JPS63248396A - Production of dihydrooxoisophorone - Google Patents

Production of dihydrooxoisophorone

Info

Publication number
JPS63248396A
JPS63248396A JP8282187A JP8282187A JPS63248396A JP S63248396 A JPS63248396 A JP S63248396A JP 8282187 A JP8282187 A JP 8282187A JP 8282187 A JP8282187 A JP 8282187A JP S63248396 A JPS63248396 A JP S63248396A
Authority
JP
Japan
Prior art keywords
hollow fiber
fiber membrane
oxygen
thermomonospora
dihydroxoisophorone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8282187A
Other languages
Japanese (ja)
Inventor
Masao Karube
征夫 軽部
Koji Hayade
広司 早出
Takeshi Yanagimoto
剛 柳本
Yoichi Mikami
三上 洋一
Nobuaki Hori
堀 伸明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nok Corp
Japan Tobacco Inc
Original Assignee
Nok Corp
Japan Tobacco Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nok Corp, Japan Tobacco Inc filed Critical Nok Corp
Priority to JP8282187A priority Critical patent/JPS63248396A/en
Publication of JPS63248396A publication Critical patent/JPS63248396A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M29/00Means for introduction, extraction or recirculation of materials, e.g. pumps
    • C12M29/16Hollow fibers

Landscapes

  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Zoology (AREA)
  • Biomedical Technology (AREA)
  • Sustainable Development (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Biotechnology (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

PURPOSE:To efficiently obtain the titled compound, by feeding a culture medium containing an oxoisophorone substrate and oxygen to aperture outside membrane of hollow fiber membrane module and cultivating the thermophilic genus Thermomonospora bacterium in the aperture and collecting an asymmetric reduction product from the membrane permeating liquid. CONSTITUTION:A culture medium of the thermophilic genus Thermomonospora bacterium [e.g. Thermomonospora curvata (IFO 12384)] is fed to aperture parts 8, 8' and 8'' outside a hollow fiber membrane of hollow fiber membrane module packed by a hollow fiber to implant the bacterium and a culture medium obtained by adding an oxoisophorone substrate from the upper part of aperture parts 8, 8' and 8'' outside the hollow fiber membrane 2 is then fed to the aperture parts from a tank 6 with a pump 7 and humid oxygen obtained by feeding air into a water vessel 13 with an air pump 12 is fed to the aperture parts from the lower part of the aperture parts and the oxoisophorone substrate is brought into contact with the oxygen in counter current and subjected to asymmetric reduction at 50 deg.C. Then the product is collected from a hollow fiber membrane permeated culture medium 11 wherein asymmetric cultivation is carried out to provide the optically active aimed compound.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、ジヒドロオキソイソホロンの製造方法に関す
る。更に詳しくは、オキソイソホロンをサーモモノスポ
ラ属細菌により不斉還元して光学活性なジヒドロオキソ
イソホロンを製造する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for producing dihydroxoisophorone. More specifically, the present invention relates to a method for producing optically active dihydroxoisophorone by asymmetric reduction of oxoisophorone using Thermomonospora bacteria.

〔従来の技術〕[Conventional technology]

好熱性細菌であるサーモモノスポラ属細菌を培養した培
養液にオキソイソホロン[3,5,5−トリメチル−2
−シクロヘキセン−1,4−ジオン]を添加し、引き続
き培養して得られる変性培養物から光学活性なジヒドロ
オキソイソホロン((6R)−2,2,6−ドリメチル
ー1,4−シクロヘキサンジオン〕を分離採集すること
が、特開昭59−45893号公報に記載されている。
Oxoisophorone [3,5,5-trimethyl-2
-cyclohexene-1,4-dione] and then cultured to separate optically active dihydroxoisophorone ((6R)-2,2,6-drimethyl-1,4-cyclohexanedione) from the resulting denatured culture. Collecting is described in Japanese Patent Application Laid-Open No. 59-45893.

ところで、微生物を用いて有機化合物を変換する反応容
器であるバイオリアクターは、アルコール類や医薬品類
の生産に用いられている。バイオリアクターの種類とし
ては、通気撹拌種型、気泡塔型、充填層型、流動層型な
どがあり、これらはいずれも菌体培地および基質が完全
に混合され、変換が終了した時点で菌体を除き、他の成
分との混合物中から生成物を回収するという操作が行わ
れている。
By the way, bioreactors, which are reaction vessels that convert organic compounds using microorganisms, are used in the production of alcohols and pharmaceuticals. Types of bioreactors include aeration-stirred seed type, bubble column type, packed bed type, and fluidized bed type. In most cases, the product is recovered from a mixture with other components.

これ以外にも、分離膜を用いたバイオリアクターがあり
、これの特徴は菌体の存在する培養液と培地とを中空糸
膜などで隔雛し、拡散による供給によって基質の供給と
生成物の回収とを行なう点にある。
In addition to this, there are bioreactors that use separation membranes, and the feature of these is that the culture solution containing bacterial cells and the medium are separated by a hollow fiber membrane, etc., and the substrate is supplied and the product is supplied by diffusion. The main point is to carry out collection.

かかる中空糸膜モジュールを利用したバイオリアクター
システムの一態様が、図面の第2図に示されている。こ
のバイオリアクターシステムにあっては、中空糸膜]、
l’、1”、・・・・・がその両端開口部を揃えて束ね
、かつ両端開口部で各中空糸膜中空部を残して各中空糸
同士を接着、閉塞2,2′させた中空糸膜群を筐体3内
にこの閉塞部を内接するように収容し、筐体両端部には
蓋体4,5が取り付けられて構成される中空糸膜モジュ
ールを用い、基質を含んだ培地6を供給ポンプ7によっ
て蓋体4側から中空糸膜内へ供給し、−力筒体内の中空
糸膜外に形成される間隙部分8.8 ’ 、8 ” 、
・・・・・には菌体を存在させ、それを循環ポンプ9に
よってこの間隙部分によって形成される培養室内を循環
させる。この循環に用いられるシリコンチューブ10は
、液の輸送と酸素の供給の両方の目的で使用される。こ
のような操作により、培地および基質は中空糸膜を介し
ての拡散により培養室内に供給され、同時に生成物も培
養室内から中空糸膜内へと拡散され、生成物を含んだ培
養液11は蓋体5側から回収される。
One embodiment of a bioreactor system using such a hollow fiber membrane module is shown in FIG. 2 of the drawings. In this bioreactor system, hollow fiber membrane],
1', 1'', ... are bundled with their openings at both ends aligned, and the hollow fibers are glued together and closed 2, 2' leaving a hollow part of each hollow fiber membrane at the openings at both ends. A hollow fiber membrane module is used in which a group of fiber membranes is housed in a housing 3 so as to inscribe this closed part, and lids 4 and 5 are attached to both ends of the housing, and a medium containing a substrate is stored. 6 is supplied into the hollow fiber membrane from the lid body 4 side by the supply pump 7, and the gap portions 8.8', 8'', which are formed outside the hollow fiber membrane in the force cylinder.
. . . Bacterial cells are present in the culture chamber, and the circulation pump 9 circulates the bacteria within the culture chamber formed by the gap. The silicone tube 10 used for this circulation is used for both the purpose of transporting the liquid and supplying oxygen. Through such operations, the medium and substrate are supplied into the culture chamber by diffusion through the hollow fiber membrane, and at the same time, the product is also diffused from the culture chamber into the hollow fiber membrane, and the culture solution 11 containing the product is It is collected from the lid body 5 side.

このように構成され、操作される中空糸膜モジュールを
用いるバイオリアクターの特徴としては、操作を連続的
に行ない得ること、1モジュール当りの膜面積が大きく
、拡散が効率良く行われるため生産効率が高いことなど
が挙げられる。
A bioreactor using a hollow fiber membrane module constructed and operated in this way has the following characteristics: it can be operated continuously, the membrane area per module is large, and diffusion is performed efficiently, resulting in high production efficiency. For example, it is expensive.

〔発明が解決しようとする間厘点〕[The problem that the invention attempts to solve]

生産性の点を、好熱性サーモモノスポラ属細菌によるオ
キソイソホロンの不斉還元に用いられる充填層型、流動
層型および中空糸膜型について比較すると、固定化サー
モモノスポラ クルバータを用いた流動層型のものが最
も高く、中空糸膜型の生産性は2番目であった。
Comparing the productivity of the packed bed type, fluidized bed type, and hollow fiber membrane type used for the asymmetric reduction of oxoisophorone by thermophilic Thermomonospora bacteria, the fluidized bed type using immobilized Thermomonospora curvata The productivity of the hollow fiber membrane type was the highest, and the productivity of the hollow fiber membrane type was second.

しかしながら、流動層型のものはりアクタ−内に連続的
に栄養培地を供給しているため、菌が固定化されたゲル
の外で増殖し、その結果生産物中に多数の菌が混入し、
反応操作がきわめて煩雑になるという問題点を有してい
る。
However, since the fluidized bed type system continuously supplies a nutrient medium into the actor, bacteria grow outside of the gel in which they are immobilized, resulting in a large number of bacteria being mixed into the product.
This has the problem that the reaction operation becomes extremely complicated.

これに対して、中空糸膜型のバイオリアクターは生産性
の点ではやや劣るものの、中空糸膜により菌を生成物と
分離しながら反応を行なうことができるので、微生物変
換を長時間連続的に行なう方法としては適切な方法とい
うことができる。
On the other hand, hollow fiber membrane bioreactors are slightly inferior in terms of productivity, but the hollow fiber membrane allows the reaction to be carried out while separating bacteria from the product, so microbial conversion can be carried out continuously over a long period of time. This can be said to be an appropriate method.

この菌体のような増殖連動型の変換においては、培養液
中の溶存酸素濃度がシステム全体の変換効率を支配して
いると考えられる。上記した流動層型と中空糸膜型との
生産性の違いは、酸素供給速度の差に起因しているもの
と考えられ、つまり流動層型では通気撹拌が行われてい
るのに対し、中空糸膜型ではシリコンチューブを通して
の酸素の拡散に頼っている。従って、中空糸膜型バイオ
リアクターに十分な酸素供給を行なうことができれば、
生産性は更に向上すると考えられる。また、培地および
基質は中空糸膜内に供給され、直接中空糸膜外に位置す
る培養室内に供給されないので、この点からも供給酸素
との接触が十分とはいえない。
In growth-linked conversion such as this type of bacterial cell conversion, it is thought that the dissolved oxygen concentration in the culture solution controls the conversion efficiency of the entire system. The above-mentioned difference in productivity between the fluidized bed type and the hollow fiber membrane type is thought to be due to the difference in oxygen supply rate. Thread membrane types rely on oxygen diffusion through silicone tubing. Therefore, if sufficient oxygen can be supplied to the hollow fiber membrane bioreactor,
It is thought that productivity will further improve. Furthermore, since the culture medium and substrate are supplied inside the hollow fiber membrane and not directly into the culture chamber located outside the hollow fiber membrane, from this point of view as well, contact with the supplied oxygen cannot be said to be sufficient.

そこで、本発明者らは、かかる問題点の解決方法を求め
て種々検討を重ねた結果、基質を添加した培地および酸
素をモジュール筐体内の中空糸膜外間隙部分によって構
成される培養室内に直接同時に供給することにより、か
かる課題が効果的に解決されることを見出した。
Therefore, as a result of various studies in search of a solution to this problem, the present inventors have determined that a medium containing a substrate and oxygen can be directly introduced into the culture chamber formed by the gap outside the hollow fiber membrane inside the module housing. It has been found that this problem can be effectively solved by supplying the two at the same time.

〔問題点を解決するための手段〕[Means for solving problems]

従って、本発明はジヒドロオキソイソホロンの製造方法
に係り、ジヒドロオキソイソホロンの製造は、好熱性サ
ーモモノスポラ属細菌の培養液にオキソイソホロン基質
を添加した培地を供給し、ジヒドロオキソイソホロンに
不斉還元させる操作を中空糸膜モジュールを用いて行な
い、その際前記培地およびMiをモジュール筐体内の中
空糸膜外間隙部分に供給し、不斉還元が行われた中空糸
膜透過培養液中から生成物を採取することにより行われ
る。
Therefore, the present invention relates to a method for producing dihydroxoisophorone, and the production of dihydroxoisophorone involves supplying a culture medium of thermophilic Thermomonospora bacteria with an oxoisophorone substrate added, and asymmetric reduction to dihydroxoisophorone. This operation is carried out using a hollow fiber membrane module, and at that time, the medium and Mi are supplied to the gap outside the hollow fiber membrane in the module housing, and the product is extracted from the hollow fiber membrane permeated culture solution in which the asymmetric reduction has been performed. This is done by collecting.

好熱性サーモモノスポラ属細菌としては、サーモモノス
ポラ クルバータ(IFO12384)、サーモモノス
ポラ フスカ(ATCC27730)などが用いられる
As thermophilic Thermomonospora bacteria, Thermomonospora curvata (IFO12384), Thermomonospora fusca (ATCC27730), and the like are used.

こ九らの細菌は、前記特許公開公報に記載される如く、
トリプトファン、酵母エキス、豚肝臓浸出液、グリセリ
ン、グルコース、塩化ナトリウムおよび水よりなる変換
培地を用い、胞子形成には上記培地のトリプトファンの
代りにペプトンを用い、また寒天を添加した培地を用い
て46℃で培養される。
These bacteria, as described in the above patent publication,
A conversion medium consisting of tryptophan, yeast extract, pig liver infusion, glycerin, glucose, sodium chloride, and water was used, peptone was used instead of tryptophan in the above medium for sporulation, and agar was added to the medium at 46°C. is cultivated in

この好熱性細菌培養液を用いての培養に際し、変換基質
たるオキソイソホロンを添加した培地が。
When culturing using this thermophilic bacterial culture solution, a medium containing oxoisophorone, which is a conversion substrate, is used.

中空糸膜モジュールに供給される。用いられる中空糸膜
モジュールの一態様が図面の第1図に示されているので
、以下この図面を参照しながら操作方法を説明する。
Supplied to the hollow fiber membrane module. One embodiment of the hollow fiber membrane module used is shown in FIG. 1 of the drawings, and the operating method will be described below with reference to this drawing.

この中空糸膜モジユール自体は、第2図のそれと同様に
構成されており、基質を含んだ培地6は供給ポンプ7に
よって筐体内の中空糸膜外に形成される間隙部分8.8
 ’ 、8 ”・・・・・にモジュールの上方部分から
供給され、同時に曝気用の酸素または空気(好ましくは
膜により酸素富化された空気)がエアーポンプ12から
水13を通し、加湿された状態で、モジュールの下方部
分に接続されたシリコンチューブ10から供給され、基
質含有培地と酸素とを向流的に接触させるようにする。
This hollow fiber membrane module itself is constructed in the same manner as that shown in FIG.
', 8''... are supplied from the upper part of the module, and at the same time oxygen or air for aeration (preferably air enriched with oxygen by a membrane) is passed through the water 13 from the air pump 12 and humidified. In this state, oxygen is supplied from a silicon tube 10 connected to the lower part of the module to bring the substrate-containing medium into countercurrent contact with oxygen.

ここで、供給酸素が加湿して用いられるのは、間隙部分
内の水分が蒸発し、基質含有培地の濃度が変化するのを
防止することにある。
Here, the reason why the supplied oxygen is used as a humidifier is to prevent moisture in the gap from evaporating and changing the concentration of the substrate-containing medium.

間隙部分8.8 ’ 、8″、・・・・・よりなる培養
室内での不斉還元は、定常期に達した菌体をそこに植苗
し、モジュール全体を50℃に保つことにより行われる
。生産物は、中空糸膜を透過して中空糸内を降下し、ベ
リスタリチックポンプ】4によって培養液11として回
収される。この場合の回収速度は培地供給速度と同一に
保持され、またエアー抜き15されて、液面の高さが一
定に保たれる。
Asymmetric reduction in the culture chamber consisting of the gap 8.8', 8'', etc. is carried out by planting the bacterial cells that have reached the stationary phase there and keeping the entire module at 50°C. The product permeates through the hollow fiber membrane and descends inside the hollow fiber, and is recovered as a culture solution 11 by a veristalytic pump [4].The recovery rate in this case is kept the same as the medium supply rate, and Air is vented 15 to keep the liquid level constant.

〔発明の効果〕〔Effect of the invention〕

本発明方法においては、オキソイソホロン基質を添加し
た培地および酸素をいずれも中空糸膜型バイオリアクタ
ーの中空糸膜外間隙部分に供給し。
In the method of the present invention, a medium containing an oxoisophorone substrate and oxygen are both supplied to the gap outside the hollow fiber membrane of a hollow fiber membrane bioreactor.

そこで好熱性サーモモノスポラ屈細菌の培養液の存在下
での培養が行われるため、中空糸膜外間隙部分に植菌さ
れた菌体には十分な培地および酸素が供給され、またリ
アクター内で高濃度の菌体が培養される。その結果、ジ
ヒドロオキソイソホロンの生成率も良好であり、しかも
リアクター系外に回収される培養液中には殆んど菌体が
含まれていないなどの効果が奏せられる。
Therefore, since cultivation is carried out in the presence of a culture solution of thermophilic Thermomonospora bacteria, sufficient culture medium and oxygen are supplied to the bacteria inoculated in the outer space of the hollow fiber membrane, and A high concentration of bacterial cells is cultured. As a result, the production rate of dihydroxoisophorone is good, and the culture solution recovered outside the reactor system contains almost no bacterial cells.

〔実施例〕〔Example〕

次に、実施例について本発明を説明する。 Next, the present invention will be explained with reference to examples.

実施例(本発明の中空糸膜型) 第1図に図示された態様に従い、ポリフッ化ビニリデン
中空糸(外径1.5mn+、内径1.11、分画分子量
40万)製モジュール(モジュール内にTPa素を供給
しない状態で一定となる液面の高さを指標として計算さ
れる間隙部分の体積に相当するりアクタ一体積9.2m
Q)の上方部分からはオキソイソホロンを3mg/m 
Qの濃度で含有する栄養培地を0.037〜0.38m
 Q /分の供給量で、また下方部分からは加湿酸素富
化空気を25m fl /分の流量でそれぞれ供給し、
中空糸膜外間隙部分に対数増殖期中期の好熱性サーモモ
ノスポラ クルバータ細菌の菌体液2.5mQを植菌し
、モジュール全体を50℃の恒温槽に浸漬して、不斉還
元を行なった。
Example (Hollow fiber membrane type of the present invention) According to the embodiment shown in FIG. The volume of the actuator is 9.2 m, which corresponds to the volume of the gap calculated using the constant liquid level height when no TPa element is supplied.
Q) 3mg/m of oxoisophorone from the upper part
0.037-0.38 m of nutrient medium containing a concentration of Q
Q / min, and humidified oxygen-enriched air from the lower part at a flow rate of 25 m fl /min, respectively.
2.5 mQ of bacterial cell fluid of a thermophilic Thermomonospora curvata bacterium in the mid-logarithmic growth phase was inoculated into the outer gap of the hollow fiber membrane, and the entire module was immersed in a constant temperature bath at 50° C. to perform asymmetric reduction.

反応液は、中空糸膜を透過し、中空糸内を上昇して培養
液として回収され、培養液から酢酸エチルを用いて生成
物たるジヒドロオキソイソホロンを回収し、ガスクロマ
トグラフによる定量を行なった・ このリアクターシステムにおける希釈率に対する変換率
および生成率をそれぞれ測定し、その結果を第3〜4図
のグラフに示した。
The reaction solution permeated through the hollow fiber membrane and rose inside the hollow fiber to be recovered as a culture solution, and the product dihydroxoisophorone was recovered from the culture solution using ethyl acetate and quantified using gas chromatography. The conversion rate and production rate with respect to the dilution rate in this reactor system were measured, and the results are shown in the graphs of Figures 3 and 4.

変換率:オキソイソホロンからジヒドロオキソインホロ
ンへの変換率 生成率:単位時間当り、リアクタ一体積当りのジヒドロ
オキソイソホロンの生成址 f:流速(m Q /分) C:基質濃度(mg/m Q ) Q:変換率(%) ■:リアクタ一体積(llIQ) 希釈率:培地供給量とりアクタ一体積との比比較例1(
従来の中空糸膜型) 第2図に示された態様に従い、オキソイソホロンの不斉
還元を行なった。基質含有培地が供給される中空糸内体
積に相当するりアクタ一体積が16.3m Qであり、
基質含有培地の供給量が0.075〜0.45m Q 
/分である以外は、実施例の条件がそのまま採用された
Conversion rate: Conversion rate from oxoisophorone to dihydroxoinphorone Production rate: Production rate of dihydroxoisophorone per unit time and per volume of reactor f: Flow rate (m Q /min) C: Substrate concentration (mg/m Q ) Q: Conversion rate (%) ■: One volume of reactor (llIQ) Dilution rate: Comparison example 1 of the ratio of culture medium supply amount to one volume of actor (
Conventional Hollow Fiber Membrane Type) Oxoisophorone was asymmetrically reduced according to the embodiment shown in FIG. The volume of one actuator corresponding to the internal volume of the hollow fiber to which the substrate-containing medium is supplied is 16.3 mQ,
The supply amount of substrate-containing medium is 0.075-0.45m Q
The conditions of the example were adopted as they were, except that the temperature was 1/min.

比較例2(充填層型) 好熱性のサーモモノスポラクルバータ!II菌を固定化
したポリアクリルアミドヒドラジドゲルを充填したりア
クタ−の下方よりオキソイソホロンを3mg/m Qの
濃度で含有する栄養培地を一定流量で流しながら、50
℃で不斉還元を行なった。
Comparative example 2 (packed bed type) Thermophilic thermomonosporacleverter! Filled with polyacrylamide hydrazide gel immobilized with II bacteria, a nutrient medium containing oxoisophorone at a concentration of 3 mg/mQ was flowed from below the Actor at a constant flow rate for 50 min.
Asymmetric reduction was performed at °C.

比較例3(流動層型) 比較例2において、リアクター内に50m Q /分の
流量の空気を送り込み、内部を撹拌しながら酸素の供給
を行なった。
Comparative Example 3 (Fluidized Bed Type) In Comparative Example 2, air was fed into the reactor at a flow rate of 50 m Q /min, and oxygen was supplied while stirring the inside.

以上の各比較例のりアクタ−システムについても、希釈
率に対する変換率および生成率がそれぞれ測定され、そ
れらの結果が第3〜4図のグラフに併記されている。
The conversion rate and production rate with respect to the dilution rate were also measured for each of the above-mentioned comparative glue actor systems, and the results are also shown in the graphs of FIGS. 3 and 4.

これらの結果から、次のようなことがいえる。From these results, the following can be said.

(1)いずれの型のりアクタ−においても、希釈率の増
加に伴い、変換率の低下がみられる。本発明のりアクタ
−システムでの最大変換率は、希釈率0.25hr”の
ときの70%であり、この値は同じ希釈率において流動
層型とほぼ同程度、また従来の中空糸膜型の約1.3倍
である。
(1) In all molded actors, as the dilution rate increases, the conversion rate decreases. The maximum conversion rate of the glue actor system of the present invention is 70% at a dilution rate of 0.25 hr, which is approximately the same as that of the fluidized bed type at the same dilution rate, and that of the conventional hollow fiber membrane type. It is about 1.3 times.

(2)生成率についてみると、従来の中空糸膜型および
流動層型はいずれも測定された希釈率の範囲内で最大値
を示すのに対し、本発明に係る中空糸膜型は生成率の値
そのものが相対的に高いばかりではなく、希釈率の増加
につれてその値も上昇している。即ち、本発明の中空糸
膜型のリアクターでは、希釈率1.Ohr”付近迄は流
動層型の生産性とほぼ等しく、それ以上の希釈率では流
動層型の生産性は減少傾向を示すが、本発明のものでは
更に生産性が上昇する。
(2) Regarding the production rate, while the conventional hollow fiber membrane type and fluidized bed type both show the maximum value within the range of the measured dilution rate, the production rate of the hollow fiber membrane type according to the present invention is Not only is the value itself relatively high, but it also increases as the dilution rate increases. That is, in the hollow fiber membrane type reactor of the present invention, the dilution ratio is 1. The productivity of the fluidized bed type is almost equal to that of the fluidized bed type up to around "0000 hr", and the productivity of the fluidized bed type tends to decrease at a dilution rate higher than that, but the productivity of the present invention further increases.

本発明に係る中空糸膜型バイオリアクターにみられるこ
のような高い生産性は、希釈率の増加による菌体の“洗
い流し”(Wash 0ut)現象が起きず、菌体濃度
が高く保持されること、更に十分な酸素がリアクター内
に供給されたことによると考えられる。
Such high productivity observed in the hollow fiber membrane bioreactor according to the present invention is due to the fact that the bacterial cell concentration is maintained at a high level without the "wash-out" phenomenon of bacterial cells due to an increase in the dilution rate. This is thought to be due to the fact that sufficient oxygen was supplied into the reactor.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る、また第2図は従来の中空糸膜型
に係るバイオリアクターのシステム概略図である。また
、第3〜4図は、実施例および各比較例における希釈率
に対する変化率および生成率の関係を示すグラフである
。 (符号の説明) l・・・・・・中空糸膜 6・・・・・・基質含有培地 8・・・・・・中空糸膜外間隙部分 11・・・・・培養液
FIG. 1 is a system schematic diagram of a bioreactor according to the present invention, and FIG. 2 is a system diagram of a conventional hollow fiber membrane type bioreactor. Further, FIGS. 3 and 4 are graphs showing the relationship between the rate of change and the production rate with respect to the dilution rate in Examples and Comparative Examples. (Explanation of symbols) l...Hollow fiber membrane 6...Substrate-containing medium 8...Hollow fiber membrane outer gap portion 11...Culture solution

Claims (1)

【特許請求の範囲】 1、好熱性サーモモノスポラ属細菌の培養液にオキソイ
ソホロン基質を添加した培地を供給し、ジヒドロオキソ
イソホロンに不斉還元させる操作を中空糸膜モジュール
を用いて行ない、その際前記培地および酸素をモジュー
ル筐体内の中空糸膜外間隙部分に供給し、不斉還元が行
われた中空糸膜透過培養液中から生成物を採取すること
を特徴とする光学活性なジヒドロオキソイソホロンの製
造方法。 2、好熱性サーモモノスポラ属細菌がサーモモノスポラ
 クルバータである特許請求の範囲第1項記載のジヒド
ロオキソイソホロンの製造方法。 3、好熱性サーモモノスポラ属細菌がサーモモノスポラ
 フスカである特許請求の範囲第1項記載のジヒドロオ
キソイソホロンの製造方法。 4、中空糸膜がポリフッ化ビニリデン中空糸膜である特
許請求の範囲第1項記載のジヒドロオキソイソホロンの
製造方法。 5、酸素が加湿状態の空気として供給される特許請求の
範囲第1項記載のジヒドロオキソイソホロンの製造方法
。 6、培地および酸素の供給が向流的に行われる特許請求
の範囲第1項記載のジヒドロオキソイソホロンの製造方
法。
[Claims] 1. Supplying a culture medium containing an oxoisophorone substrate to a culture solution of thermophilic Thermomonospora bacteria, performing an asymmetric reduction to dihydroxoisophorone using a hollow fiber membrane module, The optically active dihydroxocarbon is characterized in that the medium and oxygen are supplied to the gap outside the hollow fiber membrane in the module housing, and the product is collected from the permeated culture solution in the hollow fiber membrane in which the asymmetric reduction has been carried out. Method for producing isophorone. 2. The method for producing dihydroxoisophorone according to claim 1, wherein the thermophilic Thermomonospora bacterium is Thermomonospora curvata. 3. The method for producing dihydroxoisophorone according to claim 1, wherein the thermophilic Thermomonospora bacterium is Thermomonospora fusca. 4. The method for producing dihydroxoisophorone according to claim 1, wherein the hollow fiber membrane is a polyvinylidene fluoride hollow fiber membrane. 5. The method for producing dihydroxoisophorone according to claim 1, wherein oxygen is supplied as humidified air. 6. The method for producing dihydroxoisophorone according to claim 1, wherein the culture medium and oxygen are supplied countercurrently.
JP8282187A 1987-04-06 1987-04-06 Production of dihydrooxoisophorone Pending JPS63248396A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8282187A JPS63248396A (en) 1987-04-06 1987-04-06 Production of dihydrooxoisophorone

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8282187A JPS63248396A (en) 1987-04-06 1987-04-06 Production of dihydrooxoisophorone

Publications (1)

Publication Number Publication Date
JPS63248396A true JPS63248396A (en) 1988-10-14

Family

ID=13785064

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8282187A Pending JPS63248396A (en) 1987-04-06 1987-04-06 Production of dihydrooxoisophorone

Country Status (1)

Country Link
JP (1) JPS63248396A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007097260A1 (en) * 2006-02-24 2007-08-30 Toray Industries, Inc. Method of producing chemical product and continuous fermentation apparatus
JP2007252367A (en) * 2006-02-24 2007-10-04 Toray Ind Inc Method for producing chemical by continuous fermentation and continuous fermentation apparatus
JP2008043329A (en) * 2006-07-19 2008-02-28 Toray Ind Inc Method for producing 1, 3-propane diol by continuous fermentation
JP2008054670A (en) * 2006-08-02 2008-03-13 Toray Ind Inc Method for producing succinic acid by continuous fermentation
JP2008104451A (en) * 2006-09-26 2008-05-08 Toray Ind Inc Method for producing d-lactic acid by continuous fermentation
JP2008131931A (en) * 2006-11-01 2008-06-12 Toray Ind Inc Method for producing lactic acid by continuous fermentation
JP2008237101A (en) * 2007-03-27 2008-10-09 Toray Ind Inc Method for producing chemical by continuous fermentation
JP2008263945A (en) * 2007-03-28 2008-11-06 Toray Ind Inc Method for producing lactic acid by continuous fermentation
JP2009039074A (en) * 2007-08-10 2009-02-26 Toray Ind Inc Method for producing protein by continuous fermentation
JP2009065966A (en) * 2007-08-22 2009-04-02 Toray Ind Inc Method for producing chemical product by continuous fermentation

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5830030A (en) * 1981-08-14 1983-02-22 株式会社日立製作所 Spring retaining device for switch
JPS5945893A (en) * 1982-09-09 1984-03-14 Japan Tobacco Inc Preparation of optical active dihydrooxophorone
JPS60500119A (en) * 1982-11-16 1985-01-31 ザ リ−ジエンツ オブ ザ ユニヴア−シテイ オブ カリフオルニア Rapid production of biological products based on fermentation in membrane reactors with densely loaded microorganisms

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5830030A (en) * 1981-08-14 1983-02-22 株式会社日立製作所 Spring retaining device for switch
JPS5945893A (en) * 1982-09-09 1984-03-14 Japan Tobacco Inc Preparation of optical active dihydrooxophorone
JPS60500119A (en) * 1982-11-16 1985-01-31 ザ リ−ジエンツ オブ ザ ユニヴア−シテイ オブ カリフオルニア Rapid production of biological products based on fermentation in membrane reactors with densely loaded microorganisms

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007097260A1 (en) * 2006-02-24 2007-08-30 Toray Industries, Inc. Method of producing chemical product and continuous fermentation apparatus
JP2007252367A (en) * 2006-02-24 2007-10-04 Toray Ind Inc Method for producing chemical by continuous fermentation and continuous fermentation apparatus
US9587253B2 (en) 2006-02-24 2017-03-07 Toray Industries, Inc. Method of producing chemical product with continuous fermentation and filtering
JP2008043329A (en) * 2006-07-19 2008-02-28 Toray Ind Inc Method for producing 1, 3-propane diol by continuous fermentation
JP2008054670A (en) * 2006-08-02 2008-03-13 Toray Ind Inc Method for producing succinic acid by continuous fermentation
JP2008104451A (en) * 2006-09-26 2008-05-08 Toray Ind Inc Method for producing d-lactic acid by continuous fermentation
JP2008131931A (en) * 2006-11-01 2008-06-12 Toray Ind Inc Method for producing lactic acid by continuous fermentation
JP2008237101A (en) * 2007-03-27 2008-10-09 Toray Ind Inc Method for producing chemical by continuous fermentation
JP2008263945A (en) * 2007-03-28 2008-11-06 Toray Ind Inc Method for producing lactic acid by continuous fermentation
JP2009039074A (en) * 2007-08-10 2009-02-26 Toray Ind Inc Method for producing protein by continuous fermentation
JP2009065966A (en) * 2007-08-22 2009-04-02 Toray Ind Inc Method for producing chemical product by continuous fermentation

Similar Documents

Publication Publication Date Title
US4442206A (en) Method of using isotropic, porous-wall polymeric membrane, hollow-fibers for culture of microbes
US8198055B2 (en) Process for converting syngas to liquid products with microorganisms on two-layer membrane
US4440853A (en) Microbiological methods using hollow fiber membrane reactor
US20090286296A1 (en) Submerged membrane supported bioreactor for conversion of syngas components to liquid products
US20080305540A1 (en) Membrane supported bioreactor for conversion of syngas components to liquid products
US20080305539A1 (en) Membrane supported bioreactor for conversion of syngas components to liquid products
US4167450A (en) Method and apparatus for the production of secondary metabolites by the maintenance-state cultivation of microorganisms
CN103224965B (en) Method for producing pyrroloquinoline quinine through microbial fermentation and fermentation medium used in same
JPH01502479A (en) Method for continuous fermentation of carbohydrate-containing media using bacteria
US10378028B2 (en) System for hydrogen production under limited aerobic conditions
US8828692B2 (en) Membrane supported bioreactor for conversion of syngas components to liquid products
JPS63248396A (en) Production of dihydrooxoisophorone
US4746615A (en) Sterilizable fluidized bed fermenter
US20190390150A1 (en) Biological reaction device in which micro-nano bubbles are used, and biological reaction method in which said biological reaction device is used
US5342765A (en) Method of producing extracellular products from aerobic microorganisms
EP0154647A1 (en) Continuous fermentation process
CN201648392U (en) Bubble-less air supply-solid-liquid separation integrated biological membrane reactor
RU2044773C1 (en) Method for fermentation of carbohydrate-containing mediums with the help of bacteria which produce butanol, acetone, ethanol and/or isopropanol and device for its realization
FI85502B (en) FOERFARANDE FOER FRAMSTAELLNING AV POLYOLER GENOM PAO INDUSTRIELL SKALA BASERAD FERMENTATION AV SOCKER.
FI85501C (en) FOERFARANDE FOER FRAMSTAELLNING AV POLYOLER GENOM PAO INDUSTRIELL SKALA BASERAD FERMENTATION AV SOCKER.
Dagley et al. The effect of aeration on the growth of Aerobacter aerogenes and Escherichia coli, with reference to the Pasteur mechanism
JPH05137585A (en) Method for continuously culturing erythritol
FI80718C (en) FOERFARANDE FOER FRAMSTAELLNING AV AETTIKSYRA AV KOLHYDRATER MED HJAELP AV EN CLOSTRIDIUM THERMOACETICUM STAMM.
FI85503C (en) FOERFARANDE FOER FRAMSTAELLNING AV POLYOLER GENOM PAO INDUSTRIELL SKALA BASERAD FERMENTATION AV SOCKER.
JP2984748B2 (en) Method for culturing microorganisms using air-permeable membrane