JP2002322557A - METHOD FOR DEPOSITING Al ALLOY THIN FILM, AND SPUTTERING TARGET FOR DEPOSITING Al ALLOY THIN FILM - Google Patents

METHOD FOR DEPOSITING Al ALLOY THIN FILM, AND SPUTTERING TARGET FOR DEPOSITING Al ALLOY THIN FILM

Info

Publication number
JP2002322557A
JP2002322557A JP2002025610A JP2002025610A JP2002322557A JP 2002322557 A JP2002322557 A JP 2002322557A JP 2002025610 A JP2002025610 A JP 2002025610A JP 2002025610 A JP2002025610 A JP 2002025610A JP 2002322557 A JP2002322557 A JP 2002322557A
Authority
JP
Japan
Prior art keywords
thin film
alloy thin
alloy
depositing
resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002025610A
Other languages
Japanese (ja)
Other versions
JP3684354B2 (en
Inventor
Katsuhisa Takagi
勝寿 高木
Takashi Onishi
隆 大西
Eiji Iwamura
栄治 岩村
Masatake Yamamoto
正剛 山本
Kazuo Yoshikawa
一男 吉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2002025610A priority Critical patent/JP3684354B2/en
Publication of JP2002322557A publication Critical patent/JP2002322557A/en
Application granted granted Critical
Publication of JP3684354B2 publication Critical patent/JP3684354B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Liquid Crystal (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for depositing an Al alloy thin film which has specific resistance of <=10 μΩcm, further has excellent heat resistance or the like, and is suitably usable as wiring, an electrode or the like for a liquid crystal display panel, and to provide a sputtering target for depositing the Al alloy thin film. SOLUTION: (1) In the method for depositing an Al alloy thin film, an Al alloy thin film in which one or more kinds selected from the transition elements in the group IVa, Va, VIa and VIIa and one or more kinds selected from Si and Ge are allowed to form a solid solution in Al is deposited on a substrate, and after that, a part or the whole of the solid solution elements in the Al alloy thin film is precipitated as an intermetallic compound by heat treatment at a heating temperature of 100 to 600 deg.C, so that the Al alloy thin film having an electric resistance value of <=10 μΩcm is obtained. (2) The sputtering target made of an Al alloy is used for depositing an Al alloy thin film onto a substrate in the same production method for the Al alloy thin film.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明はAl合金薄膜の製造方法お
よびAl合金薄膜形成用スパッタリングターゲットに関
し、特には、液晶表示パネルのゲートバスライン或いは
ソースバスライン用の薄膜配線、同パネルのスイッチン
グ素子部の配線或いは電極として好適なアルミニウム合
金薄膜(Al合金薄膜)の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing an Al alloy thin film and a sputtering target for forming the Al alloy thin film, and more particularly to a thin film wiring for a gate bus line or a source bus line of a liquid crystal display panel, and a switching element of the panel. The present invention relates to a method for manufacturing an aluminum alloy thin film (Al alloy thin film) suitable as a wiring or an electrode of a part.

【0002】[0002]

【従来の技術】液晶表示パネル:Liquid Cristal Displ
ay(以降 LCDという)は、従来のブラウン管に比べ、薄
型化・軽量化・低消費電力化がはかれ、しかも高い解像
度の画像が得られる可能性が大きいことから、近年、そ
の用途が拡大しつつある。かかるLCD として最近では、
更に画像品質を高めるために、 LCDのスイッチング素子
として半導体装置である薄膜トランジスター:Thin Fil
m Transister(以降 TFTという)を組み込んだ構造の L
CDが提案され、広く用いられている。
[Prior Art] Liquid crystal display panel: Liquid Cristal Displ
The ay (hereinafter referred to as LCD) is thinner, lighter and consumes less power than conventional cathode ray tubes, and is more likely to produce high-resolution images. It is getting. Recently, such LCDs have
In order to further enhance image quality, thin-film transistors, which are semiconductor devices, are used as LCD switching elements: Thin Fil
m L with structure incorporating Transister (hereinafter referred to as TFT)
CDs have been proposed and are widely used.

【0003】上記 TFTを搭載した LCD(以降 TFT-LCDと
いう)の配線材料はTFT 製造プロセス中に比較的高温下
(300〜400 ℃程度)にさらされるため、一般の半導体装
置の集積回路の電極・配線材料として多用されている純
AlやAl基合金を LCDの配線として用いると、これらは耐
熱性が不充分であることから、ヒロック(半球状の配線
のふくれ)やボイドといわれる配線表面上の微小凸凹が
生じる。従って、 LCDの配線材料にはTa, Mo, Cr, Ti等
の高融点金属が多用されている。しかし、近年LCDは大
型化・高精細化して、各 TFT素子を結ぶアドレス配線が
増長化し、それに伴って電気抵抗及び容量が増大してい
るため、薄膜状態で約50μΩcm以上(Taで約180 、Moで
約50、Crで約50、Tiで約80μΩcm)の高比抵抗を有する
上記の高融点金属ではアドレスパルスの遅延が起こり、
これらの材料の使用が難しくなってきている。
[0003] The wiring material of the above-mentioned TFT-mounted LCD (hereinafter referred to as TFT-LCD) is exposed to relatively high temperatures during the TFT manufacturing process.
(Approximately 300 to 400 ° C), which is widely used as an electrode and wiring material for integrated circuits in general semiconductor devices.
When Al or an Al-based alloy is used for LCD wiring, since they have insufficient heat resistance, minute irregularities on the wiring surface called hillocks (hemispherical wiring bulges) and voids are generated. Accordingly, high melting point metals such as Ta, Mo, Cr, and Ti are frequently used as LCD wiring materials. However, in recent years, LCDs have become larger and more precise, and the address wiring connecting each TFT element has increased, and the electrical resistance and capacitance have increased accordingly. With the above high melting point metal having a high specific resistance of about 50 for Mo, about 50 for Cr, and about 80 μΩcm for Ti), the address pulse is delayed,
The use of these materials is becoming more difficult.

【0004】現在、かかるアドレスパルスの遅延を起こ
さないためには、 LCDの配線材料の比抵抗としては略30
μΩcm以下であることが望まれ、これを充たす金属種と
してはAu、Cu、Alが挙げられる。しかし、Auはシート状
配線膜の成膜後に所定パターン形状にするのに必要なエ
ッチングの特性が悪いと共に高価であり、Cuは膜の密着
性及び耐食性に問題があり、又、Alは前述の如くヒロッ
ク等を生じるので、いづれも配線材料としての実用が困
難とされている。
At present, in order to prevent the delay of the address pulse, the specific resistance of the wiring material of the LCD is about 30.
It is desired that the resistivity be equal to or less than μΩcm, and Au, Cu, and Al can be cited as metal species satisfying this. However, Au has poor etching characteristics necessary for forming a predetermined pattern shape after the formation of the sheet-like wiring film and is expensive, and Cu has problems in adhesion and corrosion resistance of the film, and Al has the above-mentioned problem. As described above, hillocks and the like are generated, so that it is difficult to use them as wiring materials.

【0005】そこで、上記の問題点を解決し得る配線・
電極材料、即ち比抵抗:30μΩcm以下であると共に耐熱
性に優れてヒロック発生等を防止できる配線・電極材料
として、Al-Ta 2元系合金薄膜及びAl-Ti 2元系合金薄
膜が提案され、 LCDの配線材料に使用されるようになっ
てきた。しかし、今後、 LCDが更に大型化・高精細化さ
れた場合、これらの耐熱性低比抵抗材料を用いたとして
も、アドレスパルスの遅延が起こることが予想され、こ
れを解決するには更に10μΩcm以下の程度に低比抵抗化
する必要がある。従って、今後のLCD の大型化・高精細
化に対応するため、上記従来のLCD 用配線・電極材料
(Al-Ta 又はAl-Ti 2元系Al合金薄膜)と同等の優れた
耐熱性を有し、且つ比抵抗:10μΩcm以下であるLCD 用
の新規配線・電極材料(薄膜)の開発が望まれている現
状にある。
[0005] Therefore, wiring and wiring which can solve the above-mentioned problems can be solved.
Al-Ta binary alloy thin films and Al-Ti binary alloy thin films have been proposed as electrode materials, that is, wiring / electrode materials having a specific resistance of 30 μΩcm or less and having excellent heat resistance and preventing hillocks and the like. It has come to be used for LCD wiring materials. However, in the future, if LCDs are further enlarged and have higher definition, even if these heat-resistant and low-resistance materials are used, it is expected that address pulse delay will occur. It is necessary to reduce the specific resistance to the following degree. Therefore, it has the same excellent heat resistance as the above-mentioned conventional LCD wiring and electrode materials (Al-Ta or Al-Ti binary Al alloy thin film) in order to respond to the demand for larger LCDs and higher definition in the future. At present, there is a demand for the development of new wiring and electrode materials (thin films) for LCDs having a specific resistance of 10 μΩcm or less.

【0006】[0006]

【発明が解決しようとする課題】本発明はこの様な事情
に着目してなされたものであって、その目的は従来のも
のがもつ以上のような問題点を解消し得る高機能の新規
Al合金薄膜、即ち、比抵抗:10μΩcm以下であると共
に、前記従来のLCD 用配線・電極材料(Al-Ta 又はAl-T
i 2元系Al合金薄膜)と同様に、耐熱性に優れてヒロッ
ク等が生じ難く、また、耐食性、膜の密着性及びエッチ
ングの特性(所定パターン形状への加工性)に優れて、
LCD 用配線・電極等として好適に使用し得るAl合金薄膜
の製造方法および該Al合金薄膜の形成用スパッタリング
ターゲットを提供しようとするものである。
SUMMARY OF THE INVENTION The present invention has been made in view of such circumstances, and has as its object the purpose of providing a high-performance new device capable of solving the above-mentioned problems.
Al alloy thin film, that is, having a specific resistance of 10 μΩcm or less, and the above-mentioned conventional LCD wiring / electrode material (Al-Ta or Al-T
i) As in the case of the binary Al alloy thin film), it is excellent in heat resistance and hardly generates hillocks, and is excellent in corrosion resistance, film adhesion and etching characteristics (workability into a predetermined pattern shape).
An object of the present invention is to provide a method for producing an Al alloy thin film which can be suitably used as an LCD wiring / electrode and a sputtering target for forming the Al alloy thin film.

【0007】[0007]

【課題を解決するための手段】上記の目的を達成するた
めに、本発明に係るAl合金薄膜の製造方法およびAl合金
薄膜形成用スパッタリングターゲットは、請求項1、請
求項3記載のAl合金薄膜の製造方法、請求項2、請求項
4記載のAl合金薄膜形成用スパッタリングターゲットと
しており、それは次のような構成としたものである。
In order to achieve the above object, a method for producing an Al alloy thin film and a sputtering target for forming an Al alloy thin film according to the present invention are described in claim 1 and claim 3. The sputtering target for forming an Al alloy thin film according to the second or fourth aspect of the present invention has the following configuration.

【0008】即ち、請求項1記載のAl合金薄膜の製造方
法は、AlにIVa, Va, VIa, VIIa族の遷移元素のうちの1
種または2種以上と、Si, Geのうちの1種または2種と
を固溶させたAl合金薄膜を基板上に形成させた後、該Al
合金薄膜中の固溶元素の一部または全部を加熱温度:1
00〜600℃の熱処理により金属間化合物として析出
させ、電気抵抗値:10μΩcm以下のAl合金薄膜を得る
ことを特徴とするAl合金薄膜の製造方法である。
That is, the method for producing an Al alloy thin film according to the first aspect is characterized in that Al is one of the transition elements of the IVa, Va, VIa and VIIa groups.
Forming, on a substrate, an Al alloy thin film in which one or more of Si and Ge are dissolved in one or more of Si and Ge;
Part or all of the solid solution elements in the alloy thin film are heated at a heating temperature of 1
This is a method for producing an Al alloy thin film, wherein an Al alloy thin film having an electrical resistance value of 10 μΩcm or less is obtained by precipitating as an intermetallic compound by heat treatment at 00 to 600 ° C.

【0009】請求項2記載のAl合金薄膜形成用スパッタ
リングターゲットは、請求項1記載のAl合金薄膜の製造
方法における基板上へのAl合金薄膜形成のために用いる
スパッタリングターゲットであって、IVa, Va, VIa, VI
Ia族の遷移元素のうちの1種または2種以上と、Si, Ge
のうちの1種または2種とを含有するAl合金よりなるAl
合金薄膜形成用スパッタリングターゲットである。
The sputtering target for forming an Al alloy thin film according to claim 2 is a sputtering target used for forming an Al alloy thin film on a substrate in the method for manufacturing an Al alloy thin film according to claim 1, wherein the sputtering target is IVa, Va. , VIa, VI
One or more of the group Ia transition elements and Si, Ge
Consisting of an Al alloy containing one or two of the above
This is a sputtering target for forming an alloy thin film.

【0010】請求項3記載のAl合金薄膜の製造方法は、
前記Al合金薄膜での遷移元素のうちの1種または2種以
上の含有量が合計で0.1〜5.0at%であり、Si,
Geのうちの1種または2種の含有量が合計で0.1〜
5.0at%である請求項1記載のAl合金薄膜の製造方
法である。
[0010] The method for producing an Al alloy thin film according to claim 3 comprises:
The content of one or more of the transition elements in the Al alloy thin film is 0.1 to 5.0 at% in total, and Si,
The content of one or two of Ge is 0.1 to
2. The method for producing an Al alloy thin film according to claim 1, wherein the content is 5.0 at%.

【0011】請求項4記載のAl合金薄膜形成用スパッタ
リングターゲットは、前記Al合金での遷移元素のうちの
1種または2種以上の含有量が合計で0.1〜5.0a
t%であり、Si, Geのうちの1種または2種の含有量が
合計で0.1〜5.0at%である請求項2記載のAl合
金薄膜形成用スパッタリングターゲットである。
According to a fourth aspect of the present invention, in the sputtering target for forming an Al alloy thin film, the content of one or more transition elements in the Al alloy is 0.1 to 5.0a in total.
3. The sputtering target for forming an Al alloy thin film according to claim 2, wherein the total content of at least one of Si and Ge is 0.1 to 5.0 at%.

【0012】[0012]

【作用】本発明者等は、Alに種々の元素を添加したAl合
金スパッタリングターゲットを製作し、これらターゲッ
トを使用して、スパッタリング法により種々の組成のAl
合金薄膜を形成し、その組成、及び、耐熱性、耐ヒロッ
ク性、比抵抗、耐食性、密着性及びエッチング特性等の
諸特性を調べた。その結果、IVa, Va, VIa, VIIa族の遷
移元素(以降、IVa 〜VIIa族遷移元素という)、Si, Ge
(以降、Si等という)の添加が上記特性の向上に有効で
あり、これらの元素を添加したAl合金薄膜はLCD 用配線
・電極(LCD 等でのゲートバスライン或いはソースバス
ライン用の薄膜配線、又は、アクティブマトリックス型
LCD 等のスイッチング素子部での配線或いは電極)材料
等としての優れた特性を有することを見出した。
The present inventors have produced Al alloy sputtering targets obtained by adding various elements to Al, and using these targets, Al sputtering of various compositions is performed by sputtering.
An alloy thin film was formed, and its composition and characteristics such as heat resistance, hillock resistance, specific resistance, corrosion resistance, adhesion, and etching characteristics were examined. As a result, IVa, Va, VIa, and VIIa transition elements (hereinafter, referred to as IVa to VIIa transition elements), Si, Ge
(Hereinafter referred to as Si, etc.) is effective in improving the above characteristics, and the Al alloy thin film to which these elements are added is used as a wiring and electrode for LCD (a thin film wiring for a gate bus line or a source bus line in an LCD or the like). Or active matrix type
It has been found that it has excellent properties as a material for wiring or electrodes in switching elements such as LCDs.

【0013】即ち、AlにIVa 〜VIIa族遷移元素のうちの
1種又は2種以上を添加すると、その添加量の増大に伴
って耐熱性及び耐食性が向上するが、比抵抗が高くな
る。従って、この遷移元素含有Al合金では、耐熱性及び
耐食性等は充分であるものの、比抵抗:10μΩcm以下と
いう要件を充たし得ない。しかし、この遷移元素含有合
金に更にSi等を添加し、遷移元素及びSi等含有Al合金に
すると、比抵抗が低下し、耐熱性及び耐食性等の要件を
充たした状態で、比抵抗:10μΩcm以下という要件をも
充たし得ることがわかった。尚、かかる遷移元素及びSi
等の添加により、膜の密着性及びエッチング特性(所定
パターン形状への加工性)が特に低下することはなく、
前記従来のLCD 用配線・電極材料(Al-Ta 又はAl-Ti 2
元系Al合金薄膜)と同様に優れたものであることも確認
された。
That is, when one or more of the transition elements of groups IVa to VIIa are added to Al, the heat resistance and the corrosion resistance are improved with an increase in the added amount, but the specific resistance is increased. Therefore, although the transition element-containing Al alloy has sufficient heat resistance and corrosion resistance, it cannot satisfy the requirement of specific resistance: 10 μΩcm or less. However, when the transition element-containing alloy is further added with Si or the like to form a transition element or Si-containing aluminum alloy, the specific resistance is reduced, and the specific resistance: 10 μΩcm or less in a state satisfying requirements such as heat resistance and corrosion resistance. It has been found that the requirement of can be satisfied. The transition element and Si
By the addition of, for example, the adhesion and etching characteristics of the film (workability into a predetermined pattern shape) are not particularly reduced.
The conventional LCD wiring and electrode materials (Al-Ta or Al-Ti 2
(Al alloy thin film).

【0014】また、上記の如き遷移元素およびSi等含有
合金よりなるAl合金薄膜を合金成分を固溶させた状態で
基板上に形成させると、その固溶量が多い程、比抵抗は
高くなるが、所謂固溶効果により強化され、耐熱性及び
耐食性等が高められ、従来のLCD 用配線・電極材料(Al
-Ta 又はAl-Ti 2元系Al合金薄膜)よりも優れたものと
なる。この成膜の後、熱処理を施すと、Al合金薄膜中の
固溶元素が金属間化合物(遷移元素とSi等との金属間化
合物)として析出し、比抵抗増大の要因である固溶状態
の元素の総固溶量が減少するため、比抵抗を更に低下さ
せることが可能であることもわかった。かかるプロセス
は、成膜後の加熱過程を熱処理として積極的に利用し、
その加熱過程(熱処理)前後で各々必要な高耐熱性及び
低比抵抗の条件(高耐熱性は加熱過程での要件、低比抵
抗は加熱過程後の要件である)を充たすものであり、そ
れらをより一層高める手段として極めて合理的である。
When an Al alloy thin film composed of an alloy containing a transition element and Si as described above is formed on a substrate in a state where the alloy components are dissolved, the specific resistance increases as the solid solution amount increases. Is enhanced by the so-called solid solution effect, heat resistance, corrosion resistance, etc. are enhanced.
-Ta or Al-Ti binary Al alloy thin film). After this film formation, when heat treatment is performed, the solid solution element in the Al alloy thin film precipitates as an intermetallic compound (intermetallic compound of a transition element and Si or the like), and the solid solution state, which is a factor of an increase in specific resistance, is formed. It was also found that the specific resistance can be further reduced because the total solid solution amount of the elements is reduced. This process actively uses the heating process after film formation as heat treatment,
Before and after the heating process (heat treatment), it satisfies the conditions of high heat resistance and low resistivity (high heat resistance is a requirement in the heating process, and low resistivity is a requirement after the heating process). It is extremely rational as a means to further increase the value.

【0015】そこで、本発明に係るAl合金薄膜の製造方
法は、前記知見に基づき、AlにIVa〜VIIa族遷移元素(I
Va, Va, VIa, VIIa族の遷移元素)のうちの1種または
2種以上と、Si等(Si, Ge)のうちの1種または2種と
を固溶させたAl合金薄膜を基板上に形成させた後、該Al
合金薄膜中の固溶元素の一部または全部を加熱温度:1
00〜600℃の熱処理により金属間化合物として析出
させ、電気抵抗値:10μΩcm以下のAl合金薄膜を得る
ことを特徴とするAl合金薄膜の製造方法としている。こ
の方法は、前述の如く、加熱過程(熱処理)前後で各々
必要な高耐熱性及び低比抵抗の条件を確実に充たすこと
ができ、それらをより一層高める手段として極めて合理
的なプロセスである。
Therefore, the method for producing an Al alloy thin film according to the present invention is based on the above findings,
An Al alloy thin film in which one or more of Va, Va, VIa, and VIIa transition elements) and one or two of Si and the like (Si, Ge) are formed as a solid solution on a substrate. After forming the Al
Part or all of the solid solution elements in the alloy thin film are heated at a heating temperature of 1
A method for producing an Al alloy thin film is characterized in that an Al alloy thin film having an electrical resistance value of 10 μΩcm or less is obtained by precipitating as an intermetallic compound by heat treatment at 00 to 600 ° C. As described above, this method can reliably satisfy the required conditions of high heat resistance and low specific resistance before and after the heating process (heat treatment), respectively, and is a very rational process as a means for further enhancing them.

【0016】ここで、熱処理により金属間化合物として
固溶元素の全部を析出させるか、一部を析出させるか、
又、一部の場合にはその量(全部に対する一部の割合)
をどの程度とするかは、熱処理前の固溶元素量や所要電
気抵抗値等に応じて設定すればよい。熱処理の際の加熱
温度を100〜600℃としているのは、100℃未満
では金属間化合物の析出が起こり難く、そのため電気抵
抗値:10μΩcm以下を充たし得ず、600℃超では熱処
理時にヒロックが生じるからである。
Here, whether the solid solution element is precipitated as an intermetallic compound or part of the solid solution element by heat treatment,
In some cases, the amount (part of the total)
May be set according to the amount of solid solution elements before heat treatment, the required electric resistance value, and the like. The reason why the heating temperature at the time of the heat treatment is set to 100 to 600 ° C. is that if the temperature is lower than 100 ° C., the precipitation of the intermetallic compound is unlikely to occur, so that the electric resistance value cannot be less than 10 μΩcm. Because.

【0017】上記Al合金薄膜はスパッタリング法により
形成されていることが望ましく、その理由は下記の通り
である。即ち、IVa 〜VIIa族遷移元素は平衡状態ではAl
に対する固溶限が極めて小さいが、スパッタリング法に
より形成されたAl合金薄膜では、スパッタリング法固有
の気相急冷によって非平衡固溶が可能になることから、
その他の通常の薄膜形成法により形成されるAl合金薄膜
と比較して、より耐熱性及び耐食性を著しく向上し得る
からである。
The above Al alloy thin film is preferably formed by a sputtering method for the following reason. That is, the transition elements of group IVa to VIIa
Although the solid solubility limit for is very small, the non-equilibrium solid solution is possible by the vapor phase quenching inherent to the sputtering method in the Al alloy thin film formed by the sputtering method.
This is because heat resistance and corrosion resistance can be significantly improved as compared with an Al alloy thin film formed by other ordinary thin film forming methods.

【0018】上記Al合金薄膜の形成をスパッタリング法
により行う場合、そのスパッタリングターゲットとして
は、IVa 〜VIIa族遷移元素(IVa, Va, VIa, VIIa族の遷
移元素)の1種または2種以上とSi等(Si, Ge)の1種
または2種以上とを含有するAl合金よりなるものを使用
すればよい。かかるAl合金製ターゲットは、複合ターゲ
ット等に比し、形成されるAl合金薄膜の組成が安定し易
く、又、酸素量を低くし得る等の利点を有している。
When the above-mentioned Al alloy thin film is formed by a sputtering method, one or two or more of IVa-VIIa transition elements (IVa, Va, VIa, VIIa transition elements) may be used as a sputtering target. What is necessary is just to use what consists of an Al alloy containing one or more types (Si, Ge). Such an Al alloy target has advantages such as that the composition of the formed Al alloy thin film is easily stabilized and that the amount of oxygen can be reduced, as compared with a composite target or the like.

【0019】前記Al合金薄膜(遷移元素及びSi等含有Al
合金)におけるIVa 〜VIIa族遷移元素のうちの1種また
は2種以上の含有量は合計で0.1〜5.0at%、Si
等(Si, Ge)のうちの1種または2種の含有量は合計で
0.1〜5.0at%にすることが望ましい。その理由
は次の通りである。IVa 〜VIIa族遷移元素量:0.1a
t%未満またはSi等の量:0.1at%未満では、固溶
元素量が少な過ぎて耐熱性が不充分であり、加熱過程
(熱処理)でヒロック発生等の支障が生じ、IVa〜VIIa
族遷移元素量:5.0at%超またはSi等の量:5.0
at%超では、固溶元素量が多過ぎて加熱過程(熱処
理)で金属間化合物の析出が起こっても、熱処理後の固
溶元素の残留量が多く、そのため比抵抗:10μΩcm以
下という要件を充たし得なくなるからである。
The above Al alloy thin film (Al containing transition element and Si etc.)
Alloy), the content of one or more of the transition elements of groups IVa to VIIa is 0.1 to 5.0 at% in total;
It is desirable that the content of one or two of the above (Si, Ge) is 0.1 to 5.0 at% in total. The reason is as follows. IVa-VIIa transition element amount: 0.1a
If the content is less than t% or the content of Si, etc .: less than 0.1 at%, the amount of the solid solution element is too small and the heat resistance is insufficient, and the heating process (heat treatment) causes problems such as generation of hillocks, and IVa to VIIa.
Group transition element amount: more than 5.0 at% or amount of Si or the like: 5.0
If the content exceeds at%, even if the amount of the solid solution element is too large and the precipitation of the intermetallic compound occurs in the heating process (heat treatment), the residual amount of the solid solution element after the heat treatment is large. This is because it cannot be satisfied.

【0020】なお、IVa 族の元素はTi,Zr,Hf、Va族の
元素はV,Nb,Ta、 VIa族の元素はCr,Mo,W、VIIa族
の元素はMn,Tc,Reである。
The elements of group IVa are Ti, Zr, Hf, the elements of group Va are V, Nb, Ta, the elements of group VIa are Cr, Mo, W, and the elements of group VIIa are Mn, Tc, Re. .

【0021】[0021]

【実施例】(実施例1)純Alターゲット(純度99.999
%)上に5mm角のTa(Va族遷移元素)のチップ及びSi或
いはGeのチップを所定量設置した複合ターゲット、又、
Ta及びSi或いはGeを所定量含有する溶製Al合金スパッタ
リングターゲットを用いて、DCマグネトロンスパッタリ
ング法により、厚さ:0.5mmのガラス基板上に厚さ:3000
ÅのAl-Ta-Si3元系Al合金薄膜、Al-Ta-Ge3元系Al合金
薄膜を形成した。次いで、該薄膜をフォトリソグラフ
ィ、ウェットエッチングにより幅 100μm,長さ10mmのス
トライプパターン形状に加工した後、所定温度(100, 2
00, 300, 400, 500 ℃)で1時間加熱する真空熱処理を
施した。
EXAMPLES (Example 1) Pure Al target (purity 99.999)
%), A composite target in which a predetermined amount of a 5 mm square Ta (Va group transition element) chip and a Si or Ge chip are installed,
Using a smelting Al alloy sputtering target containing a predetermined amount of Ta and Si or Ge, a DC magnetron sputtering method is used to form a 3000 mm thick glass substrate on a 0.5 mm thick glass substrate.
An Al—Ta—Si ternary Al alloy thin film and an Al—Ta—Ge ternary Al alloy thin film of Å were formed. Next, the thin film is processed into a stripe pattern having a width of 100 μm and a length of 10 mm by photolithography and wet etching.
(00, 300, 400, 500 ° C.) for 1 hour.

【0022】そして、上記薄膜について4端子(探針)
法により比抵抗値を室温にて測定した。その結果を真空
熱処理温度と比抵抗との関係にして図1に示す。Al-Ta-
Si3元系Al合金薄膜及びAl-Ta-Ge3元系Al合金薄膜の比
抵抗は、Al-Ta 2元系Al合金薄膜の比抵抗と比較して低
く、比抵抗が低下していることがわかる。Al-Ta-Si3元
系Al合金薄膜とAl-Ta-Ge3元系Al合金薄膜とを比較する
と、前者の方が比抵抗が低く、GeよりSiの方が比抵抗を
低下させる効果が大きいことがわかる。
The thin film has four terminals (probes).
The specific resistance was measured at room temperature by the method. The results are shown in FIG. 1 as a relationship between the vacuum heat treatment temperature and the specific resistance. Al-Ta-
The specific resistance of the Si ternary Al alloy thin film and the Al-Ta-Ge ternary Al alloy thin film is lower than the specific resistance of the Al-Ta binary Al alloy thin film, indicating that the specific resistance is reduced. . Comparing the Al-Ta-Si ternary Al alloy thin film with the Al-Ta-Ge ternary Al alloy thin film, the former has a lower specific resistance, and Si has a greater effect of lowering the specific resistance than Ge. I understand.

【0023】(実施例2)実施例1と同様の方法により
同様のAl-Ta-Si3元系Al合金薄膜を同様のガラス基板上
に形成し、次いで同様の方法により幅10μm のストライ
プパターン形状に加工した後、同様の条件で真空熱処理
をした。そして、耐熱性を評価するため、上記熱処理の
後、ストライプパターン表面上に発生するヒロック(半
球状の突起物)数を測定し、ヒロック密度(単位面積当
りのヒロック数)を求めた。その結果を熱処理温度とヒ
ロック密度との関係図にして図2に示す。Al-Ta-Si3元
系Al合金薄膜は、Al-Ta 2元系Al合金薄膜と比較して、
ヒロック密度が小さく、従って耐熱性に優れていること
がわかる。更に、Si添加量が多いほどヒロック密度が小
さく、耐熱性に優れていることがわかる。
Example 2 A similar Al-Ta-Si ternary Al alloy thin film was formed on a similar glass substrate by the same method as in Example 1, and then formed into a 10 μm-wide stripe pattern by the same method. After processing, vacuum heat treatment was performed under the same conditions. Then, in order to evaluate the heat resistance, after the heat treatment, the number of hillocks (hemispherical projections) generated on the stripe pattern surface was measured, and the hillock density (the number of hillocks per unit area) was determined. FIG. 2 shows the relationship between the heat treatment temperature and the hillock density. Al-Ta-Si ternary Al alloy thin film is compared with Al-Ta ternary Al alloy thin film,
It can be seen that the hillock density is small and therefore the heat resistance is excellent. Further, it can be seen that the hillock density is lower and the heat resistance is more excellent as the amount of Si added is larger.

【0024】(実施例3)実施例1でのTaに代えてMn
(VIIa族遷移元素)を用い、Si或いはGeをGeとし、その
点を除き実施例1と同様のターゲットを用いて、同様の
方法により同様厚みのAl-Mn-Ge3元系Al合金薄膜を同様
のガラス基板上に形成した。次いで、実施例1と同様の
方法により同様のストライプパターン形状に加工した
後、同様の条件で真空熱処理をした。そして実施例1と
同様の方法により比抵抗値を測定した。その結果を図3
に示す。Al-Mn-Ge3元系Al合金薄膜は、Al-Mn 2元系Al
合金薄膜に比して比抵抗が低く、又、Ge添加量が多いほ
ど比抵抗が低いことがわかる。
(Embodiment 3) Instead of Ta in Embodiment 1, Mn
(Group VIIa transition element), Si or Ge was Ge, and the same target was used in the same manner as in Example 1 except for the same target, and an Al-Mn-Ge ternary Al alloy thin film having the same thickness was similarly formed. Formed on a glass substrate. Next, after processing into the same stripe pattern shape by the same method as in Example 1, vacuum heat treatment was performed under the same conditions. Then, the specific resistance value was measured in the same manner as in Example 1. The result is shown in FIG.
Shown in Al-Mn-Ge ternary Al alloy thin film is Al-Mn binary Al
It can be seen that the specific resistance is lower than that of the alloy thin film, and the specific resistance is lower as the amount of Ge added is larger.

【0025】(実施例4)実施例3と同様の方法により
同様のAl-Mn-Ge3元系Al合金薄膜を同様のガラス基板上
に形成し、次いで同様の方法により幅10μm のストライ
プパターン形状に加工した後、同様の条件で真空熱処理
をした。そして、実施例2と同様の方法によりヒロック
密度を求めた。その結果を図4に示す。Al-Mn-Ge3元系
Al合金薄膜は、Al-Mn 2元系Al合金薄膜と比較してヒロ
ック密度が小さく、耐熱性に優れており、又、Si添加量
が多いほどヒロック密度が小さく、耐熱性に優れている
ことがわかる。
Example 4 A similar Al-Mn-Ge ternary Al alloy thin film was formed on a similar glass substrate by the same method as in Example 3, and then formed into a stripe pattern having a width of 10 μm by the same method. After processing, vacuum heat treatment was performed under the same conditions. Then, the hillock density was determined in the same manner as in Example 2. The result is shown in FIG. Al-Mn-Ge ternary system
The Al alloy thin film has a lower hillock density and better heat resistance than the Al-Mn binary Al alloy thin film, and the higher the amount of Si added, the lower the hillock density and better heat resistance. I understand.

【0026】(実施例5)実施例1でのTaに代えてTi
(IVa 族遷移元素)、Si或いはGeに代えてSiを用いた。
かかる点を除き実施例1と同様のターゲットを用い、同
様法により同様厚みのAl-Ti-Si3元系Al合金薄膜を形成
した後、同様法により同様のストライプパターン形状に
加工した後、同様条件の真空熱処理をした。そして実施
例1と同様法により比抵抗値を測定した。その結果を図
5に示す。Al-Ti-Si3元系Al合金薄膜は、Al-Ti 2元系
Al合金薄膜に比して比抵抗が低く、又、Si添加量が多い
ほど比抵抗が低いことがわかる。
(Embodiment 5) Instead of Ta in Embodiment 1, Ti
(Group IVa transition element), Si or Ge was used instead of Si.
An Al-Ti-Si ternary Al alloy thin film of the same thickness was formed by the same method using the same target as in Example 1 except for this point, and then processed into the same stripe pattern shape by the same method. Was subjected to a vacuum heat treatment. Then, the specific resistance was measured in the same manner as in Example 1. The result is shown in FIG. Al-Ti-Si ternary Al alloy thin film is Al-Ti ternary
It can be seen that the specific resistance is lower than that of the Al alloy thin film, and that the specific resistance is lower as the amount of added Si is larger.

【0027】尚、以上の実施例では合金成分としてIVa
〜VIIa族遷移元素の1種及びSi等の1種を添加してお
り、上述の如き効果が得られているが、このような効果
はIVa〜VIIa族遷移元素の2種以上及びSi等の2種を添
加した場合も得られる。
In the above embodiment, the alloy component IVa
VIIa, one kind of transition element and one kind such as Si are added, and the above-mentioned effect is obtained. Such an effect is obtained by two or more kinds of IVa-VIIa transition element and Si etc. It is also obtained when two types are added.

【0028】(実施例6)溶製Al合金スパッタリングタ
ーゲットを用いて、DCマグネトロンスパッタリング法に
より、SiO2(厚さ:100nm)/Si(厚さ:0.25mm)基板上
に、Ta量:1.5at%及びSi量:3.0at%を含有する膜厚:0.5
μm のAl合金薄膜A1(本発明例)を形成し、又、膜厚:
0.5μm のAl薄膜R1(比較例)を形成した。これら薄膜
について、5℃/min の速度で25℃から500 ℃まで昇温
し、次いで500 ℃から25℃まで降温する加熱冷却過程に
おいて、各温度における膜応力を測定した。ここで、膜
応力は基板の反り量をレーザーで測ることによって求め
た。その結果を図6に示す。昇温時に比較例R1が200 ℃
で降伏するのに対して、本発明例A1は400 ℃で降伏す
る。降伏点以上の温度域で膜は塑性変形をするので、本
発明例A1の方が塑性変形量が少ない。このため、降温時
に生じる引張応力(金属配線膜と層間絶縁膜との熱膨張
差に起因)は本発明例A1の方が小さく、SM(ストレスマ
イグレーション)が起こり難いこと(即ち耐SM性に優れ
ていること)がわかる。
(Example 6) Using a smelting Al alloy sputtering target and a DC magnetron sputtering method, a Ta amount: 1.5 at on a SiO 2 (thickness: 100 nm) / Si (thickness: 0.25 mm) substrate. % And Si content: thickness containing 3.0 at%: 0.5
μm Al alloy thin film A 1 (Example of the present invention) is formed.
A 0.5 μm Al thin film R 1 (comparative example) was formed. These thin films were measured for film stress at each temperature in a heating and cooling process in which the temperature was raised from 25 ° C. to 500 ° C. at a rate of 5 ° C./min, and then lowered from 500 ° C. to 25 ° C. Here, the film stress was determined by measuring the amount of warpage of the substrate with a laser. The result is shown in FIG. Comparative Example R 1 at Atsushi Nobori is 200 ° C.
In respect to the yield, the present invention Example A 1 surrenders at 400 ° C.. Since the film is plastically deformed at yield above temperature range, towards the invention sample A 1 is the amount of plastic deformation is small. Therefore, tensile stress occurs during the temperature decrease (due to the difference in thermal expansion between the metal wiring film and the interlayer insulating film) is smaller towards the invention sample A 1, SM (stress migration) it is unlikely to occur (i.e. resistance to SM resistance It is excellent).

【0029】(実施例7)前記Al合金薄膜AでのTa量を
0.1, 0.8, 1.5, 2.3, 3.0at%、Si量を0.1, 1.5,3.0, 4.
5, 6.0at%に変化させたものA2(例A2)、又、Ta量を0.0
8,3.2at%、Si量を0.08,6.5at%に変化させたものR
2(例R2)について、実施例6と同様の試験を行った。
その結果、例A2は比較例R1、例R2に比較して耐SM性に優
れていることが確認された。
(Embodiment 7) The amount of Ta in the Al alloy thin film A was
0.1, 0.8, 1.5, 2.3, 3.0at%, Si content 0.1, 1.5, 3.0, 4.
A 2 changed to 5, 6.0 at% (Example A 2 )
8, 3.2at%, Si content changed to 0.08, 6.5at% R
2 (Example R 2 ), a test similar to that in Example 6 was performed.
As a result, Example A 2 Comparative Example R 1, it was confirmed to have excellent resistance to SM resistance compared to Example R 2.

【0030】(実施例8)実施例6と同様の方法によ
り、SiO2(厚さ:100nm)/Si(厚さ:0.25mm)基板上に、
実施例6と同様組成、同様膜厚のAl合金薄膜A1(本発明
例)、R1(比較例)を形成した。次に、これら薄膜につ
いて、400 ℃で60分間加熱する熱処理を行った後、フォ
トリソグラフィ及びエッチングにより所定テストパター
ン形状(幅1μm,長さ3mmの直線パターン)に加工し
た。しかる後、この薄膜を200 ℃に加熱し、5×106
/cm2 の定電流を流す通電試験を行い、故障時間(断線
が起こるまでの時間)を測定した。この結果を、故障時
間と累積故障率(ある時間までに故障したサンプルの全
体に対する割合)との関係にして図7に示す。本発明例
のものA1は、比較例のものR1に比較し、平均故障時間
(累積故障率が50%となる時間)が約10倍長く、従って
耐EM性(耐エレクトロマイグレーション性)に優れてい
ることがわかる。
(Embodiment 8) In the same manner as in Embodiment 6, on a SiO 2 (thickness: 100 nm) / Si (thickness: 0.25 mm) substrate,
Al alloy thin films A 1 (inventive example) and R 1 (comparative example) having the same composition and the same thickness as in Example 6 were formed. Next, these thin films were subjected to a heat treatment of heating at 400 ° C. for 60 minutes, and then processed into a predetermined test pattern shape (a linear pattern having a width of 1 μm and a length of 3 mm) by photolithography and etching. Thereafter, the thin film was heated to 200 ° C. and 5 × 10 6 A
An electric current test was conducted at a constant current of / cm 2 to measure the failure time (time until disconnection occurs). The result is shown in FIG. 7 as a relationship between the failure time and the cumulative failure rate (the ratio of the total number of failed samples up to a certain time). A 1 that of the present invention example, compared to that R 1 of the comparative example, the average time to failure (time cumulative failure rate is 50%) is approximately 10 times longer, therefore the resistance to EM resistance (electromigration resistance) It turns out that it is excellent.

【0031】又、上記熱処理条件を400 ℃×60分間に代
えて 200℃×30分間、200 ℃×60分間、300 ℃×30分
間、300 ℃×60分間、400 ℃×30分間、600 ℃×30分
間、600℃×60分間としたものについて、上記と同様の
加工及び通電試験を行った。その結果、本発明例のもの
A1において、これらの熱処理を施したものはいづれも比
較例のものR1に比較して耐EM性に優れていることが確認
された。
The above heat treatment conditions were replaced with 400 ° C. × 60 minutes, 200 ° C. × 30 minutes, 200 ° C. × 60 minutes, 300 ° C. × 30 minutes, 300 ° C. × 60 minutes, 400 ° C. × 30 minutes, 600 ° C. × 60 minutes. The same processing and energization test as described above were performed on the sample for 30 minutes at 600 ° C. for 60 minutes. As a result, those of the present invention
In A 1, to be excellent in resistance to EM resistance was confirmed in comparison to those R 1 also comparative examples Izure those subjected to these heat treatments.

【0032】(実施例9)実施例6の本発明例A1でのTa
に代えて他のIVa, Va, VIa族の元素を用いたものA3(本
発明例)、更にSiに代えてGeを用いたものA4(本発明
例)について、実施例6、8と同様の試験を行った。そ
の結果、実施例6、8と同様の傾向が得られ、本発明例
のものA3およびA4は比較例R1に比較し、耐SM性及び耐EM
性に優れていた。又、本発明例A3,A4において、IVa, V
a, VIa族の元素の種類により、耐SM性および耐EM性はあ
まり異ならないが、特には IVa, Va族の場合に優れ、そ
の中でもVa族の場合に優れていた。
[0032] Ta in the present invention Example A 1 (Example 9) Example 6
Instead of another IVa, Va, those using an element of VIa group A 3 (present invention examples), for further one A 4 using Ge instead of Si (invention example), as in Example 6 and 8 A similar test was performed. As a result, we obtained the same tendency as in Example 6, 8, A 3 and A 4 those of the present invention example compared to Comparative Example R 1, anti-SM resistance and EM
It was excellent. Further, in the present invention Example A 3, A 4, IVa, V
The SM resistance and the EM resistance do not differ so much depending on the types of the elements of the a and VIa groups, but were particularly excellent in the IVa and Va groups, and particularly excellent in the Va group.

【0033】上記実施例6〜9では合金成分としてIVa,
Va, VIa族元素の1種及びSi等の1種を用いており、上
述の如き効果が得られているが、このような効果はIVa,
Va,VIa族元素の2種以上及び/又はSi等の2種を添加
した場合も得られる。
In Examples 6 to 9 above, IVa,
One kind of Va, VIa group element and one kind such as Si are used, and the effects as described above are obtained.
It can also be obtained when two or more elements of the Va and VIa group and / or two elements such as Si are added.

【0034】[0034]

【発明の効果】本発明は以上の如き構成を有し作用をな
すものであって、本発明に係るAl合金薄膜の製造方法
は、優れた特性を有するAl合金薄膜〔即ち、比抵抗が1
0μΩcm以下であると共に、従来のLCD 用配線・電極材
料(Al-Ta 又はAl-Ti 2元系Al合金薄膜)と同様に、耐
熱性に優れてヒロック等が生じ難く、又、耐食性、膜の
密着性及びエッチング特性(所定パターン形状への加工
性)に優れ、LCD (液晶表示パネル)用配線・電極材料
として好適に用いることができ、従って、これら各機器
の高機能化及び品質向上を図ることができ、更に、今後
のLCD の大型化・高精細化に対応し得、それに寄与し得
るというAl合金薄膜〕を確実に製造し得、特に、Al合金
薄膜の加熱過程前後で各々必要な高耐熱性及び低比抵抗
の条件を確実且つ充分に充たすことができ、それらをよ
り一層高め得るようになるという効果を奏する。
The present invention has the above-mentioned structure and functions. The method of manufacturing an Al alloy thin film according to the present invention provides an Al alloy thin film having excellent characteristics [that is, a specific resistance of 1;
0μΩcm or less and, like the conventional LCD wiring and electrode materials (Al-Ta or Al-Ti binary Al alloy thin film), have excellent heat resistance, hardly cause hillocks, etc. It has excellent adhesion and etching characteristics (workability to form a predetermined pattern) and can be suitably used as wiring and electrode materials for LCDs (Liquid Crystal Display Panels). Al alloy thin films that can respond to and contribute to the future increase in size and definition of LCDs) can be reliably manufactured. It is possible to reliably and sufficiently satisfy the conditions of high heat resistance and low specific resistance, and it is possible to further enhance the requirements.

【0035】本発明に係るスパッタリングターゲット
は、上記Al合金薄膜の形成をスパッタリング法により行
う場合に好適に使用し得、形成されるAl合金薄膜の組成
が安定し易く、又、酸素量を低くし得る等の利点を有
し、より特性の安定したAl合金薄膜が得られるようにな
るという効果を奏する。
The sputtering target according to the present invention can be suitably used when the above-mentioned Al alloy thin film is formed by a sputtering method, the composition of the formed Al alloy thin film is easily stabilized, and the amount of oxygen is reduced. It has the advantage of obtaining an Al alloy thin film with more stable characteristics.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例1に係るAl合金薄膜の製造方法での熱処
理温度と比抵抗との関係を示す図である。
FIG. 1 is a diagram showing a relationship between a heat treatment temperature and a specific resistance in a method for manufacturing an Al alloy thin film according to Example 1.

【図2】実施例2に係るAl合金薄膜の製造方法での熱処
理温度とヒロック密度との関係を示す図である。
FIG. 2 is a diagram showing a relationship between a heat treatment temperature and a hillock density in the method for manufacturing an Al alloy thin film according to Example 2.

【図3】実施例3に係るAl合金薄膜の製造方法での熱処
理温度と比抵抗との関係を示す図である。
FIG. 3 is a diagram showing a relationship between a heat treatment temperature and a specific resistance in a method for manufacturing an Al alloy thin film according to Example 3.

【図4】実施例4に係るAl合金薄膜の製造方法での熱処
理温度とヒロック密度との関係を示す図である。
FIG. 4 is a diagram showing a relationship between a heat treatment temperature and a hillock density in the method for manufacturing an Al alloy thin film according to Example 4.

【図5】実施例5に係るAl合金薄膜の製造方法での熱処
理温度と比抵抗との関係を示す図である。
FIG. 5 is a diagram showing the relationship between the heat treatment temperature and the specific resistance in the method for manufacturing an Al alloy thin film according to Example 5.

【図6】実施例6に係るAl合金薄膜の製造方法により得
られたAl合金薄膜についての加熱冷却時の温度と膜応力
との関係を示す図である。
FIG. 6 is a diagram showing the relationship between the temperature during heating and cooling and the film stress of an Al alloy thin film obtained by the method for manufacturing an Al alloy thin film according to Example 6.

【図7】実施例8に係るAl合金薄膜の製造方法により得
られたAl合金薄膜についての故障時間と累積故障率との
関係を示す図である。
FIG. 7 is a diagram showing the relationship between the failure time and the cumulative failure rate of an Al alloy thin film obtained by the method for manufacturing an Al alloy thin film according to Example 8.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01L 21/285 H01L 21/285 S (72)発明者 岩村 栄治 兵庫県神戸市西区高塚台1丁目5番5号 株式会社神戸製鋼所神戸総合技術研究所内 (72)発明者 山本 正剛 兵庫県神戸市西区高塚台1丁目5番5号 株式会社神戸製鋼所神戸総合技術研究所内 (72)発明者 吉川 一男 兵庫県神戸市西区高塚台1丁目5番5号 株式会社神戸製鋼所神戸総合技術研究所内 Fターム(参考) 2H092 GA32 GA40 JA37 JB22 JB31 KA18 KB04 MA05 NA28 4K029 AA09 BA23 BC03 BC05 BD00 BD02 CA05 DC03 DC04 DC15 DC39 GA01 4M104 AA10 BB02 DD37 DD40 DD63 DD78 GG09 HH01 HH02 HH03 HH09 HH16 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) H01L 21/285 H01L 21/285 S (72) Inventor Eiji Iwamura 1-5-5 Takatsukadai, Nishi-ku, Kobe-shi, Hyogo Prefecture 5 Kobe Steel, Ltd.Kobe Research Institute (72) Inventor Masago Yamamoto 1-5-5 Takatsukadai, Nishi-ku, Kobe City, Hyogo Prefecture Kobe Steel, Ltd.Kobe Research Institute (72) Inventor Kazuo Yoshikawa Hyogo 1-5-5 Takatsukadai, Nishi-ku, Kobe, Japan F-term in Kobe Steel, Ltd. Kobe Research Institute 2H092 GA32 GA40 JA37 JB22 JB31 KA18 KB04 MA05 NA28 4K029 AA09 BA23 BC03 BC05 BD00 BD02 CA05 DC03 DC04 DC15 DC39 GA01 4M104 AA10 BB02 DD37 DD40 DD63 DD78 GG09 HH01 HH02 HH03 HH09 HH16

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 AlにIVa, Va, VIa, VIIa族の遷移元素の
うちの1種または2種以上と、Si, Geのうちの1種また
は2種とを固溶させたAl合金薄膜を基板上に形成させた
後、該Al合金薄膜中の固溶元素の一部または全部を加熱
温度:100〜600℃の熱処理により金属間化合物と
して析出させ、電気抵抗値:10μΩcm以下のAl合金薄
膜を得ることを特徴とするAl合金薄膜の製造方法。
1. An Al alloy thin film in which one or more of transition elements of the IVa, Va, VIa, and VIIa groups and one or two of Si and Ge are dissolved in Al. After being formed on the substrate, part or all of the solid solution elements in the Al alloy thin film are precipitated as an intermetallic compound by heat treatment at a heating temperature of 100 to 600 ° C., and an electric resistance value of the Al alloy thin film of 10 μΩcm or less. A method for producing an Al alloy thin film, comprising:
【請求項2】 請求項1記載のAl合金薄膜の製造方法に
おける基板上へのAl合金薄膜形成のために用いるスパッ
タリングターゲットであって、IVa, Va, VIa, VIIa族の
遷移元素のうちの1種または2種以上と、Si, Geのうち
の1種または2種とを含有するAl合金よりなるAl合金薄
膜形成用スパッタリングターゲット。
2. A sputtering target used for forming an Al alloy thin film on a substrate in the method for manufacturing an Al alloy thin film according to claim 1, wherein the sputtering target is one of transition elements of the IVa, Va, VIa, and VIIa groups. A sputtering target for forming an Al alloy thin film comprising an Al alloy containing at least one of Si and Ge and at least one of Si and Ge.
【請求項3】 前記Al合金薄膜での遷移元素のうちの1
種または2種以上の含有量が合計で0.1〜5.0at
%であり、Si, Geのうちの1種または2種の含有量が合
計で0.1〜5.0at%である請求項1記載のAl合金
薄膜の製造方法。
3. One of the transition elements in the Al alloy thin film.
The content of the species or two or more species is 0.1 to 5.0 at total.
2. The method for producing an Al alloy thin film according to claim 1, wherein the content of one or two of Si and Ge is 0.1 to 5.0 at% in total.
【請求項4】 前記Al合金での遷移元素のうちの1種ま
たは2種以上の含有量が合計で0.1〜5.0at%で
あり、Si, Geのうちの1種または2種の含有量が合計で
0.1〜5.0at%である請求項2記載のAl合金薄膜
形成用スパッタリングターゲット。
4. The total content of one or more of transition elements in the Al alloy is 0.1 to 5.0 at%, and one or two of Si and Ge The sputtering target for forming an Al alloy thin film according to claim 2, wherein the total content is 0.1 to 5.0 at%.
JP2002025610A 1993-07-27 2002-02-01 Method for producing Al alloy thin film and sputtering target for forming Al alloy thin film Expired - Fee Related JP3684354B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002025610A JP3684354B2 (en) 1993-07-27 2002-02-01 Method for producing Al alloy thin film and sputtering target for forming Al alloy thin film

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP18474893 1993-07-27
JP5-184748 1993-07-27
JP2002025610A JP3684354B2 (en) 1993-07-27 2002-02-01 Method for producing Al alloy thin film and sputtering target for forming Al alloy thin film

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP10297894A Division JP3438945B2 (en) 1993-07-27 1994-05-17 Al alloy thin film

Publications (2)

Publication Number Publication Date
JP2002322557A true JP2002322557A (en) 2002-11-08
JP3684354B2 JP3684354B2 (en) 2005-08-17

Family

ID=26502685

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002025610A Expired - Fee Related JP3684354B2 (en) 1993-07-27 2002-02-01 Method for producing Al alloy thin film and sputtering target for forming Al alloy thin film

Country Status (1)

Country Link
JP (1) JP3684354B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9624562B2 (en) 2011-02-28 2017-04-18 Kobe Steel, Ltd. Al alloy film for display or semiconductor device, display or semiconductor device having Al alloy film, and sputtering target

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9624562B2 (en) 2011-02-28 2017-04-18 Kobe Steel, Ltd. Al alloy film for display or semiconductor device, display or semiconductor device having Al alloy film, and sputtering target

Also Published As

Publication number Publication date
JP3684354B2 (en) 2005-08-17

Similar Documents

Publication Publication Date Title
JP2733006B2 (en) Electrode for semiconductor, method for manufacturing the same, and sputtering target for forming electrode film for semiconductor
JP3365954B2 (en) Al-Ni-Y alloy thin film for semiconductor electrode and sputtering target for forming Al-Ni-Y alloy thin film for semiconductor electrode
CN100392505C (en) Copper alloy thin films, copper alloy sputtering targets and flat panel displays
JP3438945B2 (en) Al alloy thin film
JP3878839B2 (en) Aluminum wiring layer without hillock and method for forming the same
WO2007102988A2 (en) Electronic device, method of manufacture of same and sputtering target
JP3213196B2 (en) Wiring material, metal wiring layer forming method
US8097100B2 (en) Ternary aluminum alloy films and targets for manufacturing flat panel displays
JP3619192B2 (en) Aluminum alloy thin film, target material, and thin film forming method using the same
JP3365978B2 (en) Al alloy thin film for semiconductor device electrode and sputtering target for forming Al alloy thin film for semiconductor device electrode
JP3707704B2 (en) Wiring material, liquid crystal display device, and method of forming wiring layer
JP3276446B2 (en) Al alloy thin film, method for producing the same, and sputtering target for forming an aluminum alloy thin film
JP2002322557A (en) METHOD FOR DEPOSITING Al ALLOY THIN FILM, AND SPUTTERING TARGET FOR DEPOSITING Al ALLOY THIN FILM
JP4009165B2 (en) Al alloy thin film for flat panel display and sputtering target for forming Al alloy thin film
JPH10270446A (en) Method of forming multilayer wiring layer and metal wiring layer
EP0731507A1 (en) Electrode materials
JPH04323872A (en) Material for semiconductor device
JPH10125619A (en) Wiring layer and method of forming wiring layer
JP2809523B2 (en) Wiring electrode thin film material for liquid crystal display with excellent heat resistance
JPH05100248A (en) Production of semiconductor device for liquid crystal display
JPH0430530A (en) Forming method of thin film for wiring
JP2000063971A (en) Sputtering target
JP2000353704A (en) Wiring, indicating device using the same, and manufacture thereof
JPH088250A (en) Manufacture of semiconductor device for liquid crystal display
JP2000336447A (en) Aluminum alloy thin film, target material and formation of thin film

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040831

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041028

A131 Notification of reasons for refusal

Effective date: 20050222

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20050331

Free format text: JAPANESE INTERMEDIATE CODE: A523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050524

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050530

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20080603

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090603

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20100603

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100603

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110603

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120603

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees