JPS619278A - Method and apparatus for producing continous microorganism culture product - Google Patents
Method and apparatus for producing continous microorganism culture productInfo
- Publication number
- JPS619278A JPS619278A JP60072448A JP7244885A JPS619278A JP S619278 A JPS619278 A JP S619278A JP 60072448 A JP60072448 A JP 60072448A JP 7244885 A JP7244885 A JP 7244885A JP S619278 A JPS619278 A JP S619278A
- Authority
- JP
- Japan
- Prior art keywords
- culture
- microorganisms
- ultrafiltration
- reactor
- producing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M25/00—Means for supporting, enclosing or fixing the microorganisms, e.g. immunocoatings
- C12M25/10—Hollow fibers or tubes
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M1/00—Apparatus for enzymology or microbiology
- C12M1/26—Inoculator or sampler
- C12M1/32—Inoculator or sampler multiple field or continuous type
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M29/00—Means for introduction, extraction or recirculation of materials, e.g. pumps
- C12M29/16—Hollow fibers
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Organic Chemistry (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Biotechnology (AREA)
- General Engineering & Computer Science (AREA)
- Sustainable Development (AREA)
- Biochemistry (AREA)
- Microbiology (AREA)
- General Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Biomedical Technology (AREA)
- Immunology (AREA)
- Medicinal Chemistry (AREA)
- Apparatus Associated With Microorganisms And Enzymes (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
産業上の利用分野
本発明は微生物連続培養生成物の製造方法及びその装置
、より詳細に説明すれば、限外濾過性膜でできた細管が
内装され、出入口の付いた培養反応器、限外濾過用ポン
プ、限外濾過液撹拌容器などで構成された、培養生成物
を得るための微生物連続培養装置、及び微生物培養生成
物の製造方法に関するものである。DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method and apparatus for producing a continuous microbial culture product, and more specifically, a method and apparatus for producing a microbial continuous culture product, and more specifically, a method and apparatus for producing a microbial continuous culture product, and more specifically, a method and apparatus for producing a microbial continuous culture product. The present invention relates to a microorganism continuous culture apparatus for obtaining a culture product, which is comprised of a culture reactor, an ultrafiltration pump, an ultrafiltrate stirring vessel, etc., and a method for producing the microorganism culture product.
従来の技術
従来、微生物培養の方式としてはバッチ式と連続式かあ
り、そのうちバッチ式がひろく使用されてきた。BACKGROUND OF THE INVENTION Conventionally, microbial culture methods have been divided into batch and continuous methods, of which the batch method has been widely used.
このバッチ式装置は回転盤上で撹拌される三角フラスコ
、または撹拌器が耐着されたバッチ槽で、このような装
置は一回培養液を満たし、微生物を培養させた後、濾過
及び遠心分離によって培養生成物を分離収得する培養装
置であった。This batch type device is an Erlenmeyer flask that is stirred on a rotating disk, or a batch tank that is equipped with a stirrer.Such devices are filled with culture solution once, cultured microorganisms, and then filtered and centrifuged. It was a culturing device that separates and collects culture products.
しかしなからこの方、式は生成物の生成が微生物の増殖
に伴わない増殖非連動型、いわゆる醗酵形式の培養で熟
成操作を伴う培養では1バツチ毎に栄養源の投入量を時
間的に管理しなければならず、その管理を安全に遂行す
るに当ってはバッチ式の持つ性格上、操作管理が難しく
、製品の品質が低下する原因になっていた。However, in this case, the formula is a non-growth-linked type, so-called fermentation type culture in which product production is not accompanied by the growth of microorganisms, and in a culture that involves a ripening operation, the amount of nutrients input for each batch is managed over time. However, due to the nature of the batch process, it is difficult to manage the operations safely, which causes a decline in product quality.
バッチ式に対して連続式は、培養槽内を正常状態に維持
するのが可能であるから、時間的変動が □少なく、製
品の品質は安定する。従って、微生物の増殖、及び熟成
は連続的に行う培養方式が望ましい。このような方法で
は並列型連続培養槽を使用する日本国特公昭36−11
291号、多段階型連続培養槽を使用する日本国特公昭
45−20552号などが公知であり、また最近では連
続培養装置としてキモスタートが知られている。In contrast to the batch type, the continuous type allows the inside of the culture tank to be maintained in a normal state, so there are fewer fluctuations over time and the quality of the product is stable. Therefore, a culture method in which microorganisms are grown and matured continuously is desirable. In such a method, the Japan Special Publick Corporation 1976-11 used a parallel continuous culture tank.
No. 291, Japanese Patent Publication No. 45-20552 which uses a multi-stage continuous culture tank, etc. are known, and recently, Kymostat is known as a continuous culture device.
、 キモスタートはバッチ培養槽を使
用した連続操作で、培養液を滅菌状態でタンクに連続的
にポンプで注入して、微生物が含まれた培養液を供給液
と同一の流量でポンプを使用して流出させながら培養槽
内の培養液のかさを一定水準に維持させるの牽可能とす
る方法である。, Kymostat is a continuous operation using a batch culture tank, in which the culture solution is continuously pumped into the tank under sterile conditions, and the culture solution containing the microorganisms is pumped at the same flow rate as the feed solution. This method makes it possible to maintain the volume of the culture solution in the culture tank at a constant level while draining the culture solution.
上記のような並列型連続培養槽を使用する発明、多段階
型連続培養槽を使用する発明、循環連続培養装置を使用
する発明の問題点は、工業的に遂行するために多数の培
養槽を並列にして培養したり、多段階型連続培養槽を使
用しなければならないので工業的設備費用が相当をこか
かり、また供給培養液が培養微生物と直接接触すること
によって菌により容易に汚染される、培養槽内の微生物
が培養液とともに出口を通じて流出するにつれて供給培
養液量を一定水準以上に顯めることかできず、その効率
が相当に低下するなどの欠点がある。The problem with inventions using parallel continuous culture tanks, inventions using multi-stage continuous culture tanks, and inventions using circulating continuous culture devices as described above is that many culture tanks are required for industrial implementation. Since parallel cultivation or multi-stage continuous culture tanks must be used, the cost of industrial equipment is considerable, and the supplied culture solution is easily contaminated by bacteria due to direct contact with cultured microorganisms. However, as the microorganisms in the culture tank flow out through the outlet together with the culture solution, the amount of culture solution supplied cannot be increased beyond a certain level, and the efficiency is considerably reduced.
上記のように微生物が流出液と共に流出するのを防ぐた
め、微生物を膜に固定させる研究が最近の数年間アメリ
カのスタンフォードやバークレー大学などの各研究室で
行なわれてきた。その結果によれば、限外濾過性膜を境
界として膜の一方で微生物を培養させ、膜の他方に培地
を通過させることによって培地中の養分が膜を通じて選
択透過される。従って、微生物は透過された養分を摂取
して培養、増殖される。As mentioned above, in order to prevent microorganisms from flowing out with the effluent, research on fixing microorganisms to membranes has been carried out over the past few years at laboratories such as Stanford and the University of Berkeley in the United States. According to the results, by culturing microorganisms on one side of the ultrafiltration membrane and passing the medium through the other side of the membrane, nutrients in the medium are selectively permeated through the membrane. Therefore, microorganisms take in the permeated nutrients and are cultured and multiplied.
しかし、このような方法では、培養液が限外濾過性膜に
より遮断されるので、微生物と混合して流出することが
ないという効果を得ることができるが、この時問題にな
るのは微生物が膜により隔離されて膜上で培養されるに
つれて培地の養分の伝達に対する抵抗が太き・(なり培
養生成物の生産に大きな損失を招くので、実際には使用
されていない。However, in this method, the culture solution is blocked by an ultrafiltration membrane, so it is possible to obtain the effect that it does not mix with microorganisms and leak out, but the problem at this time is that the microorganisms As it is isolated by a membrane and cultured on a membrane, the resistance to the transfer of nutrients from the medium increases (this results in a large loss in the production of the culture product, so it is not used in practice.
また、微生物が膜により囲まれているのである密度以上
に成長するとそれ以上成長しないので培養生産物の生産
率も段々に下がることになる。Furthermore, since the microorganisms are surrounded by a membrane, once they grow to a certain density, they will no longer grow, and the production rate of the cultured product will gradually decrease.
問題点を解決するための手段
本発明者らは上記のような欠点を解決するために研究を
した結果、膜を通じて効果的に限外濾過を生じる連続培
養装置を発明するに至った。Means for Solving the Problems The present inventors conducted research to solve the above-mentioned drawbacks, and as a result, they came up with the invention of a continuous culture device that effectively produces ultrafiltration through a membrane.
本発明により微生物が培養液とともに流出するのを防げ
るばかりでなく養分の拡散に伴う拡散抵抗を低めて養分
の浪費を減らし、且つ微生物と培養生成物を分離させて
収得できるという卓越した効果を得ることができる。The present invention not only prevents microorganisms from flowing out with the culture solution, but also reduces the diffusion resistance associated with the diffusion of nutrients, reducing wasted nutrients, and achieves the outstanding effect of separating and harvesting the microorganisms and culture products. be able to.
以下添附の図面により本発明の詳細な説明する。The present invention will be described in detail below with reference to the accompanying drawings.
第1図で細管(1)はポリプロピレンファイバーやポリ
スルホン膜などよりなる細管で、この膜は培地中の養分
及び培養生成物を拡散させる限外濾過性膜となっている
。これらの細管を集めて束を形成した後、両端をエポキ
シ樹脂(2)で固定させた後、切断して細管穴を露出さ
せた。この固定細管束を二つのポート(4バ5)のある
ガラス管に入れ、一方のエポキシ面に露出された細管穴
を通じて培地が供給されるように培地注入口(6)を形
成し、もう一方には培養液が流出するように培養液出口
(7)を形成し培養反応器(3)を作る。In FIG. 1, the capillary (1) is a capillary made of polypropylene fiber or polysulfone membrane, and this membrane is an ultrafiltration membrane that diffuses nutrients and culture products in the culture medium. After collecting these tubules to form a bundle, both ends were fixed with epoxy resin (2) and then cut to expose the capillary holes. This fixed tubule bundle is placed in a glass tube with two ports (4 bars 5), and a culture medium inlet (6) is formed so that the culture medium is supplied through the capillary hole exposed on one epoxy surface, and the other A culture reactor (3) is created by forming a culture solution outlet (7) so that the culture solution flows out.
第2図は第1図の培養反応器に周辺装置をつないで連続
操業を可能とする本発明の連続培養装置を示す。滅菌さ
れた培地がグラスウールで満たされたフィルターQ3付
の容器(2)から限外濾過用ポンプC14)をへて培養
反応器(3月こ供給され、微生物は容器(8λからライ
ン0υとポート(4〕を通じて反応器(3)内に接種さ
れる。出口側のもう−っのポンプα引よ出口(7)より
出て容器aηに流入する培養液の量を調節する役割をす
る。この時、ポンプ(14)を通じて供給される培養液
の供給量が、限外濾過用ポンプαQを通じて出る流出量
より多くなるように調節して、膜内部と膜外部の圧力差
を形成する。ポンプα→と00により誘導される圧力差
によって培養生産物の生産性が変化するが、本実験の結
果によればポンプqQの流量がポンプα→流量の0.5
〜0,6の場合、一番高い生産性を示す。この圧力差に
より培地が限外濾過されるにつれて拡散抵抗が低くなり
、養分が容易にかつ十分に微生物に摂取されて、生産さ
れた培養生成物は膜の間の濃度差により一部は再び細管
内の方に拡散し、微生物が存在しない培養生成物が得ら
れる。FIG. 2 shows a continuous culture apparatus of the present invention which enables continuous operation by connecting peripheral equipment to the culture reactor shown in FIG. 1. A sterilized culture medium is supplied from a container (2) with a filter Q3 filled with glass wool through an ultrafiltration pump C14) to a culture reactor (3 months), and microorganisms are transferred from a container (8λ to a line 0υ and a port ( 4] is inoculated into the reactor (3).Another pump α on the outlet side plays the role of regulating the amount of culture solution that comes out from the outlet (7) and flows into the container aη.At this time, , the amount of culture solution supplied through the pump (14) is adjusted to be greater than the amount of outflow flowing out through the ultrafiltration pump αQ, thereby creating a pressure difference between the inside of the membrane and the outside of the membrane.Pump α→ The productivity of cultured products changes due to the pressure difference induced by
~0.6 indicates the highest productivity. Due to this pressure difference, as the culture medium is ultrafiltered, the diffusion resistance is lowered, nutrients are easily and sufficiently taken up by the microorganisms, and some of the culture products produced are re-tubulated due to the concentration difference between the membranes. Diffusion inward, resulting in a culture product free of microorganisms.
1 ついで管外部の微生物、養分、培養
生成物で構成された液は出口(5)を通じてポンプrs
により容器(8)の中に注入される。微生物が好気性で
ある場合には空気供給口(9)を通じて空気を注入しな
がら撹拌器OOを利用して撹拌して、嫌気性である場合
には空気供給口(9)を遮断したまま撹拌した後、さら
に限外濾過すべき微生物と未反応の培地そして培養生成
物で構成された液は真空ポンプ(ホ)により容器α9に
貯蔵され、余分の微生物が存在する部分は再びラインσ
υをへて反応器入口(4)を通じて培養反応器(3)に
再回収されて再活用される。1 The liquid composed of microorganisms, nutrients, and culture products outside the tube is then pumped through the outlet (5).
into the container (8). If the microorganisms are aerobic, stir using the stirrer OO while injecting air through the air supply port (9); if the microorganisms are anaerobic, stir with the air supply port (9) shut off. After that, the liquid composed of microorganisms to be ultrafiltered, unreacted medium, and culture products is stored in container α9 by a vacuum pump (e), and the part where extra microorganisms are present is returned to line σ.
It passes through υ, is recovered into the culture reactor (3) through the reactor inlet (4), and is reused.
この結果、容器C171には微生物が存在しない培養生
成物のみを収得することができる。As a result, only cultured products free of microorganisms can be obtained in the container C171.
実施例および発明の効果 ′
以下、実施例により本発明をより詳細に説明する。しか
し本発明は下記実施例により限定されるものではない。EXAMPLES AND EFFECTS OF THE INVENTION The present invention will be explained in more detail below using examples. However, the present invention is not limited to the following examples.
実施例1
本発明の装置の効果を次のようなアルコール醗酵により
確認した。Example 1 The effectiveness of the apparatus of the present invention was confirmed by the following alcohol fermentation.
反応器の容量は37 ml、入口の培養液供給流量は9
.2d/hr、であり、培養反応器の出口の流量は3.
8 me / hr、であり、限外濾過速度は5.4
ml /hr、とした。反応器(3)の溶液は83 d
7m1n−の流速て再循環した。このような条件の下
で30’Cでぶどう糖の濃度が1009/βの液体培地
を反応器に注入し、アルコール醗酵させた。The capacity of the reactor is 37 ml, and the flow rate of the culture solution at the inlet is 9
.. 2d/hr, and the flow rate at the outlet of the culture reactor is 3.
8 me/hr, and the ultrafiltration rate is 5.4
ml/hr. The solution in reactor (3) is 83 d
It was recirculated at a flow rate of 7 ml n-. Under these conditions, a liquid medium with a glucose concentration of 1009/β was injected into the reactor at 30'C, and alcohol fermentation was carried out.
一方、第3図の公知のキモスタトを使用して30℃でぶ
どう糖の濃度が上記のような濃度、即ち100g/lの
液体培地を反応器に注入してアルコール醗酵させた。On the other hand, using the known chymostat shown in FIG. 3, a liquid medium containing glucose at the above concentration, ie, 100 g/l, was injected into the reactor at 30° C. for alcohol fermentation.
上記それぞれの装置で培養器から一部て来るまでの時間
(培養時間)を4時間と′して測定した。その結果は下
記のようである。Measurements were made using each of the above-mentioned devices, with the time required for the culture to be removed from the incubator (cultivation time) as 4 hours. The results are as follows.
米但し、本発明装置での濃度は、キモスタトの濃度と比
べるために三箇所の出口濃度を平均したものである。However, the concentration in the device of the present invention is the average of the outlet concentrations at three locations in order to compare with the concentration of chymostat.
実施例2
培養反応器の出口流量は6.1d/hr0、限外濾過速
度は3.1 d /hr、で出口流量に対する限外濾過
速度の比率を低めた以外は実施例1と同様に実施した。Example 2 The same procedure as in Example 1 was carried out except that the outlet flow rate of the culture reactor was 6.1 d/hr0, the ultrafiltration rate was 3.1 d/hr, and the ratio of the ultrafiltration rate to the outlet flow rate was lowered. did.
その結果は下記のとおりである。The results are as follows.
実施例3
培養反応器の出口流量は3.0 me /hr、限外濾
過速度は6.2 ttte /hr、で出口流量に対す
る限外濾過速度の比率を高めた以外は実施例1と同様に
操作した。その結果は下記のとおり、実施例1と差がな
い。Example 3 Same as Example 1 except that the outlet flow rate of the culture reactor was 3.0 me/hr, the ultrafiltration rate was 6.2 ttte/hr, and the ratio of the ultrafiltration rate to the outlet flow rate was increased. operated. The results are as follows, and there is no difference from Example 1.
上記の結果から分るように同一条件下、本発明の培養器
では、キモスタトより培地の中のぶどう糖がより多く摂
取され、より多くの培養生成物が生成される卓越した効
果が得られる。As can be seen from the above results, under the same conditions, the incubator of the present invention has the excellent effect of ingesting more glucose in the medium and producing more culture products than with chymostat.
第1図は細管を組立てて作った微生物培養反応器の詳細
図、第2図は本発明の連続培養装置の組立概略図、第3
図は公知のキモスタトの組立概略図、
図面中の主な符号はつぎのものを意味する。
(1)・・・細管、(3)−・・培養反応器、(4)t
6)・・・ポート、(6)・・・培地注入口、(7)・
・・培養液出口、αQ・・・限外濾過液撹拌器、(14
)−・・限外濾過用ポンプ、αυ・・・限外濾過用ポン
プ。Figure 1 is a detailed diagram of a microbial culture reactor made by assembling thin tubes, Figure 2 is a schematic diagram of the assembly of the continuous culture device of the present invention, and Figure 3
The figure is a schematic diagram of the assembly of a known chymostat. The main symbols in the drawing have the following meanings. (1)...tubule, (3)...culture reactor, (4) t
6)...port, (6)...medium inlet, (7)...
...Culture solution outlet, αQ...Ultrafiltrate stirrer, (14
)−...Pump for ultrafiltration, αυ...Pump for ultrafiltration.
Claims (4)
)より大きい圧力で、滅菌培地を生物培養反応器(3)
の入口(6)をへて反応器内部細管(1)に送り、この
細管膜を通る培地がポート(4)に注入された微生物に
より十分に摂取された後反応器内部の膜の間の濃度差に
より再び細管内の方に拡散されて微生物が存在しなくな
る微生物培養生成物の製造方法。(1) The pressure of the ultrafiltration pump (14) is
) At greater pressure, transfer the sterile medium to the biological culture reactor (3)
After the medium passing through the capillary membrane has been fully ingested by the microorganisms injected into the port (4), the concentration between the membranes inside the reactor increases. A method for producing a microbial culture product in which the difference causes the microorganisms to diffuse back into the tubules and no longer contain microorganisms.
過流量がポンプ(14)流量の1:0.5〜0.6であ
る前記第(1)項の方法。(2) The method according to item (1) above, wherein the ultrafiltration flow rate due to the pressure difference between the pumps (14) and (15) is 1:0.5 to 0.6 of the pump (14) flow rate.
物をポート(5)を通して限外濾過撹拌装置(8)に回
収し、注入微生物として再使用する前記第(1)項の方
法。(3) The method of item (1) above, in which the culture product containing microorganisms inside the reactor (3) is collected through the port (5) into the ultrafiltration stirring device (8) and reused as the injected microorganism. .
出入口(6)(7)が付いている微生物培養反応器(3
)、限外濾過用ポンプ(14)(15)、限外濾過液撹
拌装置(8)(9)(10)により構成された微生物連
続培養装置。(4) A thin tube (1) bundle made of ultrafiltration membrane is installed inside,
Microbial culture reactor (3) with inlet/outlet (6) (7)
), ultrafiltration pumps (14), (15), and ultrafiltrate stirring devices (8), (9), and (10).
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR84-3531 | 1984-06-22 | ||
KR1019840003531A KR860000697B1 (en) | 1984-06-22 | 1984-06-22 | Method for continuous producting of microorganism and apparatus thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS619278A true JPS619278A (en) | 1986-01-16 |
JPS6224071B2 JPS6224071B2 (en) | 1987-05-26 |
Family
ID=19234283
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60072448A Granted JPS619278A (en) | 1984-06-22 | 1985-04-04 | Method and apparatus for producing continous microorganism culture product |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPS619278A (en) |
KR (1) | KR860000697B1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004081157A (en) * | 2002-08-28 | 2004-03-18 | Electric Power Dev Co Ltd | Method for culturing photosynthetic microorganism and device for the same |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20020054505A (en) * | 2000-12-28 | 2002-07-08 | 박태진 | A transfer for Raman laser apparatus |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5329994A (en) * | 1976-09-01 | 1978-03-20 | Kuraray Co Ltd | Continuous reaction using enzymes or microorganisms |
JPS5851888A (en) * | 1981-06-18 | 1983-03-26 | リンステイチユ−ト・ナシヨナル・デ・ラ・リサ−チ・サイエンテイフイツク | Method and apparatus for dialytically culturing algaes and non-photosynthetic microorganisms |
-
1984
- 1984-06-22 KR KR1019840003531A patent/KR860000697B1/en not_active IP Right Cessation
-
1985
- 1985-04-04 JP JP60072448A patent/JPS619278A/en active Granted
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5329994A (en) * | 1976-09-01 | 1978-03-20 | Kuraray Co Ltd | Continuous reaction using enzymes or microorganisms |
JPS5851888A (en) * | 1981-06-18 | 1983-03-26 | リンステイチユ−ト・ナシヨナル・デ・ラ・リサ−チ・サイエンテイフイツク | Method and apparatus for dialytically culturing algaes and non-photosynthetic microorganisms |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004081157A (en) * | 2002-08-28 | 2004-03-18 | Electric Power Dev Co Ltd | Method for culturing photosynthetic microorganism and device for the same |
Also Published As
Publication number | Publication date |
---|---|
KR860000375A (en) | 1986-01-28 |
KR860000697B1 (en) | 1986-06-07 |
JPS6224071B2 (en) | 1987-05-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3647632A (en) | Apparatus for cell culture | |
EP0343357B1 (en) | Hollow fiber bioreactor culture system and method | |
US5166067A (en) | Culturing method, system and apparatus for cell culture | |
US4804628A (en) | Hollow fiber cell culture device and method of operation | |
US4897359A (en) | Apparatus for oxygenating culture medium | |
US20030054544A1 (en) | Oxygen enriched bioreactor and method of culturing cells | |
JPH05500616A (en) | Cell culture device | |
GB1567899A (en) | Ev method of in vitro biosynthesis of hormones particularly insulin | |
US4276384A (en) | Fermenter | |
JP3244701B2 (en) | Method and apparatus for growing biomass particles | |
US5286646A (en) | Method for mammalian cell culture | |
Carstensen et al. | Reverse-flow diafiltration for continuous in situ product recovery | |
EP0198032B1 (en) | Hollow fiber cell culture device and method of operation | |
JPH07121216B2 (en) | Stirred bioreactor and incubator | |
JP2661848B2 (en) | Culture method and culture device | |
JPS619278A (en) | Method and apparatus for producing continous microorganism culture product | |
JPS6188872A (en) | Method and apparatus for continuous cultivation at high concentration | |
JPS62130683A (en) | Method and apparatus for culturing cell | |
NZ517878A (en) | Method for cultivating cells, a membrane module, utilization of a membrane module and reaction system for cultivation of said cells | |
WO2001058501A1 (en) | Apparatus and process for removal of carbon dioxide in a bioreactor system | |
Gaden | Production methods in industrial microbiology | |
EP0242984B1 (en) | Culture device | |
SU1105500A1 (en) | Fermenter | |
JP4412751B2 (en) | Separate mixed culture method | |
JPH0198473A (en) | Method for acetic acid fermentation with high-concentration of microbial cell |