as in Example 3, and then processed into a stripe pattern shape having a width of 10 μm by the same method. Vacuum heat treatment was performed. And the hillock density was calculated | required by the method similar to Example 2. FIG. The result is shown in FIG. The Al-Mn-Ge ternary Al alloy thin film has a lower hillock density and better heat resistance than the Al-Mn binary Al alloy thin film, and the hillock density decreases as the Si content increases. It turns out that it is excellent in heat resistance.
[0026]
(Example 5)
Ti (IVa group transition element) was used instead of Ta in Example 1, and Si was used instead of Si or Ge. Except for this point, an Al—Ti—Si ternary Al alloy thin film having the same thickness was formed by the same method using the same target as in Example 1, and then processed into the same stripe pattern shape by the same method. The vacuum heat treatment was performed. The specific resistance value was measured by the same method as in Example 1. The result is shown in FIG. It can be seen that the Al—Ti—Si ternary Al alloy thin film has a lower specific resistance than the Al—Ti binary Al alloy thin film, and the specific resistance is lower as the Si addition amount is larger.
[0027]
In the above embodiment, one of the IVa to VIIa group transition elements as the alloy component is added, and the above-mentioned effects are obtained. However, such an effect is the effect of the IVa to VIIa group transition elements. Also obtained when two or more are added.
[0028]
(Example 6)
Using a molten Al alloy sputtering target, Ta amount: 1.5 at% and Si amount: 3.0 at% on a SiO 2 (thickness: 100 nm) / Si (thickness: 0.25 mm) substrate by DC magnetron sputtering An Al alloy thin film A 1 having a film thickness of 0.5 μm and an Al thin film R 1 (comparative example) having a film thickness of 0.5 μm were formed. With respect to these thin films, the film stress at each temperature was measured in a heating and cooling process in which the temperature was increased from 25 ° C. to 500 ° C. at a rate of 5 ° C./min and then decreased from 500 ° C. to 25 ° C. Here, the film stress was determined by measuring the amount of warpage of the substrate with a laser. The result is shown in FIG. Comparative example R 1 yields at 200 ° C. during temperature rise, whereas A 1 yields at 400 ° C. Since the film undergoes plastic deformation in the temperature range above the yield point, A 1 has less plastic deformation. Therefore, tensile stress occurs during the temperature decrease (due to the difference in thermal expansion between the metal wiring film and the interlayer insulating film) is smaller towards the A 1, SM has excellent (stress migration) it is unlikely to occur (i.e. resistance to SM resistance I understand).
[0029]
(Example 7)
A 2 (Example A 2 ) in which the Ta amount in the Al alloy thin film A is changed to 0.1, 0.8, 1.5, 2.3, 3.0 at% and the Si amount is changed to 0.1, 1.5, 3.0, 4.5, 6.0 at%, The same test as in Example 6 was performed on R 2 (Example R 2 ) in which the Ta content was changed to 0.08, 3.2 at% and the Si content was changed to 0.08, 6.5 at%. As a result, it was confirmed that Example A 2 was superior in SM resistance compared to Comparative Examples R 1 and R 2 .
[0030]
(Example 8)
In the same manner as in Example 6, on the SiO 2 (thickness: 100 nm) / Si (thickness: 0.25 mm) substrate, Al alloy thin films A 1 , R 1 ( Comparative Example) was formed. Next, these thin films were heat-treated at 400 ° C. for 60 minutes, and then processed into a predetermined test pattern shape (a linear pattern having a width of 1 μm and a length of 3 mm) by photolithography and etching. Thereafter, this thin film was heated to 200 ° C., and an energization test was conducted in which a constant current of 5 × 10 6 A / cm 2 was passed, and the failure time (time until disconnection occurred) was measured. This result is shown in FIG. 7 as the relationship between the failure time and the cumulative failure rate (ratio to the total number of samples that failed by a certain time). A 1 is compared to that R 1 of the comparative example, that the average time to failure are excellent (cumulative failure rates become time 50%) of about 10 times longer, therefore resistance to EM resistance (electromigration resistance) Understand.
[0031]
In addition, the heat treatment conditions are changed to 400 ° C x 60 minutes, 200 ° C x 30 minutes, 200 ° C x 60 minutes, 300 ° C x 30 minutes, 300 ° C x 60 minutes, 400 ° C x 30 minutes, 600 ° C x 30 minutes, The same processing and energization test as described above were performed for the sample at 600 ° C. × 60 minutes. As a result, it was confirmed that in A 1 , those subjected to these heat treatments were superior in EM resistance compared to R 1 of the comparative example.
[0032]
Example 9
In Example 6, A 3 using another group IVa, Va, VIa instead of Ta in A 1 and A 4 using Ge instead of Si (Example of the present invention) Tests similar to 6 and 8 were performed. As a result, the same tendency as in Examples 6 and 8 was obtained, and A 3 and A 4 were superior in SM resistance and EM resistance to Comparative Example R 1 . In A 3 and A 4 , SM resistance and EM resistance are not very different depending on the type of elements of IVa, Va and VIa groups, but especially excellent in IVa and Va groups. The case was excellent.
[0033]
In Examples 6 to 9, IVa, Va, VIa group elements as alloy components are used as one of them, and the effects as described above are obtained. It can also be obtained when two or more of these are added.
[0034]
【The invention's effect】
The present invention has the above-described configuration and functions. The method for producing an Al alloy thin film according to the present invention is an Al alloy thin film having excellent characteristics (that is, the specific resistance is 10 μΩcm or less, Similar to conventional LCD wiring / electrode materials (Al-Ta or Al-Ti binary Al alloy thin film), it has excellent heat resistance and hardly causes hillocks, etc., and also has corrosion resistance, film adhesion and etching characteristics ( It is excellent in processability to a predetermined pattern shape) and can be suitably used as a wiring / electrode material for LCD (liquid crystal display panel). Therefore, it is possible to improve the functionality and quality of these devices, (Al alloy thin film that can respond to and contribute to future increases in size and definition of LCD) can be manufactured reliably, especially with the high heat resistance and low ratio required before and after the heating process of the Al alloy thin film. The resistance conditions can be satisfied reliably and sufficiently, There is an effect that can be further enhanced.
[0035]
The sputtering target according to the present invention can be suitably used when the above-mentioned Al alloy thin film is formed by a sputtering method, the composition of the formed Al alloy thin film can be easily stabilized, and the amount of oxygen can be reduced. There is an advantage that an Al alloy thin film having advantages and more stable characteristics can be obtained.
[Brief description of the drawings]
1 is a diagram showing the relationship between heat treatment temperature and specific resistance in the method for producing an Al alloy thin film according to Example 1. FIG.
2 is a graph showing the relationship between heat treatment temperature and hillock density in the method for producing an Al alloy thin film according to Example 2. FIG.
3 is a graph showing the relationship between the heat treatment temperature and the specific resistance in the method for producing an Al alloy thin film according to Example 3. FIG.
4 is a graph showing a relationship between a heat treatment temperature and a hillock density in the method for producing an Al alloy thin film according to Example 4. FIG.
5 is a graph showing the relationship between the heat treatment temperature and the specific resistance in the method for producing an Al alloy thin film according to Example 5. FIG.
6 is a graph showing the relationship between temperature and film stress during heating and cooling for an Al alloy thin film obtained by the method for producing an Al alloy thin film according to Example 6. FIG.
7 is a graph showing the relationship between failure time and cumulative failure rate for an Al alloy thin film obtained by the method for producing an Al alloy thin film according to Example 8. FIG.

Claims (2)

IVa, Va, VIa, VIIa 族の遷移元素のうちの1種または2種以上を合計で0.1〜5.0at%含有すると共に、Geを0.1〜5.0at%含有するAl合金薄膜の製造方法であって、AlにIVa, Va, VIa, VIIa族の遷移元素のうちの1種または2種以上と、Geとを固溶させたAl合金薄膜を基板上に形成させた後、該Al合金薄膜中の固溶元素の一部または全部を加熱温度:100〜600℃の熱処理により金属間化合物として析出させ、電気抵抗値:10μΩcm以下のAl合金薄膜を得ることを特徴とするAl合金薄膜の製造方法。 Al alloy thin film containing 0.1 to 5.0 at% of total of one or more of IVa, Va, VIa, and VIIa transition elements and 0.1 to 5.0 at% of Ge a method of manufacturing, after IVa, Va, VIa, and one or more of the transition elements of group VIIa, in which the Al alloy thin film is dissolved and Ge was formed on the substrate Al, A part or all of a solid solution element in the Al alloy thin film is deposited as an intermetallic compound by a heat treatment at a heating temperature of 100 to 600 ° C., and an Al alloy thin film having an electric resistance value of 10 μΩcm or less is obtained. Manufacturing method of alloy thin film. 請求項1記載のAl合金薄膜の製造方法における基板上へのAl合金薄膜形成のために用いるスパッタリングターゲットであって、IVa, Va, VIa, VIIa族の遷移元素のうちの1種または2種以上を合計で0.1〜5.0at%含有すると共に、Geを0.1〜5.0at%含有するAl合金よりなるAl合金薄膜形成用スパッタリングターゲット。A sputtering target used for forming an Al alloy thin film on a substrate in the method for producing an Al alloy thin film according to claim 1, wherein one or more of IVa, Va, VIa, and VIIa transition elements are used. A sputtering target for forming an Al alloy thin film made of an Al alloy containing 0.1 to 5.0 at% of Ge in total and 0.1 to 5.0 at% of Ge.
JP2002025610A 1993-07-27 2002-02-01 Method for producing Al alloy thin film and sputtering target for forming Al alloy thin film Expired - Fee Related JP3684354B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002025610A JP3684354B2 (en) 1993-07-27 2002-02-01 Method for producing Al alloy thin film and sputtering target for forming Al alloy thin film

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP18474893 1993-07-27
JP5-184748 1993-07-27
JP2002025610A JP3684354B2 (en) 1993-07-27 2002-02-01 Method for producing Al alloy thin film and sputtering target for forming Al alloy thin film

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP10297894A Division JP3438945B2 (en) 1993-07-27 1994-05-17 Al alloy thin film

Publications (2)

Publication Number Publication Date
JP2002322557A JP2002322557A (en) 2002-11-08
JP3684354B2 true JP3684354B2 (en) 2005-08-17

Family

ID=26502685

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002025610A Expired - Fee Related JP3684354B2 (en) 1993-07-27 2002-02-01 Method for producing Al alloy thin film and sputtering target for forming Al alloy thin film

Country Status (1)

Country Link
JP (1) JP3684354B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012180540A (en) 2011-02-28 2012-09-20 Kobe Steel Ltd Al ALLOY FILM FOR DISPLAY DEVICE AND SEMICONDUCTOR DEVICE

Also Published As

Publication number Publication date
JP2002322557A (en) 2002-11-08

Similar Documents

Publication Publication Date Title
JP2733006B2 (en) Electrode for semiconductor, method for manufacturing the same, and sputtering target for forming electrode film for semiconductor
JP3365954B2 (en) Al-Ni-Y alloy thin film for semiconductor electrode and sputtering target for forming Al-Ni-Y alloy thin film for semiconductor electrode
JP3438945B2 (en) Al alloy thin film
US20080253925A1 (en) Target material for electrode film, methods of manufacturing the target material and electrode film
US8097100B2 (en) Ternary aluminum alloy films and targets for manufacturing flat panel displays
JP2005171378A (en) Al ALLOY FILM FOR WIRING FILM AND SPUTTERING TARGET MATERIAL FOR FORMING WIRING FILM
JP3859119B2 (en) Thin film wiring for electronic parts
JPS62240738A (en) N-and c-containing aluminum alloy for semiconductor wiring material
JP3684354B2 (en) Method for producing Al alloy thin film and sputtering target for forming Al alloy thin film
KR100366674B1 (en) Αl ALLOY THIN FILM FOR SEMICONDUCTOR DEVICE ELECTRODE AND SPUTTERING TARGET FOR FORMING Αl ALLOY THIN FILM FOR SEMICONDUCTOR DEVICE ELECTRODE
JP3276446B2 (en) Al alloy thin film, method for producing the same, and sputtering target for forming an aluminum alloy thin film
JP3061654B2 (en) Semiconductor device material for liquid crystal display and molten sputtering target material for manufacturing semiconductor device material for liquid crystal display
JP3410278B2 (en) Al-based target material for liquid crystal display and method for producing the same
JPH05100248A (en) Production of semiconductor device for liquid crystal display
JP2001125123A (en) Electrode, wiring material and sputtering target for liquid crystal display
JP2809523B2 (en) Wiring electrode thin film material for liquid crystal display with excellent heat resistance
KR19980042032A (en) Al alloy thin film and Al alloy sputtering target
JPH10270446A (en) Method of forming multilayer wiring layer and metal wiring layer
JPS62240735A (en) N-containing aluminum alloy for semiconductor wiring material
KR0169379B1 (en) Gate electrode manufacturing method for al-hf alloy
EP0731507A1 (en) Electrode materials
JP4840173B2 (en) Laminated wiring and laminated electrode for liquid crystal display device having no thermal defect and excellent adhesion, and methods for forming them
JPH10125619A (en) Wiring layer and method of forming wiring layer
JPH04333566A (en) Formation of thin film
JP2000063971A (en) Sputtering target

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040831

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041028

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050331

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050524

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050530

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080603

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090603

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100603

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100603

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110603

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120603

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees