JPS62240728A - Production of contact point material - Google Patents

Production of contact point material

Info

Publication number
JPS62240728A
JPS62240728A JP8473686A JP8473686A JPS62240728A JP S62240728 A JPS62240728 A JP S62240728A JP 8473686 A JP8473686 A JP 8473686A JP 8473686 A JP8473686 A JP 8473686A JP S62240728 A JPS62240728 A JP S62240728A
Authority
JP
Japan
Prior art keywords
alloy
contact point
contact material
annealing
annealed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8473686A
Other languages
Japanese (ja)
Inventor
Masayuki Tsuji
辻 公志
Yoshinobu Takegawa
竹川 禎信
Shuji Yamada
修司 山田
Yoichi Aoyama
青山 洋一
Kenichiro Horiuchi
堀内 憲一郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP8473686A priority Critical patent/JPS62240728A/en
Publication of JPS62240728A publication Critical patent/JPS62240728A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Alloys Or Alloy Compounds (AREA)
  • Manufacture Of Switches (AREA)

Abstract

PURPOSE:To stably obtain a contact point material having high electric conductivity and superior seizing by fusion resistance by a post-oxidation process by subjecting a hot rolled Ag alloy to annealing, cold rolling and annealing before internal oxidation. CONSTITUTION:A motor alloy ingot consisting of a metal for metallic oxide and Ag is formed, annealed, hot rolled and worked to the plate-shape. The resulting plate-shaped alloy is annealed, cold rolled, annealed again, blanked to the desired shape and internally oxidized to obtain a contact point material. The alloy annealed again may be internally oxidized without blanking and shaped to the desired shape. Since the contact point material has high electric conductivity, a rise in the temp. of a contact point made of the material can be inhibited even when large electric current flows, so the contact point hardly causes seizing by fusion.

Description

【発明の詳細な説明】 〔技術分野〕 この発明は、内部酸化型の接点材料の製法のなかでも、
いわゆる、後酸化型と称される接点材料の製法に関する
[Detailed Description of the Invention] [Technical Field] This invention relates to a method for producing an internally oxidized contact material.
The present invention relates to a method for manufacturing a so-called post-oxidation type contact material.

〔背景技術〕[Background technology]

内部酸化法により生成した金属酸化物がAg素地中に分
散した内部酸化型の接点材料は、例えば、パワーリレー
等のように電流容量が1〜30A程度の接点に用いられ
ている。
Internal oxidation type contact materials in which metal oxides produced by internal oxidation are dispersed in an Ag matrix are used, for example, in contacts with a current capacity of about 1 to 30 A, such as in power relays.

この接点材料の製法のひとつに、通常、後酸化型と称さ
れているが、金属酸化物用の金属とAgからなる合金イ
ンゴットを得て、これに熱間圧延を施した後、内部酸化
処理するという方法がある。この接点材料は、比較的耐
溶着性に優れるという特徴を有しているが、材料自体の
電導度がいまひとつ十分ではないので、特に接点電流が
大きい場合には、接点での溶°着がおきやすくなるとい
う問題がある。
One of the manufacturing methods for this contact material is usually called the post-oxidation type, in which an alloy ingot made of metal and Ag for metal oxide is obtained, hot rolled, and then internally oxidized. There is a way to do that. Although this contact material has the characteristic of being relatively resistant to welding, the electrical conductivity of the material itself is not quite sufficient, so welding at the contact may occur, especially when the contact current is large. The problem is that it becomes easier.

〔発明の目的〕[Purpose of the invention]

上記の事情に鑑み、電導度の高い(4電性の良い)、ひ
いては耐溶着性に優れた接点材料を安定して得ることが
できる接点材料の製法を提供することを目的とする。
In view of the above circumstances, it is an object of the present invention to provide a method for producing a contact material that can stably obtain a contact material that has high conductivity (good tetraconductivity) and excellent welding resistance.

〔発明の開示〕[Disclosure of the invention]

前記目的を達成するべく、発明者らは、接点材料内の組
織の状態と電導度の関連に遡って、様々な角度から検討
を行った。そして、電導度の良(ない接点材料では、材
料内の結晶粒子が小さく、しかも、粒界での金属酸化物
の凝集が著しくて、これが通電時、バリアとなって、電
導度を低下させている点に着目した。そして、さらに深
く検討を行い、粒界での金属酸化物の凝集を緩和するに
は、結晶粒子の粒径を大きくし、かつ結晶粒子の内部に
積層欠陥や転移があれば金属酸化物が析出し易いから、
結晶粒子の向合iにそのような状態を作りだせばよいこ
とを見出すとともに、それには、熱間圧延した合金を、
一旦焼鈍し、ついで冷間圧延して、再び焼鈍してから内
部酸化処理すればよいことを見出し、この発明を完成す
るに到ったのである。冷間圧延と焼鈍は、結晶粒子の粒
径を大きくする(粗大粒子として再結晶化する)ことに
寄与し、冷間圧延は結晶粒子内部に転移を導入すること
にも寄与する。
In order to achieve the above object, the inventors investigated the relationship between the state of the structure within the contact material and the electrical conductivity from various angles. In contact materials that do not have good electrical conductivity, the crystal grains within the material are small and the metal oxides aggregate significantly at the grain boundaries, which acts as a barrier when electricity is applied and reduces the electrical conductivity. We then conducted a deeper study and found that in order to alleviate the agglomeration of metal oxides at grain boundaries, we should increase the grain size of the crystal grains and avoid stacking faults and dislocations inside the crystal grains. Because metal oxides tend to precipitate,
It was discovered that such a state could be created in the orientation i of the crystal grains, and in order to do so, hot-rolled alloy was
They discovered that it is sufficient to anneale the material once, then cold-roll it, anneal it again, and then perform internal oxidation treatment, and have completed this invention. Cold rolling and annealing contribute to increasing the grain size of crystal grains (recrystallization as coarse grains), and cold rolling also contributes to introducing dislocation inside the crystal grains.

したがって、この発明は、Ag合金を熱間圧延した後、
内部酸化処理することにより、Ag素地中に金属酸化物
が分散した接点材料を得る方法において、前記熱間圧延
したAg合金を、一旦焼鈍し、ついで冷間圧延して、再
び焼鈍した後、前記内部酸化処理を行うことを特徴とす
る接点材料の製法を要旨とする。
Therefore, in this invention, after hot rolling the Ag alloy,
In a method for obtaining a contact material in which metal oxides are dispersed in an Ag matrix by internal oxidation treatment, the hot-rolled Ag alloy is once annealed, then cold-rolled, annealed again, and then The gist of this invention is a method for manufacturing a contact material that is characterized by performing internal oxidation treatment.

以下、この発明にかかる接点材料の製法の一例を図面を
参照しながら詳しく説明する。
Hereinafter, an example of a method for manufacturing a contact material according to the present invention will be explained in detail with reference to the drawings.

第1図は、この発明にかかる接点材料の製法の一例にお
ける主要工程を順を追ってあられしたものである。第2
図は、この−剥製法で得られた接点材料内の組織(結晶
)状態を模式的にあられしたものである。第3図は、従
来の製法で得られた接点材料内の組織(結晶)状態を模
式的にあられしたものである。
FIG. 1 shows the main steps in an example of the method for manufacturing a contact material according to the present invention in order. Second
The figure schematically shows the structure (crystal) state within the contact material obtained by this taxidermy method. FIG. 3 schematically shows the structure (crystal) state within the contact material obtained by the conventional manufacturing method.

まず、合金インゴットを作成する。この実施例では、A
g (銀)、Sn(スズ)、In (インジウム)、A
f(アルミニウム)、および、Mn(マンガン)を使う
aAgA1母合金(Ag:90wt%でA1: l Q
wt%の組成)と、Ag−Mn母合金(Ag:90wt
%でMn:lQwt%の組成)を作り、これを用いて、
組成がsn:9.3wt%、In:5.1wt%、A1
:0゜99wt%、Mn:0.02wt%、Ag:残部
という合金を母合金法により作成した。合金は、高周波
炉を用いて、アルゴンガス雰囲気中で溶解し、鋳型でも
って1 kgのインゴットに形成(鋳造)されている。
First, an alloy ingot is created. In this example, A
g (silver), Sn (tin), In (indium), A
aAgA1 master alloy using f (aluminum) and Mn (manganese) (A1: l Q
wt% composition) and Ag-Mn master alloy (Ag: 90wt%
% of Mn:lQwt%), and using this,
Composition is sn: 9.3wt%, In: 5.1wt%, A1
An alloy of: 0°99wt%, Mn: 0.02wt%, and Ag: the balance was prepared by a master alloy method. The alloy is melted in an argon gas atmosphere using a high frequency furnace and formed (cast) into a 1 kg ingot using a mold.

ついで、焼鈍(1)工程で焼鈍する。焼鈍条件は、アル
ゴンガス(2〜4気圧)雰囲気中、700℃の温度下、
約45時間とした。焼鈍のあと、熱間圧延工程で、20
龍の厚みのインゴットをl n+の厚みとする。つまり
、板状に加工しているのである。
Then, annealing is performed in an annealing (1) step. The annealing conditions were: argon gas (2 to 4 atm) at a temperature of 700°C;
It took about 45 hours. After annealing, 20
Let the ingot of dragon thickness be ln+ thick. In other words, it is processed into a plate shape.

この板状の合金を、焼鈍(2)工程で、また焼鈍する。This plate-shaped alloy is annealed again in the annealing (2) step.

この時の焼鈍条件は、アルゴンガス雰囲気中、700℃
の温度下、約1時間とした。
The annealing conditions at this time were 700°C in an argon gas atmosphere.
for about 1 hour at a temperature of

焼鈍(2)工程のあと、こんどは、冷間圧延工程で圧延
する。
After the annealing (2) step, it is then rolled in a cold rolling step.

冷間圧延のあと、再び、焼鈍(3)工程で、焼鈍する。After cold rolling, annealing is performed again in the annealing (3) step.

この時の焼鈍条件は、アルゴンガス雰囲気中、700℃
の温度下、約15時間とした。
The annealing conditions at this time were 700°C in an argon gas atmosphere.
The temperature was 15 hours.

焼鈍(3)工程を終えた合金を、所望の形状に打ち抜い
て(第1図の工程説明図では省略しである)、内部酸化
処理する。勿論、打ち抜かずに内部酸化処理し、その後
、所望の形状に整えるようにしてもよいことは言うまで
もない。内部酸化処理における条件は、酸素ガス(約4
気圧)雰囲気中、700℃の温度下、約65時間とした
The alloy that has undergone the annealing (3) process is punched into a desired shape (not shown in the process diagram of FIG. 1) and subjected to internal oxidation treatment. Of course, it is also possible to perform internal oxidation treatment without punching, and then to shape it into the desired shape. The conditions for internal oxidation treatment are oxygen gas (approximately 4
Atmospheric pressure) at a temperature of 700° C. for about 65 hours.

続いて、各工程における好ましい処理条件について説明
する。冷間圧延率は、3〜30%が望ましい。3%を下
まわると、第2図にみるように、接点材料1内部の結晶
粒子2の粒径が大きく (粗大化)ならず、第3図にみ
るように、従来の接点材料1′内部の結晶粒子2′の粒
径との差が少ない。それとともに、転移導入の効果が少
なくなり、粒界3における金属酸化物4の凝集緩和の程
度も、従来の粒界3′におけるものとの差が少ない。圧
延率は、10〜20%であると、いっそう望ましい。こ
の範囲の冷間圧延であると、板状の合金内部で金属酸化
物の粒子が、第4図にみるように、接点面10に対して
垂直に析出・配向する効果があるからである。この場合
、を導度や接触抵抗特性などが良く、耐溶着性向上が著
しい。圧延率が30%を越えると、冷間圧延時にクラン
クが入りやすくなる傾向がある。
Next, preferred processing conditions in each step will be explained. The cold rolling rate is preferably 3 to 30%. When it is less than 3%, as shown in Fig. 2, the grain size of the crystal grains 2 inside the contact material 1 does not become large (coarse), and as shown in Fig. 3, There is little difference in the particle size from the crystal grain 2'. At the same time, the effect of introducing dislocation is reduced, and the degree of agglomeration relaxation of metal oxide 4 at grain boundaries 3 is also little different from that at conventional grain boundaries 3'. It is more desirable that the rolling rate is 10 to 20%. This is because cold rolling in this range has the effect of precipitating and orienting metal oxide particles within the plate-shaped alloy perpendicularly to the contact surface 10, as shown in FIG. In this case, the conductivity and contact resistance characteristics are good, and the welding resistance is significantly improved. When the rolling ratio exceeds 30%, there is a tendency for cranking to occur easily during cold rolling.

焼鈍工程における温度は、無酸素雰囲気中で、再結晶化
温度以上で、かつ融点を越えなければよいけれども、4
00〜700℃程度であることが望ましい。この範囲で
あると、結晶粒子の粒径の粗大化の効果が大きい。焼鈍
時間は、通常、1〜20時間程時間箱囲から選ばれて行
われる。したがって、冷間圧延率が10〜20%で、焼
鈍工程の温度が400〜700℃程度の範囲であると、
粒径が大きく、金属酸化物が接点面に垂直に配向してい
る接点材料を得ることができることとなる。得られた接
点材料は、A g −S n O2−1n209−An
、03−MnOの組成である。
The temperature in the annealing step should be at least the recrystallization temperature in an oxygen-free atmosphere and not exceed the melting point.
It is desirable that the temperature is about 00 to 700°C. Within this range, the effect of coarsening the crystal grain size is significant. The annealing time is usually selected from a range of 1 to 20 hours. Therefore, when the cold rolling rate is 10 to 20% and the temperature of the annealing process is in the range of about 400 to 700 °C,
A contact material having a large particle size and metal oxides oriented perpendicularly to the contact surface can be obtained. The obtained contact material was A g -S n O2-1n209-An
, 03-MnO composition.

上記の冷間圧延工程における圧延率を変えて、実施例1
〜4の4つ接点材料を得た。実施例1では圧延率を5%
、実施例2では圧延率を10%、実施例3では圧延率を
20%、実施例4では圧延率を30%とした。
Example 1 by changing the rolling rate in the above cold rolling process.
Four contact materials of ~4 were obtained. In Example 1, the rolling ratio was 5%.
In Example 2, the rolling ratio was 10%, in Example 3, the rolling ratio was 20%, and in Example 4, the rolling ratio was 30%.

比較のために、比較例1として、実施例3において焼鈍
(3)工程を省略した以外は、全く同一にして接点材料
を得た。
For comparison, a contact material was obtained as Comparative Example 1 in exactly the same manner as in Example 3 except that the annealing (3) step was omitted.

さらに、比較例2として、実施例1において焼鈍(2)
工程、冷間圧延工程、および、焼鈍(3)工程を省略し
た以外は、全く同一にして接点材料を作成した。
Furthermore, as Comparative Example 2, annealing (2) in Example 1
A contact material was produced in exactly the same manner except that the process, cold rolling process, and annealing (3) process were omitted.

実施例1〜4および比較例1.2について、電導度およ
び結晶粒子の大きさく平均結晶粒径)を測定した。電導
度の測定値は、IACS  %(Cuの電導度を100
%とする)で示す。また、金属顕微鏡等を用いて、結晶
粒子同士の粒界での金属酸化物の凝集状態と金属酸化物
の配向状態を観察した。結果を第1表に示す。
For Examples 1 to 4 and Comparative Example 1.2, electrical conductivity and crystal grain size (average grain size) were measured. The measured value of conductivity is IACS% (Cu conductivity is 100
%). Furthermore, using a metallurgical microscope or the like, the state of agglomeration of metal oxides and the state of orientation of metal oxides at grain boundaries between crystal grains were observed. The results are shown in Table 1.

なお・上記の実施例においては、Ag中に分散される金
属酸化物の金属元素がSnS I n% Aj!・およ
び・Mnであった。この発明は、これらの金属元素に限
られるものではないが、上記の金属元素の組み合わせの
接点材料は、金属酸化物粒子がより微細化して、高温硬
度が高く、材料組成の面からも、耐溶着性に優れるとい
う特徴があり、その組成範囲が、金属酸化物は、金属元
素に換算することとして、Sn:5〜12wt%、(n
:3〜10 w t%、Al:0.01〜0.5wt%
、Mn:0.01〜0.5wt%、Ag:残部。
In the above example, the metal element of the metal oxide dispersed in Ag is SnS I n% Aj! -and-Mn. Although the present invention is not limited to these metal elements, a contact material made of a combination of the metal elements described above has finer metal oxide particles, has high high temperature hardness, and has excellent durability in terms of material composition. The metal oxide is characterized by excellent weldability, and its composition range is Sn: 5 to 12 wt%, (n
:3-10wt%, Al:0.01-0.5wt%
, Mn: 0.01 to 0.5 wt%, Ag: remainder.

が好ましく、この範囲の内でも、Sn:5〜12wt%
、In:3〜10wt%、Ant:0.02〜0.2w
t%、Mn:0.02〜0.2wt%、Ag:残部、の
範囲が微細化効果が確実となるため、より好ましい。
is preferable, and within this range, Sn: 5 to 12 wt%
, In: 3-10wt%, Ant: 0.02-0.2w
t%, Mn: 0.02 to 0.2 wt%, and Ag: the balance is more preferable because the finer refinement effect is ensured.

組成範囲が上記の如くであれば好ましいという理由は、
次の通りである。Snが5wt%を下まわったり、In
が3wt%を下まわったりすると、耐溶着性や耐消耗性
が十分でなくなる傾向にある。Snが12wt%を上ま
わったり、InがIQwt%を上まわったりすると、加
工性や内部酸化処理が十分でなくなる傾向にある。Al
やMnが0.01wt%を下まわると、金属酸化物の微
細化効果が得難くなり、Q、5wt%を上まわると、導
電性や加工性が低下する傾向にある。
The reason why it is preferable that the composition range is as above is as follows.
It is as follows. If Sn is below 5wt% or In
If it is less than 3 wt%, welding resistance and abrasion resistance tend to be insufficient. When Sn exceeds 12 wt% or In exceeds IQwt%, workability and internal oxidation treatment tend to be insufficient. Al
When Q and Mn are less than 0.01 wt%, it becomes difficult to obtain the effect of making the metal oxide finer, and when Q and Mn are more than 5 wt%, conductivity and workability tend to decrease.

第1表にみるように、実施例1〜4の接点材料は、比較
例1.2の接点材料に比べて、電導度が良(なっている
。結晶粒径や粒界への金属酸化物の凝集の観察結果から
も、このことが裏付けられている。また、冷間圧延率が
10〜20%の範囲にある実施例2.3の接点材料では
、粒径が大きく、酸化物も接点面に垂直に配向している
As shown in Table 1, the contact materials of Examples 1 to 4 have better electrical conductivity than the contact materials of Comparative Examples 1 and 2. This is also supported by the observation results of agglomeration of oriented perpendicular to the plane.

〔発明の効果〕〔Effect of the invention〕

以上詳述したように、この発明にかかるAg合金を熱間
圧延した後、内部酸化処理することにより、Ag素地中
に金属酸化物が分散した接点材料を得る方法では、前記
熱間圧延したAg合金を、一旦焼鈍し、ついで冷間圧延
して、再び焼鈍した後、前記内部酸化処理を行うという
構成をとっている。その結果、得られた接点材料の電導
度が良くなるために、この材料を用いた接点では、電流
が多くても温度上昇を押さえることができるので、接点
での溶着が起きにくくなる。
As described in detail above, in the method for obtaining a contact material in which metal oxides are dispersed in an Ag base by hot rolling an Ag alloy according to the present invention and then subjecting it to internal oxidation treatment, the hot rolled Ag The alloy is once annealed, then cold rolled, annealed again, and then subjected to the internal oxidation treatment. As a result, the electrical conductivity of the resulting contact material improves, so that in contacts using this material, temperature rise can be suppressed even when the current is large, making it difficult for welding to occur at the contacts.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、この発明にかかる接点材料の製法の一例にお
ける主要工程を順を追ってあられした工程説明図、第2
図は、この−剥製法で得られた接点材料内の組織状態を
模式的にあられした説明図、第3図は、従来の製法で得
られた接点材料内の組織状態を模式的にあられした説明
図、第4図は、金属酸化物が接点面に対し垂直に配向し
た状態をあられした説明図である。 1・・・接点材料   2・・・結晶粒子  3・・・
粒界代理人 弁理士  松 本 武 彦 第1図 第2図 手続補正書(自発 昭和61年7月5日 昭和61午嗣晋悌084736号 3、補正をする者 明牛との関係     特許出願大 佐  所   大阪府門真市大字門真1048番地名 
称(583)松下電工株式会社 代表者  (見開St 藤 井 貞 夫4、代理人 6・ 補正の対象      特願昭61−08473
6号明細書 7、補正の内容 ■ 明細書第11頁の第1表の最上段右欄に「接点 料
の特性」とあるを、「接点材料の特性」と訂正する。
FIG. 1 is a step-by-step process explanatory diagram showing the main steps in an example of the method for manufacturing a contact material according to the present invention, and FIG.
The figure is an explanatory diagram schematically showing the structure of the contact material obtained by this taxidermy method, and Figure 3 is a schematic illustration of the structure of the contact material obtained by the conventional manufacturing method. The explanatory diagram, FIG. 4, is an explanatory diagram showing a state in which the metal oxide is oriented perpendicularly to the contact surface. 1... Contact material 2... Crystal particles 3...
Grain boundary agent Patent attorney Takehiko Matsumoto Figure 1 Figure 2 Procedural amendment (Spontaneous July 5, 1985, Showa 61 No. 084736 No. 3, Relationship with the person making the amendment Myoku Patent application colonel) Address: 1048 Kadoma, Kadoma City, Osaka Prefecture
Name (583) Matsushita Electric Works Co., Ltd. Representative (Facing St. Sadao Fujii 4, Agent 6/Subject of amendment Patent application 1984-08473
No. 6, Specification 7, Contents of the amendment ■ In the top right column of Table 1 on page 11 of the specification, the words "Characteristics of contact material" are corrected to "Characteristics of contact material."

Claims (4)

【特許請求の範囲】[Claims] (1)Ag合金を熱間圧延した後、内部酸化処理するこ
とにより、Ag素地中に金属酸化物が分散した接点材料
を得る方法において、前記熱間圧延したAg合金を、一
旦焼鈍し、ついで冷間圧延して、再び焼鈍した後、前記
内部酸化処理を行うことを特徴とする接点材料の製法。
(1) In a method for obtaining a contact material in which metal oxides are dispersed in an Ag matrix by hot rolling an Ag alloy and then subjecting it to internal oxidation treatment, the hot rolled Ag alloy is once annealed, and then A method for producing a contact material, characterized in that the internal oxidation treatment is performed after cold rolling and reannealing.
(2)冷間圧延率が3〜30%である特許請求の範囲第
1項記載の接点材料の製法。
(2) The method for producing a contact material according to claim 1, wherein the cold rolling rate is 3 to 30%.
(3)焼鈍時の温度が400〜700℃であり、時間が
1〜20時間である特許請求の範囲第1項記載の接点材
料の製法。
(3) The method for manufacturing a contact material according to claim 1, wherein the temperature during annealing is 400 to 700°C and the annealing time is 1 to 20 hours.
(4)金属酸化物の金属元素が、Sn、In、Al、お
よび、Mnからなる特許請求の範囲第1項から第3項ま
でのいずれかに記載の接点材料の製法。
(4) The method for producing a contact material according to any one of claims 1 to 3, wherein the metal element of the metal oxide is Sn, In, Al, and Mn.
JP8473686A 1986-04-11 1986-04-11 Production of contact point material Pending JPS62240728A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8473686A JPS62240728A (en) 1986-04-11 1986-04-11 Production of contact point material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8473686A JPS62240728A (en) 1986-04-11 1986-04-11 Production of contact point material

Publications (1)

Publication Number Publication Date
JPS62240728A true JPS62240728A (en) 1987-10-21

Family

ID=13838980

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8473686A Pending JPS62240728A (en) 1986-04-11 1986-04-11 Production of contact point material

Country Status (1)

Country Link
JP (1) JPS62240728A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52146719A (en) * 1976-05-31 1977-12-06 Mitsubishi Marorii Yakin Kougi Method of making contact materials of oxide dispersion type silver alloy wires

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52146719A (en) * 1976-05-31 1977-12-06 Mitsubishi Marorii Yakin Kougi Method of making contact materials of oxide dispersion type silver alloy wires

Similar Documents

Publication Publication Date Title
TWI703225B (en) Copper alloy for electronic/electric device, copper alloy sheet or strip for electronic/electric device, component for electronic/electric device, terminal, bus bar, and movable piece for relay
US4260432A (en) Method for producing copper based spinodal alloys
JP4787986B2 (en) Copper alloy and manufacturing method thereof
WO2017043551A1 (en) Copper alloy for electronic/electrical device, copper alloy plastically worked material for electronic/electrical device, component for electronic/electrical device, terminal, and busbar
TWI789871B (en) Manufacturing method of Wostian iron-based stainless steel strip
EP2267172A1 (en) Copper alloy material for electric and electronic components
JP2844120B2 (en) Manufacturing method of copper base alloy for connector
CN112831691A (en) Rolled aluminum alloy material having excellent thermal conductivity, electrical conductivity, and strength, and method for producing same
JP2017179445A (en) Al-Mg-Si-BASED ALLOY SHEET
JP3511648B2 (en) Method for producing high-strength Cu alloy sheet strip
CN111032894A (en) Titanium plate
JP7242996B2 (en) Copper alloy
CA1119920A (en) Copper based spinodal alloys
JP2017179449A (en) MANUFACTURING METHOD OF Al-Mg-Si-BASED ALLOY SHEET
JP2020033604A (en) MANUFACTURING METHOD OF Al-Mg-Si-BASED ALLOY SHEET
JP2002266041A (en) Rolled copper alloy foil and production method therefor
JPH06207233A (en) Copper alloy for electronic and electrical equipment and its production
JPS61119660A (en) Manufacture of copper alloy having high strength and electric conductivity
JPH0238652B2 (en)
US3017268A (en) Copper base alloys
JPS6338412B2 (en)
JPS62240728A (en) Production of contact point material
CN112567058B (en) Method for producing copper alloy sheet having excellent strength and conductivity, and copper alloy sheet produced thereby
JP2001279351A (en) Rolled copper alloy foil and its production method
JP3763234B2 (en) Method for producing high-strength, high-conductivity, high-heat-resistant copper-based alloy