JPS6224071B2 - - Google Patents

Info

Publication number
JPS6224071B2
JPS6224071B2 JP60072448A JP7244885A JPS6224071B2 JP S6224071 B2 JPS6224071 B2 JP S6224071B2 JP 60072448 A JP60072448 A JP 60072448A JP 7244885 A JP7244885 A JP 7244885A JP S6224071 B2 JPS6224071 B2 JP S6224071B2
Authority
JP
Japan
Prior art keywords
culture
reactor
ultrafiltration
microorganisms
pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP60072448A
Other languages
Japanese (ja)
Other versions
JPS619278A (en
Inventor
Jinko Kin
Taigen Boku
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RATSUKII KK
Original Assignee
RATSUKII KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RATSUKII KK filed Critical RATSUKII KK
Publication of JPS619278A publication Critical patent/JPS619278A/en
Publication of JPS6224071B2 publication Critical patent/JPS6224071B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • C12M1/26Inoculator or sampler
    • C12M1/32Inoculator or sampler multiple field or continuous type
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M25/00Means for supporting, enclosing or fixing the microorganisms, e.g. immunocoatings
    • C12M25/10Hollow fibers or tubes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M29/00Means for introduction, extraction or recirculation of materials, e.g. pumps
    • C12M29/16Hollow fibers

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Sustainable Development (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Biomedical Technology (AREA)
  • Immunology (AREA)
  • Medicinal Chemistry (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 本発明は微生物連続培養生成物の製造方法及び
その装置、より詳細に説明すれば、、限外濾過性
膜でできた細管が内装され、出入口の付いた培養
反応器、限外濾過用ポンプ、限外濾過液撹拌容器
などで構成された、培養生成物を得るための微生
物連続培養装置、及び微生物培養生成物の製造方
法に関するものである。 従来の技術 従来、微生物培養の方式としてはバツチ式と連
続式があり、そのうちバツチ式がひろく使用され
てきた。 このバツチ式装置は回転盤上で撹拌される三角
フラスコ、または撹拌器が附着されたバツチ槽
で、このような装置は一回培養液を満たし、微生
物を培養させた後、濾過及び遠心分離によつて培
養生成物を分離収得する培養装置であつた。 しかしながらこの方式は生成物の生成が微生物
の増殖に伴わない増殖非連動型、いわゆる醗酵形
式の培養で熟成操作を伴う培養では1バツチ毎に
栄養源の投入量を時間的に管理しなければなら
ず、その管理を安全に遂行するに当つてはバツチ
式の持つ性格上、操作管理が難しく、製品の品質
が低下する原因になつていた。 バツチ式に対して連続式は、培養槽内の正常状
態に維持するのが可能であるから、時間的変動が
少なく、製品の品質は安定する。従つて、微生物
の増殖、及び熟成は連続的に行う培養方式が望ま
しい。このような方法では並列型連続培養槽を使
用する日本国特公昭36―11291号、多段階型連続
培養槽を使用する日本国特公昭45―20552号など
が公知であり、また最近では連続培養装置として
キモスタートが知られている。 キモスタートはバツチ培養槽を使用した連続操
作で、培養液を滅菌状態でタンクに連続的にポン
プで注入して、微生物が含まれた培養液を供給液
と同一の流量でポンプを使用して流出させながら
培養槽内の培養液のかさを一定水準に維持させる
のを可能とする方法である。 上記のような並列型連続培養槽を使用する発
明、多段階型連続培養槽を使用する発明、循環連
続培養装置を使用する発明の問題点は、工業的に
遂行するために多数の培養槽を並列にして培養し
たり、多段階型連続培養槽を使用しなければなら
ないので工業的設備費用が相当にかかり、また供
給培養液が培養微生物と直接接触することによつ
て菌により容易に汚染される、培養槽内の微生物
が培養液とともに出口を通じて流出するにつれて
供給培養液量を一定水準以上に高めることができ
ず、その効率が相当に低下するなどの欠点があ
る。 上記のように微生物が流出液と共に流出するの
を防ぐため、微生物を膜に固定させる研究が最近
の数年間アメリカのスタンフオードやバークレー
大学などの各研究室で行なわれてきた。その結果
によれば、限外濾過性膜を境界として膜の一方で
微生物を培養させ、膜の他方に培地を通過させる
ことによつて培地中の養分が膜を通じて選択透過
される。従つて、微生物は透過された養分を摂取
して培養、増殖される。 発明が解決しようとする問題点 しかし、このような方法では、培養液が限外濾
過性膜により遮断されるので、微生物と混合して
流出することがないという効果を得ることができ
るが、この時問題になるのは微生物が膜により隔
離されて膜上で培養されるにつれて培地の養分の
伝達に対する抵抗が大きくなり培養生成物の生産
に大きな損失を招くので、実際には使用されてい
ない。 また、微生物が膜により囲まれているのである
密度以上に成長するとそれ以上成長しないので培
養生産物の生産率を段々に下がることになる。 問題点を解決するための手段 本発明者らは上記のような欠点を解決するため
に研究をした結果、膜を通じて効果的に限外濾過
を生じる連続培養装置を発明するに至つた。 本発明により微生物が培養液とともに流出する
のを防げるばかりでなく養分の拡散に伴う拡散抵
抗を低めて養分の浪費を減らし、且つ微生物と培
養生成物を分離させて収得できるという卓越した
効果を得ることができる。 以下添附の図面により本発明を詳細に説明す
る。 第1図で細管1はポリプロピレンフアイバーや
ポリスルホン膜などよりなる細管で、この膜は培
地中の養分及び培養生成物を拡散させる限外濾過
性膜となつている。これらの細管を集めて束を形
成した後、両端をエポキシ樹脂2で固定させた
後、切断して細管穴を露出させた。この固定細管
束を二つのポート4,5のあるガラス管に入れ、
一方のエポキシ面に露出された細管穴を通じて培
地が供給されるように培地注入口6を形成し、も
う一方には培養液が流出するように培養液出口7
を形成し培養反応器3を作る。 第2図は第1図の培養反応器に周辺装置をつな
いで連続操業を可能とする本発明の連続培養装置
を示す。滅菌された培地がグラスウールで満たさ
れたフイルター13付の容器12から限外濾過用
ポンプ14をへて培養反応器3に供給され、微生
物は容器8からライン11とポート4を通じて反
応器3内に接種される。出口側のもう一つのポン
プ15は出口7より出て容器17に流入する培養
液の量を調節する役割とする。この時、ポンプ1
4を通じて供給された培養液の供給量が、限外濾
過用ポンプ15を通じて出る流出量より多くなる
ように調節して、膜内部と膜外部の圧力差を形成
する。ポンプ14と15により誘導される圧力差
によつて培養生産物の生産性が変化するが、本実
験の結果によればポンプ15の流量がポンプ14
流量の0.5〜0.6の場合、一番高い生産性を示す。
この圧力差により培地が限外濾過されるにつれて
拡散抵抗が低くなり、養分が容易にかつ十分に微
生物に摂取されて、生産された培養生成物は膜の
間の濃度差により一部は再び細管内の方に拡散
し、微生物が存在しない培養生成物が得られる。 ついで管外部の微生物、養分、培養生成物で構
成された液は出口5を通じてポンプ16により容
器8の中に注入される。微生物が好気性である場
合には空気供給口9を通じて空気を注入しながら
撹拌器10を利用して撹拌して、嫌気性である場
合には空気供給口9を遮断したまま撹拌した後、
さらに限外濾過すべき微生物と未反応の培地そし
て培養生成物で構成された液は真空ポンプ20に
より容器19に貯蔵され、余分の微生物が存在す
る部分は再びライン11をへて反応器入口4を通
じて培養反応器3に再回収されて再活用される。 この結果、容器17には微生物が存在しない培
養生成物のみを収得することができる。 実施例および発明の効果 以下、実施例により本発明をより詳細に説明す
る。しかし本発明は下記実施例により限定される
ものではない。 実施例 1 本発明の装置の効果を次のようなアルコール醗
酵により確認した。 反応器の容量は37ml、入口の培養液供給流量は
9.2ml/hr.であり、培養反応器の出口の流量は3.8
ml/hr.であり、限外濾過速度は5.4ml/hr.とした。
反応器3の溶液は83ml/min.の流速で再循環し
た。このような条件の下で30℃でぶどう糖の濃度
が100g/の液体培地を反応器に注入し、アルコ
ール醗酵させた。 一方、第3図の公知のキモスタトを使用して30
℃でぶどう糖の濃度が上記のような濃度、即ち
100g/の液体培地を反応器に注入してアルコー
ル醗酵させた。 上記それぞれの装置で培養器から出て来るまで
の時間(培養時間)を4時間として測定した。そ
の結果は下記のようである。
INDUSTRIAL APPLICATION FIELD The present invention relates to a method and apparatus for producing a continuous microbial culture product, and more specifically, a culture reactor equipped with a thin tube made of an ultrafiltration membrane and equipped with an inlet and an outlet. The present invention relates to a continuous microbial culture device for obtaining a cultured product, which includes an external filtration pump, an ultrafiltrate stirring container, and the like, and a method for producing a microbial cultured product. BACKGROUND TECHNOLOGY Conventionally, there have been two types of microbial culture methods: batch type and continuous type, of which batch type has been widely used. This batch-type device is an Erlenmeyer flask that is stirred on a rotating disk, or a batch tank that is equipped with a stirrer.Such devices are filled with culture solution once, cultured microorganisms, and then undergo filtration and centrifugation. Therefore, it was a culturing device for separating and collecting culture products. However, this method is a non-propagation-linked type of culture in which product production is not accompanied by the growth of microorganisms, so-called fermentation type culture, and in culture that involves a ripening operation, the amount of nutrients input for each batch must be managed over time. However, due to the nature of the batch type, it is difficult to manage the operation safely, which causes a decline in product quality. In contrast to the batch type, the continuous type allows the culture tank to be maintained in a normal state, so there are fewer temporal fluctuations and the quality of the product is stable. Therefore, a culture method in which microorganisms are grown and matured continuously is desirable. For this kind of method, Japanese Patent Publication No. 11291, which uses a parallel type continuous culture tank, and Japanese Patent Publication No. 45-20552, which uses a multi-stage continuous culture tank, are known. Kimostart is known as a device. KimoStart is a continuous operation using a batch culture tank, in which the culture solution is continuously pumped into the tank under sterile conditions, and the culture solution containing microorganisms is pumped at the same flow rate as the feed solution. This method allows the volume of the culture solution in the culture tank to be maintained at a constant level while being drained. The problem with inventions using parallel continuous culture tanks, inventions using multi-stage continuous culture tanks, and inventions using circulating continuous culture devices as described above is that many culture tanks are required for industrial implementation. Since parallel cultivation or multi-stage continuous culture tanks must be used, the cost of industrial equipment is considerable, and the supplied culture solution is easily contaminated by bacteria due to direct contact with cultured microorganisms. However, as the microorganisms in the culture tank flow out together with the culture solution through the outlet, the amount of culture solution supplied cannot be increased above a certain level, resulting in a considerable drop in efficiency. As mentioned above, in order to prevent microorganisms from flowing out with the effluent, research on fixing microorganisms to membranes has been carried out in laboratories such as Stanford University and the University of Berkeley in the United States over the past few years. According to the results, by culturing microorganisms on one side of the ultrafiltration membrane and passing the medium through the other side of the membrane, nutrients in the medium are selectively permeated through the membrane. Therefore, microorganisms are cultured and multiplied by ingesting the permeated nutrients. Problems to be Solved by the Invention However, in this method, the culture solution is blocked by an ultrafiltration membrane, so it is possible to obtain the effect that it does not mix with microorganisms and leak out. However, it is not used in practice because as the microorganisms are isolated and cultured on the membrane, the resistance of the medium to the transfer of nutrients increases, resulting in large losses in the production of the culture product. Furthermore, since the microorganisms are surrounded by a membrane, once they grow above a certain density they will no longer grow, which will gradually reduce the production rate of the cultured product. Means for Solving the Problems The present inventors conducted research to solve the above-mentioned drawbacks, and as a result, they came up with the invention of a continuous culture device that effectively produces ultrafiltration through a membrane. The present invention not only prevents microorganisms from flowing out with the culture solution, but also reduces the diffusion resistance associated with the diffusion of nutrients, reducing wasted nutrients, and achieves the outstanding effect of separating and harvesting the microorganisms and culture products. be able to. The present invention will be explained in detail below with reference to the accompanying drawings. In FIG. 1, a thin tube 1 is a thin tube made of polypropylene fiber or polysulfone membrane, and this membrane serves as an ultrafiltration membrane that diffuses nutrients and culture products in the culture medium. After collecting these thin tubes to form a bundle, both ends were fixed with epoxy resin 2, and then cut to expose the thin tube holes. Put this fixed thin tube bundle into a glass tube with two ports 4 and 5,
A culture medium inlet 6 is formed so that the culture medium is supplied through the capillary hole exposed on one epoxy surface, and a culture solution outlet 7 is formed on the other side so that the culture solution flows out.
to create culture reactor 3. FIG. 2 shows a continuous culture apparatus of the present invention which enables continuous operation by connecting peripheral equipment to the culture reactor shown in FIG. 1. A sterilized culture medium is supplied to the culture reactor 3 from a container 12 filled with glass wool with a filter 13 through an ultrafiltration pump 14, and microorganisms are introduced into the reactor 3 from the container 8 through a line 11 and port 4. be inoculated. Another pump 15 on the outlet side has the role of regulating the amount of culture solution coming out from the outlet 7 and flowing into the container 17. At this time, pump 1
The amount of culture fluid supplied through the ultrafiltration pump 4 is adjusted to be greater than the amount of outflow from the ultrafiltration pump 15, thereby creating a pressure difference between the inside and outside of the membrane. The productivity of the cultured product changes depending on the pressure difference induced by the pumps 14 and 15, and according to the results of this experiment, the flow rate of the pump 15 is lower than that of the pump 14.
A flow rate of 0.5 to 0.6 shows the highest productivity.
Due to this pressure difference, as the medium is ultrafiltered, the diffusion resistance is lowered, nutrients are easily and sufficiently taken up by the microorganisms, and some of the culture products produced are re-tubulated due to the concentration difference between the membranes. Diffusion inward, resulting in a culture product free of microorganisms. The liquid consisting of the microorganisms, nutrients and culture products outside the tube is then injected into the container 8 by means of a pump 16 through the outlet 5. If the microorganisms are aerobic, the microorganisms are stirred using the stirrer 10 while injecting air through the air supply port 9, and if the microorganisms are anaerobic, the microorganisms are stirred with the air supply port 9 blocked.
Furthermore, the liquid composed of the microorganisms to be ultrafiltered, unreacted medium, and culture products is stored in a container 19 by a vacuum pump 20, and the portion containing excess microorganisms is again passed through the line 11 to the reactor inlet 4. It is collected again into the culture reactor 3 and reused. As a result, only cultured products free of microorganisms can be obtained in the container 17. EXAMPLES AND EFFECTS OF THE INVENTION Hereinafter, the present invention will be explained in more detail with reference to Examples. However, the present invention is not limited to the following examples. Example 1 The effect of the apparatus of the present invention was confirmed by the following alcohol fermentation. The capacity of the reactor is 37ml, and the flow rate of the culture solution at the inlet is
9.2ml/hr., and the flow rate at the outlet of the culture reactor is 3.8
ml/hr., and the ultrafiltration rate was 5.4 ml/hr.
The solution in reactor 3 was recycled at a flow rate of 83 ml/min. Under these conditions, a liquid medium with a glucose concentration of 100 g/g was injected into the reactor at 30°C, and alcohol fermentation was carried out. On the other hand, using the known chymostat shown in Fig. 3,
℃, the concentration of glucose is as above, i.e.
Alcohol fermentation was carried out by injecting 100 g/liquid medium into the reactor. The time taken for each of the above devices to come out of the incubator (cultivation time) was measured as 4 hours. The results are as follows.

【表】 * 但し、本発明装置での濃度は、キモスタトの濃
度と比べるために二箇所の出口濃度を平均した
ものである。
実施例 2 培養反応器の出口流量は6.1ml/hr.、限外濾過
速度は3.1ml/hr.で出口流量に対する限外濾過速
度の比率を低めた以外は実施例1と同様に実施し
た。 その結果は下記のとおりである。
[Table] * However, the concentration in the device of the present invention is the average of the outlet concentrations at two locations in order to compare with the concentration in chymostat.
Example 2 The same procedure as in Example 1 was carried out except that the outlet flow rate of the culture reactor was 6.1 ml/hr., the ultrafiltration rate was 3.1 ml/hr., and the ratio of the ultrafiltration rate to the outlet flow rate was lowered. The results are as follows.

【表】 実施例 3 培養反応器の出口流量は3.0ml/hr.限外濾過速
度は6.2ml/hr.で出口流量に対する限外濾過速度
の比率を高めた以外は実施例1と同様に操作し
た。その結果は下記のとおり、実施例1と差がな
い。
[Table] Example 3 The procedure was the same as in Example 1 except that the outlet flow rate of the culture reactor was 3.0 ml/hr. The ultrafiltration rate was 6.2 ml/hr. and the ratio of the ultrafiltration rate to the outlet flow rate was increased. did. The results are as follows, and there is no difference from Example 1.

【表】 上記の結果から分るように同一条件下、本発明
の培養器では、キモスタトより培地の中のぶどう
糖がより多く摂取され、より多くの培養生成物が
生成される卓越した効果が得られる。
[Table] As can be seen from the above results, under the same conditions, the incubator of the present invention had an outstanding effect of ingesting more glucose in the medium and producing more culture products than with Kymostat. It will be done.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は細管を組立てて作つた微生物培養反応
器の詳細図、第2図は本発明の連続培養装置の組
立概略図、第3図は公知のキモスタトの組立概略
図、 図面中の主な符号はつぎのものを意味する。1
……細管、3……培養反応器、4,5……ポー
ト、6……培地注入口、7……培養液出口、10
……限外濾過液撹拌器、14……限外濾過用ポン
プ、15……限外濾過用ポンプ。
Figure 1 is a detailed diagram of a microbial culture reactor made by assembling thin tubes, Figure 2 is a schematic diagram of the assembly of the continuous culture device of the present invention, and Figure 3 is a schematic diagram of the assembly of a known chymostat. The symbols mean the following. 1
...Thin tube, 3...Culture reactor, 4, 5...Port, 6...Medium inlet, 7...Culture solution outlet, 10
...Ultrafiltrate stirrer, 14... Ultrafiltration pump, 15... Ultrafiltration pump.

Claims (1)

【特許請求の範囲】 1 限外濾過用ポンプ14の圧力がポンプ15よ
り大きい圧力で、滅菌培地を生物培養反応器3の
入口6をへて反応器内部細管1に送り、この細管
膜を通る培地がポート4に注入された微生物によ
り十分に摂取された後反応器内部の膜の間の濃度
差により再び細管内の方に拡散されて微生物が存
在しなくなる微生物培養生成物の製造方法。 2 ポンプ14と15の圧力差による限外濾過流
量がポンプ14流量の1:0.5〜0.6である前記第
1項の方法。 3 反応器3の内部に微生物が存在する培養生成
物をポート5を通して限外濾過撹拌装置8に回収
し、注入微生物として再使用する前記第1項の方
法。 4 限外濾過性膜でできた細管1束が内装され、
出入口6,7が付いている微生物培養反応器3、
限外濾過用ポンプ14,15、限外濾過液撹拌装
置8,9,10により構成された微生物連続培養
装置。
[Claims] 1. With the pressure of the ultrafiltration pump 14 being higher than that of the pump 15, the sterilized medium is sent through the inlet 6 of the biological culture reactor 3 into the reactor internal capillary 1, and passes through this capillary membrane. A method for producing a microbial culture product, in which the medium is sufficiently ingested by the microorganisms injected into port 4, and then diffused into the capillary again due to the concentration difference between the membranes inside the reactor, so that no microorganisms exist. 2. The method according to item 1 above, wherein the ultrafiltration flow rate due to the pressure difference between the pumps 14 and 15 is 1:0.5 to 0.6 of the pump 14 flow rate. 3. The method according to item 1 above, wherein the culture product containing microorganisms inside the reactor 3 is collected through the port 5 into the ultrafiltration stirring device 8 and reused as the injected microorganism. 4 A bundle of thin tubes made of ultrafiltration membrane is installed inside,
microbial culture reactor 3 with ports 6, 7;
A microorganism continuous culture device comprised of ultrafiltration pumps 14, 15 and ultrafiltrate stirring devices 8, 9, and 10.
JP60072448A 1984-06-22 1985-04-04 Method and apparatus for producing continous microorganism culture product Granted JPS619278A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1019840003531A KR860000697B1 (en) 1984-06-22 1984-06-22 Method for continuous producting of microorganism and apparatus thereof
KR84-3531 1984-06-22

Publications (2)

Publication Number Publication Date
JPS619278A JPS619278A (en) 1986-01-16
JPS6224071B2 true JPS6224071B2 (en) 1987-05-26

Family

ID=19234283

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60072448A Granted JPS619278A (en) 1984-06-22 1985-04-04 Method and apparatus for producing continous microorganism culture product

Country Status (2)

Country Link
JP (1) JPS619278A (en)
KR (1) KR860000697B1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020054505A (en) * 2000-12-28 2002-07-08 박태진 A transfer for Raman laser apparatus
JP2004081157A (en) * 2002-08-28 2004-03-18 Electric Power Dev Co Ltd Method for culturing photosynthetic microorganism and device for the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5329994A (en) * 1976-09-01 1978-03-20 Kuraray Co Ltd Continuous reaction using enzymes or microorganisms
JPS5851888A (en) * 1981-06-18 1983-03-26 リンステイチユ−ト・ナシヨナル・デ・ラ・リサ−チ・サイエンテイフイツク Method and apparatus for dialytically culturing algaes and non-photosynthetic microorganisms

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5329994A (en) * 1976-09-01 1978-03-20 Kuraray Co Ltd Continuous reaction using enzymes or microorganisms
JPS5851888A (en) * 1981-06-18 1983-03-26 リンステイチユ−ト・ナシヨナル・デ・ラ・リサ−チ・サイエンテイフイツク Method and apparatus for dialytically culturing algaes and non-photosynthetic microorganisms

Also Published As

Publication number Publication date
KR860000697B1 (en) 1986-06-07
KR860000375A (en) 1986-01-28
JPS619278A (en) 1986-01-16

Similar Documents

Publication Publication Date Title
US4442206A (en) Method of using isotropic, porous-wall polymeric membrane, hollow-fibers for culture of microbes
US4440853A (en) Microbiological methods using hollow fiber membrane reactor
US4897359A (en) Apparatus for oxygenating culture medium
US5166067A (en) Culturing method, system and apparatus for cell culture
US20030054544A1 (en) Oxygen enriched bioreactor and method of culturing cells
US4276384A (en) Fermenter
CA1210718A (en) Continuous bioreactor and process
US5286646A (en) Method for mammalian cell culture
Roy et al. Microbial hollow fiber bioreactors
Park et al. Acetic acid production using a fermentor equipped with a hollow fiber filter module
JPH07121216B2 (en) Stirred bioreactor and incubator
JPH0740928B2 (en) Method and apparatus for culturing mammalian cells
CA2385362A1 (en) Method for cultivating cells, a membrane module, utilization of a membrane module and reaction system for cultivation of said cells
JPS6224071B2 (en)
Heath et al. Membranes and bioreactors
JPS63248396A (en) Production of dihydrooxoisophorone
JP2675408B2 (en) Hollow fiber membrane bioreactor
WO2001058501A1 (en) Apparatus and process for removal of carbon dioxide in a bioreactor system
EP0242984B1 (en) Culture device
CA1210719A (en) Method of immobilizing enzymes
JPH0198473A (en) Method for acetic acid fermentation with high-concentration of microbial cell
FR2238759A1 (en) Bacterial cell concentrates - for inoculating milk or starter solns in cheese mfr. produced by diffusion fermentation
JP4412751B2 (en) Separate mixed culture method
SU1105500A1 (en) Fermenter
JPH0279974A (en) Biocatalyst and bioreactor using the same