JPS6223944A - Refining method for nickel oxide or the like - Google Patents

Refining method for nickel oxide or the like

Info

Publication number
JPS6223944A
JPS6223944A JP16226585A JP16226585A JPS6223944A JP S6223944 A JPS6223944 A JP S6223944A JP 16226585 A JP16226585 A JP 16226585A JP 16226585 A JP16226585 A JP 16226585A JP S6223944 A JPS6223944 A JP S6223944A
Authority
JP
Japan
Prior art keywords
raw materials
ore
kneading
briquettes
nickel oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16226585A
Other languages
Japanese (ja)
Other versions
JPH0121855B2 (en
Inventor
Haruo Arai
新居 治男
Tetsuya Watanabe
哲弥 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Yakin Kogyo Co Ltd
Original Assignee
Nippon Yakin Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Yakin Kogyo Co Ltd filed Critical Nippon Yakin Kogyo Co Ltd
Priority to JP16226585A priority Critical patent/JPS6223944A/en
Priority to FR8610775A priority patent/FR2585037B1/en
Priority to CA 514432 priority patent/CA1332286C/en
Publication of JPS6223944A publication Critical patent/JPS6223944A/en
Publication of JPH0121855B2 publication Critical patent/JPH0121855B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B23/00Obtaining nickel or cobalt
    • C22B23/02Obtaining nickel or cobalt by dry processes
    • C22B23/021Obtaining nickel or cobalt by dry processes by reduction in solid state, e.g. by segregation processes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B23/00Obtaining nickel or cobalt
    • C22B23/005Preliminary treatment of ores, e.g. by roasting or by the Krupp-Renn process

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

PURPOSE:To reduce and recover nickel oxide in ore as ferronickel at a high reduction rate by kneading a carbonaceous material, limestone, etc. which are auxiliary raw materials in the powder state together with water with the nickel oxide ore molding the mixture to briquettes and calcining the briquettes after drying. CONSTITUTION:A large amt. of water is incorporated into the ore contg. NiO such as noumeite and therefore, the ore having the poor dehydratability thereof is crushed in a dry crushing stage A. The ore having the good dehydratability is crushed in a wet crushing stage C. The carboneous material and limestone as the auxiliary raw materials are separately crushed in a dry crysing stage B. The raw materials crushed to <=3mm from the above-mentioned three drushing stages are uniformly mixed in a mixing and kneading stage D so as to contain 0-20% moisture and to contain the carbonaceous material at 2-5 times the ratio necessary for reduction of NiO. The mixture is then molded to the briquettes having 20-30mm diameter in a briquetting stage E. After the briquettes are dried in a grate type rotary kiln F, the briquettes are calcined in a rotary kiln G to reduce the NiO to Ni which is separated and recovered as ferronickel together with Fe in the ore by magnetic sepn.

Description

【発明の詳細な説明】[Detailed description of the invention]

〈発明の目的〉 産業上の利用分野 本発明は酸化ニッケル鉱石などの製錬方法に係り、詳し
くは、酸化ニッケル鉱石などの鉱石を粉砕後、これをブ
リケット等に製団してから、グレート、シ17フト炉等
の乾燥・予熱装置を備えたロータリー4:ルンで乾燥、
予熱、焼成して、鉱石中に含まれるニッケル(以下、N
1と言う。)などの金属分を還元すると共にルッペ(粒
鉄)として成長させて製錬する際に、このブリケラ]・
等の製団物中に予め多量のrA材などの遠九祠及び石灰
石などの造滓剤を均一に内装Jると共に、製団に最適な
水分量とし、更に、この製団物をロータリーキルン中で
焼成して、N1などの金属物の19元及び造滓を促進し
、操業効率を大幅に1臂させ、乾燥や予熱等の熱エネル
ギーを大幅に節減し、ダスト飛散量も減少できるのでキ
ルンでの生産性の向にができる酸化Ni鉱石などの製錬
方法に係る。 従  来  の  技  術 一般に、Niなどの金属分は、A−スアナイト系ステン
レス鋼には必須成分であって、N1などの原料のNi鉱
石としては、通常、ガーニライトなどの珪酸N1鉱石が
我が国に輸入され、この酸化層鉱石からNiなとは製錬
されている。また、この酸化Ni鉱石は通常粉鉱であり
、多聞の水分を含んでおり、これら鉱石は例えば次の通
りに製錬されている。 通常、はじめに鉱石、炭材、石灰石等の主原料ならびに
副原料にそれぞれ多量の水を添加して個別的にスラリー
状として湿式粉砕し、その後、これら原料を混合し、こ
の混合材料を脱水してから、ペレットその他に製団する
。その後、この製団物はグレート式ロータリーキルン中
に装入する。そこで、乾燥、予熱、焼成されるが、製団
物中にはNiその他の金属分の還元及び燃料として必要
な量の炭材が全量内装されておらず、外部から炭材が装
入され、これら原料はグレート上で乾燥され、ロータリ
ーキルン中に入って、予熱、焼成されてから、Niなど
の金属分を還元すると共にルッペとして成長させ、この
ルッペとスラグとの結合したクリンカーどして排出し、
その後の処理によって、このクリンカーからフェロニッ
ケルなどの合金鉄を得ている。 しかしながら、この方法であると、主原IIならびに副
原料には多聞の水分を添加17てスラリー状として湿式
粉砕するため、原料混合後にフィルタ等で水分が除去さ
れるが、ドラムフィルタ等の設備では脱水が十分でなく
、更に、混合は各原料をスラリー状態で行なうため、均
一に原料を混合することがむづがしく、とくに、比重差
の大きい炭材を大量かつ均一に分散混合することはきわ
めてむづかしい。 すなわち、日本鉱業会誌/971122(’ 84−8
)792〜794頁に記載される如く、従来例に係る酸
化Ni鉱石の製錬方法の70−シートは、第3図に示す
通りであって、主原料のNi鉱6や副原料の炭材、石灰
石にそれぞれ多聞の水分が添加されてチューブミルで個
別的に湿式粉砕され、約50%程度の水分を含んだスラ
リーにされる。その後、各スラリー原料は貯蔵槽中に集
められて、ぞこで、混合されCがら、所望の高分子凝集
剤が添加されてドラムフィルタに送られ、脱水されてケ
ーク状にされ、その後、製団機でブリケットに製団され
、グレート式ロータリーキルン中で乾燥、予熱、焼成さ
れる。しかしながら、鉱石によってはきわめて脱水性の
悪いものもあるが、脱水性がある程度良いものであって
も、ドラムフィルタ等では最大限に脱水しても、せいぜ
い水分30%程度止まりであって、多量の水分が残存し
、かつ水分変動も大きく、高水分原料用低圧成型機では
製団時の成型性が劣化すると共に、乾燥、予熱時に多量
の熱エネルギーが必要である。また、主原料と副原料の
混合は、貯蔵槽でスラリー状態で行なわれている。しか
し、スラリー状態であると、これら原料間で比重及び粘
度差が大きいことがら、どうしても、炭材等は偏析し、
均一に混合することがもずがしく、この不均一性が還元
焼成時に障害になる。更に、このように均一に混合する
ことがむづがしいことがら、ブリケット等の製団物中に
はあまり多〈の炭材が内装できず、従って、炭材含有量
に変動が生じ、かつ脆弱な製団物は崩壊し易く、この事
がロータリーキルンの操炉面でも所謂リングの発生等が
起って、円滑性IP失なわれるほか、生産性を向」ニさ
せることもきわめてむずかしい。 発明が解決しようとする問題点 本発明は上記欠点の解決を目的とし、具体的には、酸化
N1鉱石などの主原料、石灰石ならびに炭材などの副原
料を粉砕後、これら主@斜、副原料を配合混練する際に
、少なくとも、主原料中のニッケルその他の金属分の)
!元に必要な量販」この炭材及び溶剤を内装材として均
一に配合できるとともに、この内装炭材を均一に分散さ
せて混練でき、その後、この多聞の炭材及び溶剤が内装
された製団物をグレー1・式ロータリーキルン中で、乾
燥、予熱41 N iなどの金属分の還元や、ルッペと
して成長を促進し、操業効率ならびに生産性を向上させ
るほか、高圧製団機の採用により製団物中の水分量を低
くおさえて強固に製団し、乾燥、予熱に供せられる熱エ
ネルギーを削減し、その分増産が図れるような酸化ニッ
ケル鉱石などの製錬方法を提供する。 〈発明の構成〉 問題点を解決するための 手段ならびにその作用 すなわち、本発明方法は、酸化ニッケル鉱石などの主原
料、石灰石ならびに炭材などの副原料を粉砕する粉砕工
程と、これら粉砕材料を所定量づつ配合して混練する混
合混練T稈と、これの混練物を所定形状のブリケット等
の製団物に成型する製団工程と、この製団物をグレート
などて乾燥する乾燥工程と、この乾燥後の製団物をロー
タリーキルンに装入しこのロータリーキルン中を移動さ
せる間に予熱、焼成して前記主原料中のニッケルなどの
金属分を還元しかつルッペとして成長させる焼成工程と
から成る酸化ニッケル鉱石などの製錬方法において、前
記粉砕工程では、前記主原料を少なくとも2つ以」−に
分けて、その一方を湿式粉砕するー方、他方を乾燥粉砕
すること、 前記混合7nN工程では、前記主原料に対して、ニッケ
ルその他の金属分の還元に必要な崩以上の炭材及び溶剤
を混合して均一に混練すること、前記製団工程では、副
原料内装原料を製団すること、 前記焼成工程では、前記製団物を、ロータリーキルン内
で予熱後前記製団物中に内装された炭材で主原料中のニ
ッケルなどの金属分が還元されるよう、焼成すること、
を特徴とする。 また、本発明方法は、上記の如く粉砕工程で酸化ニッケ
ル鉱石などの主原料及び石灰石や炭材などの副原料を乾
燥粉砕し、その後、これら粉砕材料に適正量の水分を添
加して混練することもできる。 そ口で、この手段たる構成ならびにその作用について図
面によって更に詳しく説明すると、次の通りである。 なお、第1図は本発明方法の一つの実施例に係るフロー
シートであり、第2図は本発明方法を実施する装置の一
例の配置図である。 まず、第1図ならびに第2図に示す如く、主原料の酸化
N1鉱石を少なくとも2つ以上に分ける。 この場合、通常は、脱水性の良否によって2つに分け、
この鉱石の一方、つまり、脱水性が悪い鉱石は乾燥粉砕
工程へを経て粉砕する。また、鉱石の他方、つまり、脱
水性が良好な鉱石は湿式粉砕工程0を経て粉砕する。 すなわち、乾燥粉砕工程Aは、鉱石を乾燥状態で粉砕す
る工程で、鉱石は通常径2mm内外程度に粉砕できれば
何れにも構成できるが、通常は、第2図に示す如く、自
生粉砕ミル等の摩砕機1、サイクロン2ならびにバッグ
フィルタ3を連結して構成し、なかでも、摩砕ll11
には熱風炉4がら乾燥空気が送られている。従って、鉱
石の一部は通常20〜40%程度の水を含みがつ径−3
00mm程度であるが、ボールミル等の摩砕R1内で乾
燥状態で粉砕され、粒度−2mm程度に調整させると共
に水分10%以下程度に乾燥される。 更に詳しく説明すると、この摩砕機1はその粉枠部に熱
風炉4から熱風が送られて粉砕原料が熱風とともに排出
されるもので、この熱風気流下の粉砕のために、粒度が
均質化しかつ熱風量によって粒度が調整でき、水分も十
分に除去でき、良好に乾燥できる。 なお、その後は、この乾燥粉砕鉱石はサイクロン2及び
バッグフィルタ3で回収され、貯蔵槽3′に一時的に貯
蔵される。 また、湿式粉砕工程Gは脱水性の良い鉱石をスラリー状
として粉砕する工程であって、この工程が実現できれば
何れにも構成できる。通常は第2図に示す如く、湿式デ
ユープミル5、複数個のスラリータンク6がら構成し、
これにドラムフィルタ7を連結する。つまり、脱水性の
悪い鉱石(これにも通常25・〜40%の水分を含み、
粒径も〜300mm程度である)には水分を添加して湿
式チューブミル5で粉砕し、水分50%程度を含むスラ
リーとし、このスラリーは一時的にスラリータンク6に
ス]ヘツクされ、その後、順次にドラムフィルタIで水
分28〜35%程度まで脱水し、ケーク状にする。 なお、炭材や石灰石等の副原料は通常乾式粉砕工程Bを
経て粉砕されるが、これらの粉砕性は鉱石とは異なり、
その水分量も鉱石に較べると少ない。従って、乾式粉砕
工程Bは乾燥粉砕工程Aと巽なって篩分を必要としない
チューブミル8に貯蔵槽9を連結し、チューブミル8で
一100mm程度の副原料を乾式粉砕、つまり、そのま
まの状態で粉砕して、粒度−2mm程度とし、これを一
時的に貯蔵槽9で貯蔵する。 また、戻りダストなどを再使用する場合は、次の混合混
練工程で添加することもできるが、湿式粉砕工程Cのス
ラリータンク6でスラリー状とし、これを湿式粉砕後の
鉱石のスラリーに添加してドラムフィルタ7で脱水した
ケーク状にすることもできる。 更に、上記の如き各粉砕原料の粒度はブリケット等の圧
潰強度を高める上からはなるべく小さいのが好ましい。 この点から、本発明法では一3M程度に粉砕する。径3
mm以上であると、後の混合混練工程での粉砕を考慮し
ても、所定強度のブリケットが歩留り(90%以上)よ
く得られない。 次(=9上記の通り、 −3mm程度の粒度に調整され
た各原料は、混合混練工程0において適当量ずつ混合し
混練する。この際の各原料の配合量は、水分はブリケッ
ト等の製団物の成型性や、後の乾燥、予熱の熱エネルギ
ーの節減等から10〜20%、好ましくは15〜20%
とする。また、副原料中の炭lは少なくとも全鉱石中の
N:等の金属分の還元に必要な量以上、とくに、この必
要量に加えて燃焼に消費される量を含めて多聞に添加す
る。 すなわち、後の製団工程[において、ブリケット等の製
団物に所定成型性や強度を得るには、ある程度の水分が
必要であるが、あまり多いと、強度を弱め好ましくない
。 しかしながら、水分量があまり多いと、製団性が損なわ
れるほか、予熱乾燥時に多量の熱エネルギーが必要で、
還元焼成時の排ガスによつて−1分に乾燥できないこと
もあり、この点から−1−限
<Purpose of the invention> Industrial field of application The present invention relates to a method for smelting nickel oxide ore, etc. Specifically, after pulverizing ore such as nickel oxide ore, it is made into briquettes, etc., and then grated, Rotary 4 equipped with a drying/preheating device such as a 17-ft oven: Drying with a run,
The nickel (hereinafter referred to as N) contained in the ore is preheated and fired.
Say 1. ) and other metals are reduced and grown as Luppe (grained iron) and smelted.
In advance, a large amount of RA material and slag-forming agents such as limestone are uniformly added to the dough, and the moisture content is optimized for the dough. The kiln can be fired to promote the formation of 19 yuan and slag of metal materials such as N1, greatly increasing the operational efficiency, greatly saving thermal energy for drying and preheating, and reducing the amount of dust scattered. The present invention relates to a method for smelting Ni oxide ore, which improves productivity. Conventional technology In general, metals such as Ni are essential components for A-suanite stainless steel, and the raw material Ni ore for N1 is usually silicate N1 ore such as garnilite imported into Japan. Ni is smelted from this oxide layer ore. Further, this Ni oxide ore is usually a fine ore containing a large amount of water, and these ores are smelted, for example, as follows. Normally, first, a large amount of water is added to each of the main raw materials and auxiliary raw materials such as ore, carbonaceous material, and limestone, and the slurry is individually wet-pulverized.Then, these raw materials are mixed, and this mixed material is dehydrated. From there, it is made into pellets and other pellets. This mass is then charged into a grate rotary kiln. Therefore, it is dried, preheated, and fired, but the amount of carbonaceous material necessary for reducing Ni and other metals and as a fuel is not included in the aggregate, so carbonaceous material is charged from the outside. These raw materials are dried on a grate, put into a rotary kiln, preheated and fired, and then metals such as Ni are reduced and grown as luppe, which is then discharged as clinker, which is a combination of luppe and slag. ,
Through subsequent processing, ferroalloys such as ferronickel are obtained from this clinker. However, in this method, a large amount of water is added to the main raw material II and auxiliary raw materials17 and wet-pulverized to form a slurry, so the water is removed with a filter etc. after mixing the raw materials, but equipment such as a drum filter is not used. Dehydration is not sufficient, and since each raw material is mixed in a slurry state, it is difficult to mix the raw materials uniformly. In particular, it is difficult to uniformly disperse and mix large amounts of carbon materials with large differences in specific gravity. It's extremely difficult. In other words, Japan Mining Association Journal/971122 ('84-8
) As described on pages 792 to 794, the sheet 70 of the conventional method for smelting Ni oxide ore is as shown in FIG. A large amount of water is added to each of the limestones, which are wet-milled individually in a tube mill to form a slurry containing about 50% water. After that, each slurry raw material is collected in a storage tank, mixed therein, a desired polymer flocculant is added thereto, sent to a drum filter, dehydrated and made into a cake, and then manufactured. It is made into briquettes using a briquetting machine, then dried, preheated, and fired in a grate rotary kiln. However, some ores have extremely poor dehydration properties, but even if the dehydration properties are good to some extent, even if the maximum dehydration is achieved using a drum filter, etc., the water content remains at most around 30%, and a large amount of water remains. Moisture remains and moisture fluctuations are large, and low-pressure molding machines for high-moisture raw materials deteriorate moldability during dough making and require a large amount of thermal energy during drying and preheating. Further, the main raw material and the auxiliary raw material are mixed in a slurry state in a storage tank. However, in a slurry state, there is a large difference in specific gravity and viscosity between these raw materials, so carbonaceous materials inevitably segregate.
It is difficult to mix uniformly, and this non-uniformity becomes an obstacle during reduction firing. Furthermore, since it is difficult to mix uniformly in this way, it is not possible to incorporate too much carbonaceous material into the aggregates such as briquettes, resulting in fluctuations in the carbonaceous content and A fragile compound is easily disintegrated, and this causes so-called rings to occur on the operating surface of a rotary kiln, resulting in a loss of IP smoothness and making it extremely difficult to improve productivity. Problems to be Solved by the Invention The present invention aims to solve the above-mentioned drawbacks. Specifically, after pulverizing main raw materials such as N1 oxide ore and auxiliary raw materials such as limestone and carbonaceous materials, When mixing and kneading raw materials, at least the amount of nickel and other metals in the main raw materials must be
! This carbon material and solvent can be uniformly blended as an interior material, and this interior carbon material can be uniformly dispersed and kneaded, and then a composite material containing this large amount of carbon material and solvent can be made. In addition to drying and preheating in a Gray 1 type rotary kiln, reducing metals such as 41Ni and promoting growth as a luppe, improving operational efficiency and productivity, and using a high-pressure dough making machine. To provide a method for smelting nickel oxide ore, etc., which suppresses the moisture content in the ore and makes it strong, reduces the thermal energy used for drying and preheating, and increases production accordingly. <Structure of the Invention> Means for solving the problem and its operation, that is, the method of the present invention includes a pulverizing process of pulverizing main raw materials such as nickel oxide ore, auxiliary raw materials such as limestone and carbonaceous materials, and a process of pulverizing these pulverized materials. A mixing and kneading T culm that is mixed and kneaded in a predetermined amount, a briquetting process that molds the kneaded product into a mass such as a predetermined shape of briquettes, and a drying process that dries this mass using a grate, etc. This oxidation process consists of a firing step in which the dried pellet is charged into a rotary kiln, and while being moved through the rotary kiln, it is preheated and fired to reduce metals such as nickel in the main raw material and grow it as a luppe. In the method for smelting nickel ore, etc., in the pulverization step, the main raw material is divided into at least two parts, one of which is wet-pulverized and the other is dry-pulverized; in the mixing 7nN step, Mixing and homogeneously kneading the main raw material with carbonaceous material and a solvent of at least 100% of the amount necessary for reducing nickel and other metals; In the firing step, the aggregate is preheated in a rotary kiln and then fired so that the metal content such as nickel in the main raw material is reduced by the carbonaceous material contained in the aggregate;
It is characterized by Furthermore, the method of the present invention includes drying and pulverizing main raw materials such as nickel oxide ore and auxiliary raw materials such as limestone and carbonaceous materials in the pulverizing step as described above, and then adding an appropriate amount of moisture to these pulverized materials and kneading them. You can also do that. Now, the structure of this means and its operation will be explained in more detail with reference to the drawings as follows. Note that FIG. 1 is a flow sheet relating to one embodiment of the method of the present invention, and FIG. 2 is a layout diagram of an example of an apparatus for carrying out the method of the present invention. First, as shown in FIGS. 1 and 2, the main raw material, N1 oxide ore, is divided into at least two parts. In this case, it is usually divided into two depending on the quality of dehydration.
One of these ores, that is, the ore with poor dehydration properties, is subjected to a drying and pulverizing process and then pulverized. Further, the other type of ore, that is, the ore with good dehydration properties is crushed through wet crushing step 0. That is, the dry crushing process A is a process of crushing the ore in a dry state, and it can be configured in any way as long as the ore can be crushed to a diameter of about 2 mm or less, but usually, as shown in FIG. It is constructed by connecting a grinder 1, a cyclone 2, and a bag filter 3, and among them, a grinder 11
Dry air is sent from a hot air stove 4 to the hot air stove 4. Therefore, some of the ore usually contains about 20 to 40% water.
The grain size is approximately 0.00 mm, but it is ground in a dry state in a grinder R1 such as a ball mill, adjusted to a particle size of approximately -2 mm, and dried to a moisture content of approximately 10% or less. To explain in more detail, this mill 1 has a powder frame in which hot air is sent from a hot air furnace 4 and the pulverized raw material is discharged together with the hot air.Due to the pulverization under this hot air flow, the particle size becomes homogeneous and Particle size can be adjusted by adjusting the amount of hot air, moisture can be removed sufficiently, and drying can be performed well. Note that after that, this dry crushed ore is recovered by the cyclone 2 and the bag filter 3, and temporarily stored in the storage tank 3'. Further, the wet grinding process G is a process of grinding ore with good dehydration properties into a slurry form, and any structure can be used as long as this process can be realized. Usually, as shown in FIG. 2, it consists of a wet duplex mill 5, a plurality of slurry tanks 6,
A drum filter 7 is connected to this. In other words, ores with poor dehydration properties (which also usually contain 25-40% water,
The particles (with a particle size of about 300 mm) are added with water and pulverized in a wet tube mill 5 to form a slurry containing about 50% water. This slurry is temporarily stored in a slurry tank 6, and then The mixture is sequentially dehydrated using a drum filter I to a moisture content of about 28 to 35% and made into a cake. Incidentally, auxiliary raw materials such as carbonaceous materials and limestone are usually crushed through dry crushing process B, but their crushability is different from that of ores.
Its water content is also lower than that of ore. Therefore, the dry crushing process B is similar to the dry crushing process A, in which a storage tank 9 is connected to a tube mill 8 that does not require sieving, and the tube mill 8 dry-pulverizes the auxiliary material of about 1100 mm, that is, leaves it as it is. The powder is crushed to a particle size of approximately -2 mm, and this is temporarily stored in a storage tank 9. In addition, if the returned dust is to be reused, it can be added in the next mixing and kneading process, but it is better to make it into a slurry in the slurry tank 6 of wet crushing process C and add it to the ore slurry after wet crushing. It can also be made into a cake by dehydrating it with a drum filter 7. Further, the particle size of each pulverized raw material as described above is preferably as small as possible in order to increase the crushing strength of briquettes and the like. From this point of view, in the method of the present invention, the powder is pulverized to about 1-3M. Diameter 3
If it is more than mm, even if pulverization in the subsequent mixing and kneading step is taken into account, briquettes with a predetermined strength cannot be obtained with a good yield (90% or more). Next (=9 As mentioned above, each raw material adjusted to a particle size of about -3 mm is mixed and kneaded in appropriate amounts in mixing and kneading step 0. At this time, the amount of each raw material is 10 to 20%, preferably 15 to 20%, from the viewpoint of moldability of the mass, saving of heat energy for subsequent drying and preheating, etc.
shall be. Further, the amount of charcoal in the auxiliary raw material is at least greater than the amount necessary to reduce the metal content such as N in the total ore, and in particular, the amount consumed in combustion is added in addition to this required amount. That is, a certain amount of moisture is required in order to obtain a predetermined moldability and strength in a dough such as briquettes in the subsequent dough-making process, but too much water is not preferable because it weakens the strength. However, if the moisture content is too high, not only will the dough be difficult to form, but a large amount of thermal energy will be required during preheating and drying.
Due to exhaust gas during reduction firing, drying may not be possible within -1 minute, and from this point of view,

【J20%程度にとどめる
のが好ましい。また、副原料中では、炭材を多聞に添加
J−ることが重要で、この炭材は少なくとも鉱石中のN
1などの金属分の還元に必要な出以上含ませる。つまり
、本発明法は従来例とは相違して金属分の還元に必要な
量以上の炭材及び溶剤を内装した強固なブリケット等を
製団するのであって、この点が一つの特徴になっている
。 要するに、Niなどの金属分の還元の必要量に対応する
分1ピtirAoを内装させるのみにとどまると、どう
しても、内装品の5割〜8割程度の炭材が燃焼に消費さ
れ、金属分の還元に必要な炭材が不足ゴる。このため、
炭材量は、還元Niなどの金属分に供せられるのに必要
な量以上にする必要があり、操炉条件にもよるが、実際
には、その出の2倍〜5倍が必要である。 また、混合混練工程0では、このように多聞の炭材を配
合し、しかも、水分は上記の如く調整するが、その1−
で、この多量の炭材は均一に分散させる必要がある。す
なわち、原料の混練後、例えば後記の如く径20〜30
IIIIIl稈度のビロー型又はアーモンド型ブリケッ
トに製団するが、このとき水分及び内装原料が不均一に
存在すると、ブリケット強度の低下を招来する。このた
め、混練は従来例に較べてざらに混練する必要がある。 この点から、本発明法では、第2図に示1如く、バッグ
ミル等の混合IM110とロッドミル等の混練機11と
を直列に結合し、特に、ロッドミル等の混練機11は一
基よりも複数基設ける。 このように予めバッグミル等の混合機10で混合してか
ら、ロッドミル等の混練機11で僅かに粗砕すると同時
に混練すると、すでに破砕された各原料中の粒子はロッ
ドミル等の粗砕によって更に銅粒されると共に、均一に
攪拌混練され、水分及び炭材は均一に分散し、製団性が
高められる。 なお、このように、ロッドミルを単に粉砕のみでなく混
練にも用いることが特公昭43〜6256号明細書に記
載されている。しかし、この技術は粉鉄鉱石がらペレッ
トを製造するどきに、ボールミルとロッドミルとを直結
し、これら摩砕機を単に摩砕のみでなく混練的機能を持
たしたもので、本発明法の如く、原料中への多量の炭材
の分散の上から、混練機と粉砕機とを用いた技術とは異
なる。すなわち、上記明細書に示す技術は粉鉄鉱石を粉
砕し、その後、混練、水分添加、造粒等の過程を経てペ
レットが製造されていることを前提とし、この改善のた
めに、はじめの粉砕工程を省略し、ボールミルならびに
ロッドミルによっである程度の摩砕と混練とを同時に行
なうものである。換言すると、通常のペレット製造工程
が粉砕工程と混練工程とを経ているのに対し、上記技術
では、粉鉄鉱石を予め粉砕することなく、ボールミルと
ロッドミルとによって粉砕と混練を行なうのであって、
これを湿潤状態で行なうところに特徴があり、バッグミ
ル等の混練機を用いないものである。 これに対し、本発明方法は、混練される前に原料はあら
かじめ乾燥粉砕、湿式粉砕等が行なわれており、しかも
、多聞の副原料が均一に配合され、その上に、このよう
な材料の混練設備としては、バッグミルなどの混合機を
用い、そのあとにロッドミルなどの混練機を結合する。 更に詳しく説明すると、はじめに、第2図で示す如く、
混合機10である程度混練する。従って、この混合によ
って副原料は均一に分散し、かなり混合される。次に、
この混合状態のものを、むしろ粗砕機能を持つロッドミ
ルで更に混練する。この混練であると、かえってロッド
の落下が混練を一層促進する。 なお、均一に混練された混練材料は一時的に原料ヤード
12にストックされ、所要に応じて次の製団工程Eに送
られる。 また、上記のところでは、湿式粉砕原料と乾燥粉砕原料
とを上記の通りの条件で配合したが、必ずしも、このよ
うに粉砕を湿式と乾燥とに分(づなくとも、全ての原料
を乾燥粉砕し、これら各原料を上記の通りに配合すると
ともに、10〜20%程度の水分を添加して、これを混
練することもできる。 次に、製団T稈[においては、製団機13でブリケット
などの製団物に成型される。この製団物の形状としては
、例えば、ペレット状としてもよいが、通常は、径20
〜6omm程麿のビ[]−又はアーモンド型のブリケッ
トに成型する。このようにビロー又はアーモンド型のブ
リケットであると、次のグレートにおける乾燥がぎわめ
て良好で、この際にほとんど粉化することもなく、乾燥
に要する熱エネルギーも大幅に減少できる。 次に、乾燥工程[を経て焼成工程Gに移行する。 この乾燥工程Fは第2図に示す如くグレー4へ式ロータ
リーキルンのグレート13で行なわれ、焼成工程Gμロ
ータリーキルン15で行なわれる。第2図に示すグレー
ト式ロータリーキルンにおいて、はじめのグレート13
に装入され、そこに、ロータリーキルン15がらの排カ
スをグレート13の上から導入し、製団物を乾燥する。 この際、ブリケラ]・等の製団物はビロー又はアーモン
ド型であるため、乾燥はきわめて良好に行なわれ、更に
、水分量も適正であり、製団物は乾燥ににって更に強度
が高められ、粉化することがない。 更に詳しく説明すると、ブリケラ]・等の製団物は]−
記の如く多聞の炭材を含んで、水分量も10〜20%で
あって、比較的少ない。このため、グレー1へ13上で
の乾燥にj:ってブリケラ[・温度は常温から略々直線
的に上4し、400℃程度まで加熱昇温できる。これに
対し、第3図に示1−如く、従来例により成型されたブ
リケラ;・であると、水分が多いことと成型性の悪いこ
ともあって上記の如くグレートにで乾燥しても、せいぜ
い200℃程度までにしかbn熱昇湛できず、ロータリ
ーキルン中での予熱に長い時間が必要になる。 また、乾燥後は、製団物を排鉱シコート14を経てロー
タリーキルン15の装入端から投入し、ロータリーキル
ン15中で予熱を釘で、焼成時には製団物中のNiなど
の金属分は多聞の炭材に包囲された状態で還元され、こ
の金属分はロータリーキルン15の排出端に接近すると
、ルッペ(つまり、金属粒)として成長し、このルツペ
はスラグに包含されI:クリンカーとして排111され
る。 なお、クリンカーは排出後冷却されてから通常磁選その
他で分離され、フェロニッケルなどの合金鉄として回収
される。 また、グレートでの乾燥時に発生するダストやロータリ
ーキルンでの焼成時に発生ずるダスト等は後記の如く減
少するが、これらダス[・は上記の如く湿式粉砕工程C
にリターンされて再使用される。 また、ロータリーキルンは従来例と同構造に構成され、
排出端には通常の通すバーナ16が設置され、このバー
ナ16で微粉炭、重油またはガスなどの燃料が燃焼され
、この熱エネルギーによってロータリーキルン内で製団
物等の原料が加熱臂渇される。 また、このロータリーキルン15内では、製団物が装入
端から排出端に進む間に順次に加熱昇温されるが、グレ
ート13上で400℃程度まで加熱され、付着水分がほ
とんどなくなっている。 このため、材料温度が直線的に上昇し、僅か(例えば、
装入端から35mのところ)進んだところで、多聞の炭
材が内装されていることもあって、還元がきわめて良好
に進行する。この状態で還元が進行すると、原料層中の
酸素分圧が低下し、FeOなどが増加する。このI”e
Oは例えば5in2などと結合すると、例えば、ファイ
ヤライトの如き低融点化合物を生成し、リングとしてロ
ータリーキルン内炉壁に付着成長する危険性がある。こ
うした現象は特に粉末原料があると生じ易く、これが従
来例のロータリーキルン操業で大きな障害になっている
。しかしながら、本発明法では、ブリケット強度が強い
ことにより粉末原料の発生は低く抑えられ、従って、リ
ングは生成しずらく、きわめて円滑に操炉できる。 一般に、鉄源としてのペレットでは、従来からなるべく
多く炭材を内装させて、石油系エネルギーに代って微粉
炭を利用することが行なわれている。ちなみに、鉄と銅
箱68年(19821第15号2231〜223I頁な
らびに2238〜2245頁には、先のオイルショック
から、石油系エネ九主−から石炭系エネルギーへの転換
手段の一つとして、微粉炭を最高で1%程度内菰させた
ペレットが開示されている。このペレットは内装炭によ
って直接に[eなどの金属分を還元するのでなく、この
内装炭はあくまで燃料である。また、このペレットは高
炉で鉱石として製銑されるもので、炭材の内装量は、高
炉内で粉化しないこと、つまり、−室以上の圧’t’l
J?A度や落下強度が損なわれない範囲内で定められ、
せいぜい1%以内にとどまっている。これに対して、本
発明方法は、高炉に対応する反応炉としてロータリーギ
ルンを使用し、旧などの金属分の還元を促進する。 換言すると、炭材の内装量をなるべく多くし、金属分や
鉱石粒子が炭材に包囲されている状態を形成し、ガス還
元によって迅速かつ円滑に還元さゼる。 実  施  例 次に、実施例について説明】る。 実施例1゜ まず、第1表に示す組成の酸化N1鉱石A、 B、 C
。 Dを2つに分けて、第1グループは乾量で鉱石(A)3
80kl;l、鉱石(B)50klJ、鉱石(D)12
0kqとして配合し、平均粒度300mm以下(最大4
00mm1で、第1図ならびに第2図に示す乾燥粉砕工
程へで乾燥粉砕した。第2グループは鉱石(B)250
kq、鉱石(0)200kQとして配合し、第1グルー
プと同等の粒度で湿式粉砕工程Cで湿式粉砕した。この
際、第1グループでは、ボールミルにおいて熱風炉から
送られる熱風によって鉱石は乾燥すると同時に粉砕し、
このときに、熱風の風聞によって粉砕後の粒度は調整し
て一2mm程度に粉砕すると共に、水分5%程度に乾燥
し、この粉砕鉱石を貯蔵槽にストックし1:。また、第
2グループでは、全水分量が50%程度になるまで水を
添加してスラリー状として湿式チューブミルで一2mm
1Ij!度に粉砕してから、スラリータンクに貯蔵し、
これに戻すダスl−(第4表に示す組成) 751<q
を添加してから、ドラムフィルタによって脱水し、水分
30%とした。 なお、副原料は炭材と石灰石とを乾式粉砕工程すで粉砕
し、このときに炭材(A)(第2表に示す組成で、水分
10%j1301alならびに石灰石(水分3%)70
kgをデユープミルで連続的に粉砕し、粒度−2mm、
水分6.1%とした。 ただし、炭材(81は」−クスブリーズである。 第 3 表 石灰石の組成(wt%) 次に、これら各粉砕原料を混合し、この際に、各粉砕原
料は水分17〜19%ならびに炭材130kg、石灰石
70kQになるよう、各配合量を定めて混合混練工程り
で混練した。この工程りでは、バッグミルと2基のロッ
ドミルとを連結し、水分ならびに多量の炭材を均一に混
練した。 その後、混練原料は製団工程[において、製団機で径4
0s程度のビロー型ブリケッ1〜に成型した。このブリ
ケットを、高さ2mのところから5回くり返して落下さ
せて落下試験を行なったところ、95%以上が破壊せず
に残った。 次に、ブリケラ]・を乾燥工程Eに移行し、グレート(
長さ11m)で乾燥し、この乾燥はロータリーキルン中
からの排ガス(550°C)を導入し、対向流として行
なった。このときに、グレートの排出口ではブリケット
の温度は390℃になってきわめて乾燥が良好に行なわ
れ、はとんどバースティング等で粉化することがなく、
回収された戻すダス]〜量は42kgであった。 次に、乾燥後、装入端からロータリーキルン(長さ70
m)に投入し、予熱、焼成した。 このときに、ロータリーキルン中の進行にしたがってブ
リケットの温度は直線的に譬温し、装入端から2011
1(排出端から50m1のところでは700℃に達して
結晶水が分解を始める。その後、還元が進行し、排出端
から10mのところで1320℃であり、更に、この排
出端から10mのところまでの間のルッペ生成ゾーンで
も、同温度が維持され、十分なルッペの成長がみられ、
Niの還元率は96.5%であった。 また、比較のために、上記の第2グループで湿式粉砕し
た水分50%のスラリー状の鉱石に対して、スラリータ
ンクで上記副原料を加えてその中の炭材が80klJに
なるよう混合した。しかし、スラリータンク中では、偏
析が多く、均一に混合することは困難であった。そこで
、このスラリーを上記のドラムフィルタで水分30%稈
度に脱水してケーク状とし、このケークを径12mn+
の団鉱とした。この製団時には、水分が多いことから、
製団機をスヂーム加熱し、団鉱は次に上記のグレート上
で乾燥l、たところ、団鉱の成形性も悪(水分は15%
まであって、これを上記のロータリーキルン中に入れて
、に記のところと同様に予熱、焼成した。この際、炭材
の内装量が少ないことから、外装材として80kgを装
入しロータリーキルン中で予熱、焼成した。このときの
状態を比較して示すと第5表の通りであり、更に、上記
結果にもとずいて、本発明法と比較例とによって実際に
酸化N1鉱石を処理してその操業結果を比較したところ
、乾鉱トン当り第6表に示す通りであった。 第6表 実施例2゜ 実施例1と相違して、第2グループの鉱石も第1グルー
プと同様に乾燥粉砕し、この乾燥粉砕された鉱石に実施
例1と同様に副原料を配合し、この配合後の混練のとぎ
に水分を添加して実施例1の如き混練原料を得た。その
後は、実施例1と同様に、製団、乾燥、予熱、焼成した
ところ、第5表に示すところと同様の結果が得られた。 実施例3゜ 実施例1で1qられた3種の粉砕原料を水分量18.5
%、炭材量130klJになるよう配合してから混練す
る際に、混練設備として、 (イ)ロッドミルのみ、 (ロ)バッグミルのみ、 (ハ)3つのバングミルを用いるとき、(ニ)バッグミ
ルとロッドミルとを結合したとき、 を用いて水分及び炭材の分散性と製団時の成型性とを求
めた。 この結果、(イ)の如くロッドミルのみであっても、水
分が18.5%程麿であるから水分及び炭材は均一に分
散させて混練はできるが、ブリケットの成型歩留りは充
分でなかった。 また、(ロ)の如くバッグミルのみのときは、混練物中
にケーク状の粒が残留し、混練不足が起った。そこで、
(ハ)の如く3つのバッグミルを用いたところ、バッグ
ミルのみであると、どうしても同様な理由によって混練
不足のため、成型歩留りは全く悪かった。 更に、(ニ)の如くバッグミルとロッドミルとを結合し
たところ、予め、バッグミルで混合されてからロッドミ
ルで混練するため、水分及び炭材の分散性が良(、混練
はきわめて良好であった。 次に、(イ)、(ハ)、(ニ)の如く、混練した原料(
全て水分4118.5%)で40mm径のブリケットを
製団し、落下試験を行なったところ、第4図に示す通り
の結果が得られた。この試験は2mの高さからコンクリ
ート床に5回くり返して落下し、この際の5mm以下の
発生率を斜線交差部分、割れの発生率を斜線部分として
示した。 この結果から、(ニ)の場合が96%の歩留りで最も有
効であることがわかった。 〈発明の効果〉 以上詳しく説明した通り、本発明は、酸化ニッケル鉱石
などの主原料を、層材ならびに炭材などの副原料などと
共に粉砕する際に、主原料のうち一部の主原料を湿式粉
砕し、他部の主原料を乾燥粉砕する一方、副原料を乾式
粉砕し、その後、これら粉砕材料を混合混練し、しがも
、この混合混練時に、水分を適正範囲としかつ主原料中
のニッケルその他の金属分の還元に必要な邑以上の炭材
及び石灰石を混合して均一に混練する。 従って、この混練物による成型されたブリケット等の製
団物は、ロータリーキルン中で内装炭材により包装され
てニッケルなどの金属分が還元し、更に、この内装炭材
がルッペ生成ゾーンで十分な熱エネルギーを与える1:
め、金属分はルッペとして良好に成長する。更に、操業
中にはリング等の発生もなく、操業が安定化し、水分量
の減少により熱エネルギーが減少する分処理鉱石量が増
加する。 また、粉砕時に、主原料を少なくとも2つに分けて、そ
の一方を湿式粉砕するとともに、他方を乾燥粉砕して、
これら両生原料を混合混練すると、混合混練時に、水分
を添加する必要がなく、とくに、脱水性のわるい主原料
のときでも、支障なく利用できる。 また、混練時に、バッグミルとロッドミルとを用いると
、水分及び多量の炭材でも均一に混合でき、所定の強度
のブリケットが歩留りよく成型できる。
[J is preferably kept at about 20%. In addition, it is important to add a large amount of carbonaceous material to the auxiliary raw materials.
Contain more than the amount necessary for reducing metal components such as 1. In other words, unlike the conventional method, the method of the present invention produces strong briquettes containing carbon and solvent in an amount greater than that required for reducing the metal content, and this point is one of its characteristics. ing. In short, if we only install one pitirAo internally to correspond to the required amount of reduction of metals such as Ni, about 50% to 80% of the carbonaceous material in the interior will inevitably be consumed for combustion, and the metals will be reduced. There is a shortage of carbon material necessary for reduction. For this reason,
The amount of carbonaceous material needs to be greater than the amount necessary to provide metals such as reduced Ni, and although it depends on the operating conditions, in reality, 2 to 5 times the amount is required. be. In addition, in the mixing and kneading step 0, a large number of carbon materials are blended in this way, and the moisture content is adjusted as described above.
This large amount of carbon material needs to be uniformly dispersed. That is, after kneading the raw materials, for example, as described below, the diameter is 20 to 30 mm.
The briquettes are made into billow-shaped or almond-shaped briquettes of III-1 consistency, but if moisture and interior materials are unevenly present at this time, the strength of the briquettes decreases. For this reason, it is necessary to knead more roughly than in the conventional example. From this point of view, in the method of the present invention, as shown in FIG. 2, a mixing IM 110 such as a bag mill and a kneading machine 11 such as a rod mill are connected in series. establish a base In this way, if the raw materials are mixed in advance in the mixer 10 such as a bag mill, and then slightly crushed and kneaded in the kneader 11 such as a rod mill, the particles in each raw material that have already been crushed will be further crushed by the rod mill or the like. As it is granulated, it is stirred and kneaded uniformly, water and carbonaceous materials are uniformly dispersed, and the property of making agglomerates is improved. Note that the specification of Japanese Patent Publication No. 43-6256 describes that the rod mill is used not only for grinding but also for kneading. However, when manufacturing powdered iron ore pellets, this technology directly connects a ball mill and a rod mill, and these mills have not only a grinding function but also a kneading function. This technology differs from the technology using a kneader and a crusher because of the dispersion of a large amount of carbonaceous material into the interior. In other words, the technology shown in the above specification is based on the premise that powdered iron ore is crushed and then pellets are manufactured through processes such as kneading, water addition, and granulation. This process is omitted and a certain degree of grinding and kneading are performed simultaneously using a ball mill and a rod mill. In other words, while a normal pellet manufacturing process involves a crushing process and a kneading process, the above technology uses a ball mill and a rod mill to crush and knead the powdered iron ore without crushing it in advance.
The feature is that this is done in a wet state, and a kneading machine such as a bag mill is not used. In contrast, in the method of the present invention, the raw materials are dry-pulverized, wet-pulverized, etc. before being kneaded, and a large number of auxiliary raw materials are uniformly blended. As the kneading equipment, a mixer such as a bag mill is used, followed by a kneader such as a rod mill. To explain in more detail, first, as shown in Figure 2,
The mixture is kneaded to some extent using the mixer 10. Therefore, by this mixing, the auxiliary materials are uniformly dispersed and mixed considerably. next,
This mixed state is further kneaded using a rod mill with a coarse crushing function. In this kneading, the falling of the rod actually promotes the kneading. The uniformly kneaded material is temporarily stocked in the raw material yard 12 and sent to the next step E as required. In addition, in the above, the wet pulverized raw materials and the dry pulverized raw materials were blended under the above conditions, but this does not necessarily mean that the pulverization is divided into wet and dry pulverization (or even if all the raw materials are dry pulverized). However, it is also possible to mix these raw materials as described above and add about 10 to 20% water and knead them.Next, in the mulch T culm, It is molded into a mass such as briquettes.The shape of this mass may be, for example, a pellet, but it is usually 20 mm in diameter.
Form into bi- or almond-shaped briquettes with a thickness of ~6 om. Such billow or almond-shaped briquettes dry extremely well in the next grate, with almost no pulverization at this time, and the heat energy required for drying can be significantly reduced. Next, the process moves to a baking process G through a drying process. The drying step F is carried out in the grate 13 of the gray 4 type rotary kiln as shown in FIG. 2, and the firing step is carried out in the Gμ rotary kiln 15. In the grate type rotary kiln shown in Figure 2, the first grate 13
The scraps from the rotary kiln 15 are introduced from above the grate 13, and the pellets are dried. At this time, since the aggregates such as Brichella have a billow or almond shape, they can be dried very well, and the moisture content is also appropriate, making the aggregates even stronger as they dry. and will not turn into powder. To explain in more detail, the aggregates such as Brichella]-
As mentioned above, it contains a large amount of carbonaceous material, and the water content is 10 to 20%, which is relatively small. For this reason, when drying on gray 1 to 13, the temperature increases almost linearly from room temperature to about 400°C. On the other hand, as shown in Fig. 3, Briquella molded according to the conventional example has a high moisture content and poor moldability, so even if it is dried on a grate as described above, BN heat can only be raised to about 200°C at most, and preheating in the rotary kiln requires a long time. After drying, the pellets are fed into the charging end of the rotary kiln 15 through the discharged ore cycoat 14, and preheated in the rotary kiln 15 with nails. It is reduced while being surrounded by carbonaceous materials, and when this metal component approaches the discharge end of the rotary kiln 15, it grows as luppes (that is, metal grains), and these luppes are included in the slag and are discharged as clinker. . Note that after clinker is discharged, it is cooled and separated, usually by magnetic separation or other means, and recovered as a ferroalloy such as ferronickel. In addition, the dust generated during drying in a grate and the dust generated during firing in a rotary kiln are reduced as described below, but these dust [・ are as described above in the wet pulverization process.
returned and reused. In addition, the rotary kiln has the same structure as the conventional example,
A conventional through burner 16 is installed at the discharge end, and fuel such as pulverized coal, heavy oil, or gas is burned in this burner 16, and raw materials such as pellets are heated and starved in the rotary kiln by this thermal energy. In addition, in this rotary kiln 15, the temperature of the dough is sequentially increased as it progresses from the charging end to the discharge end, and is heated to about 400° C. on the grate 13, so that almost no attached moisture is left. Therefore, the material temperature increases linearly and by a small amount (e.g.
At a point 35m from the charging end, reduction progresses extremely well, partly because there is a large amount of carbonaceous material inside. As the reduction progresses in this state, the oxygen partial pressure in the raw material layer decreases, and FeO and the like increase. This I”e
When O is combined with, for example, 5in2, there is a risk that a low melting point compound such as fayalite will be formed and grow as a ring on the inner wall of the rotary kiln. This phenomenon is particularly likely to occur when powdered raw materials are used, and this is a major obstacle in the operation of conventional rotary kilns. However, in the method of the present invention, the generation of powder raw materials is suppressed to a low level due to the strong briquette strength, so that rings are difficult to form and the furnace can be operated very smoothly. Generally, in pellets as an iron source, it has been conventional practice to incorporate as much carbon material as possible into the pellets and use pulverized coal instead of petroleum-based energy. By the way, in 19821 No. 15, pp. 2231-223I and 2238-2245, there is a report on iron and copper box 68 (No. 15, 19821, pp. 2231-223I and 2238-2245) that states that as one of the means of converting from petroleum-based energy to coal-based energy due to the oil crisis, Pellets containing up to 1% of pulverized coal are disclosed.These pellets do not directly reduce metal components such as e with the inner coal, and this inner coal is only used as a fuel.Also, These pellets are made into iron ore in a blast furnace, and the amount of carbonaceous material contained within the blast furnace must be such that it does not become powder in the blast furnace.
J? It is determined within a range that does not impair A degree or drop strength,
It remains within 1% at most. On the other hand, the method of the present invention uses a rotary gill as a reactor corresponding to a blast furnace, and promotes the reduction of metals such as old metals. In other words, the amount of carbonaceous material is increased as much as possible to form a state in which the metal components and ore particles are surrounded by the carbonaceous material, and are quickly and smoothly reduced by gas reduction. EXAMPLES Next, examples will be explained. Example 1 First, oxidized N1 ores A, B, and C having the composition shown in Table 1
. Divide D into two, the first group has 3 ores (A) in dry weight.
80kl;l, ore (B) 50klJ, ore (D) 12
Blended as 0kq, with an average particle size of 300mm or less (maximum 4
00 mm1, and was subjected to dry pulverization in the dry pulverization process shown in FIGS. 1 and 2. The second group is ore (B) 250
kq, ore (0) was blended as 200 kQ, and wet-pulverized in wet-pulverization step C to the same particle size as the first group. At this time, in the first group, the ore is dried and crushed at the same time by hot air sent from a hot air stove in a ball mill.
At this time, the particle size after pulverization is adjusted by listening to hot air and pulverized to about 12 mm, dried to a moisture content of about 5%, and the pulverized ore is stocked in a storage tank. In addition, in the second group, water was added until the total water content was about 50%, and the slurry was made into a slurry with a wet tube mill.
1Ij! After grinding, store it in a slurry tank.
Return to this Das l- (composition shown in Table 4) 751<q
was added, and then dehydrated using a drum filter to obtain a moisture content of 30%. The auxiliary raw materials are charcoal material and limestone that are pulverized in the dry pulverization process.
kg was continuously ground in a duplex mill to a particle size of -2mm,
The water content was 6.1%. However, the carbonaceous material (81 is "-xbreeze").Table 3 Composition of Limestone (wt%) Next, these respective crushed raw materials are mixed, and at this time, each crushed raw material has a moisture content of 17 to 19% and charcoal. The amounts were determined and kneaded in a mixing and kneading process to obtain 130 kg of limestone and 70 kQ of limestone.In this process, a bag mill and two rod mills were connected to uniformly knead water and a large amount of carbon material. After that, the kneaded raw materials are processed into a dough with a diameter of 4 in the dough making process.
It was molded into a billow-type briquette 1~ of about 0s. When this briquette was repeatedly dropped from a height of 2 m five times to perform a drop test, more than 95% of the briquettes remained unbroken. Next, the Brichera] is transferred to the drying process E, and the Grate (
This drying was carried out by introducing exhaust gas (550° C.) from a rotary kiln in a countercurrent flow. At this time, the temperature of the briquettes at the outlet of the grate reaches 390 degrees Celsius, and the briquettes are dried very well, without becoming powdered due to bursting, etc.
The amount of recycled waste recovered was 42 kg. Next, after drying, a rotary kiln (length 70 mm) is placed from the charging end.
m), preheated and fired. At this time, the temperature of the briquettes decreases linearly as it progresses through the rotary kiln, and from the charging end to 2011
1 (At 50 m1 from the discharge end, the temperature reaches 700 °C and the crystal water begins to decompose. After that, reduction progresses, and the temperature reaches 1320 °C at 10 m from the discharge end. The same temperature was maintained in the Ruppe production zone between the two, and sufficient Ruppe growth was observed.
The reduction rate of Ni was 96.5%. For comparison, the above-mentioned auxiliary raw materials were added in a slurry tank to the slurry-like ore wet-milled in the second group with a water content of 50%, and mixed so that the carbonaceous material contained therein was 80 klJ. However, in the slurry tank, there was a lot of segregation and it was difficult to mix uniformly. Therefore, this slurry was dehydrated using the drum filter mentioned above to a consistency of 30% moisture and culm, and this cake was shaped into a cake with a diameter of 12 mm +
It was made into a briquette. Because there is a lot of moisture during this dough making,
The briquette making machine was heated by steam, and the briquette was then dried on the above-mentioned grate.However, the formability of the briquette was also poor (moisture content was 15%).
This was placed in the rotary kiln mentioned above, and preheated and fired in the same manner as described above. At this time, since the amount of carbon material inside was small, 80 kg was charged as an exterior material, preheated and fired in a rotary kiln. A comparison of the conditions at this time is shown in Table 5.Furthermore, based on the above results, oxidized N1 ore was actually treated using the method of the present invention and the comparative example, and the operational results were compared. The results were as shown in Table 6 per ton of dry ore. Table 6 Example 2゜Different from Example 1, the ores of the second group were also dried and crushed in the same manner as the first group, and the auxiliary materials were added to the dry and crushed ores in the same manner as in Example 1, After this blending and kneading, water was added to obtain a kneaded raw material as in Example 1. After that, it was made, dried, preheated, and fired in the same manner as in Example 1, and the same results as shown in Table 5 were obtained. Example 3゜The three types of pulverized raw materials obtained in Example 1 were mixed with a moisture content of 18.5
%, and when kneading after blending so that the amount of carbon material is 130 klJ, the kneading equipment is (a) only a rod mill, (b) only a bag mill, (c) when three bang mills are used, (d) a bag mill and a rod mill. When these were combined, the dispersibility of water and carbonaceous material and the moldability during making were determined using the following formula. As a result, even if only a rod mill was used as in (a), the water content was around 18.5%, so the water and carbonaceous material could be uniformly dispersed and kneaded, but the yield of briquettes was not sufficient. . In addition, when only a bag mill was used as in (b), cake-like particles remained in the kneaded material, resulting in insufficient kneading. Therefore,
When three bag mills were used as in (c), the molding yield was quite poor due to insufficient kneading for the same reason if only the bag mill was used. Furthermore, when a bag mill and a rod mill were combined as in (d), the dispersibility of water and carbon material was good (and the kneading was extremely good) because the mixture was mixed in the bag mill beforehand and then kneaded in the rod mill. , as in (a), (c), and (d), kneaded raw materials (
When briquettes with a diameter of 40 mm were prepared with a total moisture content of 4118.5% and subjected to a drop test, the results shown in FIG. 4 were obtained. In this test, the specimen was repeatedly dropped from a height of 2 m onto a concrete floor 5 times, and the incidence of cracks of 5 mm or less at this time is shown in the cross-hatched area, and the incidence of cracks is shown in the shaded area. From this result, it was found that case (d) was the most effective with a yield of 96%. <Effects of the Invention> As explained in detail above, the present invention is capable of crushing a part of the main raw materials when pulverizing the main raw materials such as nickel oxide ore together with the bed material and auxiliary raw materials such as carbon material. Wet-mill, then dry-mill the other main raw materials, dry-mill the auxiliary raw materials, and then mix and knead these pulverized materials. During this mixing and kneading, the moisture content is within the appropriate range and the main raw materials are mixed. The carbonaceous material and limestone of a certain amount necessary for reducing nickel and other metals are mixed and kneaded uniformly. Therefore, the aggregates such as briquettes formed from this kneaded material are wrapped in inner carbon material in the rotary kiln, metals such as nickel are reduced, and furthermore, this inner carbon material is heated sufficiently in the Ruppe generation zone. Give energy 1:
Therefore, the metal component grows well as a luppe. Furthermore, there is no generation of rings or the like during operation, and the operation is stabilized, and the amount of ore processed is increased due to the decrease in water content, which reduces thermal energy. Also, during pulverization, the main raw material is divided into at least two parts, one of which is wet-pulverized, and the other is dry-pulverized.
When these amphoteric raw materials are mixed and kneaded, there is no need to add water during mixing and kneading, and even when the main raw materials have poor dehydration properties, they can be used without any problems. Further, when a bag mill and a rod mill are used during kneading, even water and a large amount of carbonaceous material can be mixed uniformly, and briquettes with a predetermined strength can be molded with a high yield.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明法の一つの実施例に係るフローシート、
第2図は本発明法を実施する装置の一例の配置図、第3
図は従来例に係る酸化ニッケル鉱石の製錬方法の一例の
フローシー1〜、第4図は種々の混練方法と得られるブ
リケットの落下試験結果との関係を示すグラフである。 符号1・・・・・・自生粉砕ミル 2・・・・・・ザイクロン 3・・・・・・バッグフィルタ 3′・・・・・・貯蔵槽   4・・・・・・熱風炉5
・・・・・・湿式チューブミル 6・・・・・・スラリータンク 7・・・・・・ドラムフィルタ 8・・・・・・ロッドミル  9・・・・・・貯蔵槽1
0・・・・・・バッグミル等の混合機11・・・・・・
ロッドミル等の混mR12・・・・・・原料ヤード  
13′ ・・・・・・製団機13・・・・・・グレー]
・14・・・・・・11鉱シコート15・・・・・・ロ
ータリーキルン 16・・・・・・バ − ブー 特許出願人 日本冶金T業株式会社 代 理 人 弁理士 松 下 義 勝 弁護士  副  島  文  紐 68 冨 、Σ ミ a 0
FIG. 1 is a flow sheet according to one embodiment of the method of the present invention,
Figure 2 is a layout diagram of an example of a device for carrying out the method of the present invention;
The figures are flow charts 1 to 1 of an example of a conventional method for smelting nickel oxide ore, and FIG. 4 is a graph showing the relationship between various kneading methods and the drop test results of the obtained briquettes. Code 1... Autogenous grinding mill 2... Zyclone 3... Bag filter 3'... Storage tank 4... Hot air stove 5
...Wet tube mill 6 ... Slurry tank 7 ... Drum filter 8 ... Rod mill 9 ... Storage tank 1
0...Mixing machine such as bag mill 11...
Mixing mR12 such as rod mill etc. Raw material yard
13'...Danking machine 13...Gray]
・14・・・・・・11 Sikote 15・・・・・・Rotary kiln 16・・・・・・Barbu Patent applicant Nippon Yakin T Gyo Co., Ltd. Agent Patent attorney Yoshikatsu Matsushita Lawyer Soejima Sentence String 68 Tomi, Σ Mi a 0

Claims (1)

【特許請求の範囲】 1)酸化ニッケル鉱石などの主原料、石灰石ならびに炭
材などの副原料を粉砕する粉砕工程と、これら粉砕材料
を所定量づつ配合して混練する混合混練工程と、これの
混練物を所定形状のブリケット等の製団物に成型する製
団工程と、この製団物をグレート上で乾燥する乾燥工程
と、この乾燥後の製団物をロータリーキルンに装入しこ
のロータリーキルン中を移動させる間に予熱、焼成して
前記副原料中のニッケルなどの金属分を還元しかつルッ
ペとして成長させる焼成工程とから成る酸化ニッケル鉱
石などの製錬方法において、 前記粉砕工程では、前記主原料を少なくとも2つ以上に
分けて、その一方を湿式粉砕する一方、他方を乾燥粉砕
すること、 前記混合混練工程では、前記主原料に対して、ニッケル
その他の金属分の還元に必要な量以上の炭材及び石灰石
などの溶剤を混合して均一に混練すること、 前記製団工程では、副原料内装原料を製団すること、 前記焼成工程では、前記製団物を、ロータリーキルン内
で予熱後前記製団物中に内装された炭材で主原料中のニ
ッケルなどの金属分を還元し、かつ内装された溶剤で原
料の造滓化を図り、還元メタルをルッペとして成長させ
ること、を特徴とする酸化ニッケル鉱石などの製錬方法
。 2)酸化ニッケル鉱石などの主原料、石灰石ならびに炭
材などの副原料を粉砕する粉砕工程と、これら粉砕材料
を所定量づつ配合して混練する混合混練工程と、これの
混練物を所定形状のブリケット等の製団物に成型する製
団工程と、この製団物をグレート上で乾燥する乾燥工程
と、この乾燥後の製団物をロータリーキルンに装入し、
このロータリーキルン中を移動させる間に予熱、焼成し
て前記主原料中のニッケルなどの金属分を還元しかつル
ッペとして成長させる還元工程とから成る酸化ニッケル
鉱石などの製錬方法において、 前記粉砕工程では前記主原料を全て乾燥粉砕すること、 前記混合混練工程では、前記主原料に対して、ニッケル
その他の金属分の還元に必要な量以上の炭材及び石灰石
等の溶剤を混合すると共に、10〜20%の水分を添加
して、混練すること、前記製団工程では、副原料内装原
料を製団すること、 前記焼成還元工程では、前記製団物を、ロータリーキル
ン内で予熱後前記製団物中に内装された炭材で主原料中
のニッケルなどの金属分を還元し、かつ内装された溶剤
で原料の造滓化を図り、還元メタルをルッペとして成長
させること、 を特徴とする酸化ニッケル鉱石などの製錬方法。
[Scope of Claims] 1) A pulverizing process for pulverizing main raw materials such as nickel oxide ore and auxiliary raw materials such as limestone and carbonaceous materials, a mixing and kneading process for blending and kneading these pulverized materials in predetermined amounts, and There is a step of forming the kneaded material into a mass such as briquettes of a predetermined shape, a drying step of drying the mass on a grate, and a step of charging the dried mass into a rotary kiln. A smelting method for nickel oxide ore, etc., which comprises a firing step in which metals such as nickel in the auxiliary raw material are reduced by preheating and firing while the nickel oxide ore is transferred, and the nickel oxide ore is grown as a luppe. The raw material is divided into at least two parts, one of which is wet-pulverized and the other is dry-pulverized, and in the mixing and kneading step, the amount of the main raw material is more than the amount necessary to reduce nickel and other metals. In the agglomeration step, the auxiliary raw materials are agglomerated; In the firing step, the agglomerate is preheated in a rotary kiln and then kneaded uniformly. The method is characterized in that metals such as nickel in the main raw material are reduced with the carbonaceous material contained in the composite, and the raw material is made into slag using the contained solvent, and the reduced metal is grown as a slag. A method of smelting nickel oxide ore, etc. 2) A pulverization process in which main raw materials such as nickel oxide ore and auxiliary raw materials such as limestone and carbonaceous materials are pulverized, a mixing and kneading process in which predetermined amounts of these pulverized materials are blended and kneaded, and the kneaded product is shaped into a predetermined shape. There is a step of forming a lump into a dough such as briquettes, a drying step of drying the dough on a grate, and a step of charging the dried dough into a rotary kiln.
In the smelting method for nickel oxide ore, etc., which comprises a reduction step of preheating and firing while moving through the rotary kiln to reduce metals such as nickel in the main raw material and grow it as a luppe, in the pulverization step. drying and pulverizing all of the main raw materials; in the mixing and kneading step, a solvent such as carbonaceous material and limestone is mixed with the main raw materials in an amount greater than the amount necessary to reduce nickel and other metals; Adding 20% moisture and kneading; In the agglomeration step, a mixture of auxiliary raw materials; In the firing reduction step, the agglomerate is preheated in a rotary kiln, and then the agglomerate is Nickel oxide is characterized by reducing metals such as nickel in the main raw material with the carbonaceous material contained inside, and converting the raw material into slag with the contained solvent, and growing the reduced metal as a slag. A method of smelting ores, etc.
JP16226585A 1985-07-22 1985-07-22 Refining method for nickel oxide or the like Granted JPS6223944A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP16226585A JPS6223944A (en) 1985-07-22 1985-07-22 Refining method for nickel oxide or the like
FR8610775A FR2585037B1 (en) 1985-07-22 1986-07-22 PROCESS FOR REFINING A NICKEL OXIDE ORE OR THE LIKE
CA 514432 CA1332286C (en) 1985-07-22 1986-07-22 Method of refining oxide nickel ore or the like

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16226585A JPS6223944A (en) 1985-07-22 1985-07-22 Refining method for nickel oxide or the like

Publications (2)

Publication Number Publication Date
JPS6223944A true JPS6223944A (en) 1987-01-31
JPH0121855B2 JPH0121855B2 (en) 1989-04-24

Family

ID=15751161

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16226585A Granted JPS6223944A (en) 1985-07-22 1985-07-22 Refining method for nickel oxide or the like

Country Status (3)

Country Link
JP (1) JPS6223944A (en)
CA (1) CA1332286C (en)
FR (1) FR2585037B1 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0310026A (en) * 1989-06-07 1991-01-17 Nippon Yakin Kogyo Co Ltd Method for briquetting clayey ni ore
US5912465A (en) * 1995-09-05 1999-06-15 Canon Kabushiki Kaisha Photoelectric converter
US5914485A (en) * 1995-09-05 1999-06-22 Canon Kabushiki Kaisha Photoelectric converter having respective circuits provided on opposite sides thereof capable of scanning in like directions
KR100602654B1 (en) * 2005-06-16 2006-07-20 주식회사 에너텍 Manufacturing method of metal nickel using reduction reaction and metal nickel using the same method
WO2006089358A1 (en) * 2005-02-24 2006-08-31 Bhp Billiton Ssm Technology Pty Ltd Production of ferronickel
JP2009198086A (en) * 2008-02-21 2009-09-03 Hyuga Seirensho:Kk Operation method of rotary kiln
JP2010280960A (en) * 2009-06-05 2010-12-16 Hyuga Seirensho:Kk Operational method of rotary kiln
JP2015168849A (en) * 2014-03-06 2015-09-28 株式会社日向製錬所 Method for manufacturing briquette
JP2017036473A (en) * 2015-08-10 2017-02-16 住友金属鉱山株式会社 Process for smelting nickel oxide ore
JP2017052995A (en) * 2015-09-08 2017-03-16 住友金属鉱山株式会社 Smelting method of nickel oxide ore
JP2020023730A (en) * 2018-08-06 2020-02-13 住友金属鉱山株式会社 Method for smelting oxide ore

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5858101B2 (en) 2014-07-15 2016-02-10 住友金属鉱山株式会社 Pellet manufacturing method, nickel oxide ore smelting method
JP5858105B1 (en) 2014-08-01 2016-02-10 住友金属鉱山株式会社 Nickel oxide ore smelting method
JP6314781B2 (en) 2014-10-06 2018-04-25 住友金属鉱山株式会社 Nickel oxide ore smelting method
JP5975093B2 (en) 2014-12-24 2016-08-23 住友金属鉱山株式会社 Nickel oxide ore smelting method
JP5958576B1 (en) 2015-02-24 2016-08-02 住友金属鉱山株式会社 Saprolite ore smelting method
JP7393570B1 (en) * 2023-01-27 2023-12-06 日本冶金工業株式会社 Ferronickel alloy and its manufacturing method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR685546A (en) * 1928-11-28 1930-07-11 Improvements to the processes for obtaining metal foams
FR781043A (en) * 1933-12-14 1935-05-08 Krupp Fried Grusonwerk Ag Process for obtaining metals other than iron, in particular copper, nickel, cobalt
GB834169A (en) * 1957-04-18 1960-05-04 Friedrich Johannsen Process for treating oxidic raw materials of iron and similar metals

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0310026A (en) * 1989-06-07 1991-01-17 Nippon Yakin Kogyo Co Ltd Method for briquetting clayey ni ore
JPH0781168B2 (en) * 1989-06-07 1995-08-30 日本冶金工業株式会社 Clay Ni ore briquette method
US8274033B2 (en) 1995-09-05 2012-09-25 Canon Kabushiki Kaisha Photoelectric converter
US5914485A (en) * 1995-09-05 1999-06-22 Canon Kabushiki Kaisha Photoelectric converter having respective circuits provided on opposite sides thereof capable of scanning in like directions
US6297493B1 (en) 1995-09-05 2001-10-02 Canon Kabushiki Kaisha Photoelectric converter with a plurality of photoelectric conversion layers deposited in a predetermined orientation relative to one another
US6664527B2 (en) 1995-09-05 2003-12-16 Canon Kabushiki Kaisha Photoelectric converter and X-ray image pick-up device
US7635835B2 (en) 1995-09-05 2009-12-22 Canon Kabushiki Kaisha Photoelectric converter and x-ray image pick-up device
EP2317556A2 (en) 1995-09-05 2011-05-04 Canon Kabushiki Kaisha Photoelectric converter
US7170042B2 (en) 1995-09-05 2007-01-30 Canon Kabushiki Kaisha Photoelectric converter and X-ray image pick-up device
US7285765B2 (en) 1995-09-05 2007-10-23 Canon Kabushiki Kaisha Photoelectric converter and X-ray image pick-up device
US7381938B2 (en) 1995-09-05 2008-06-03 Canon Kabushiki Kaisha Photoelectric converter and x-ray image pick-up device
EP1930949A2 (en) 1995-09-05 2008-06-11 Canon Kabushiki Kaisha Photoelectric converter
US5912465A (en) * 1995-09-05 1999-06-15 Canon Kabushiki Kaisha Photoelectric converter
US7915573B2 (en) 1995-09-05 2011-03-29 Canon Kabushiki Kaisha Photoelectric converter and X-ray image pick-up device
EA010796B1 (en) * 2005-02-24 2008-12-30 БиЭйчПи БИЛЛИТОН ЭсЭсЭм ТЕКНОЛОДЖИ ПТИ ЛТД. Production of ferronickel
US7585350B2 (en) 2005-02-24 2009-09-08 Bhp Billiton Ssm Technology Pty Ltd. Production of ferronickel
WO2006089358A1 (en) * 2005-02-24 2006-08-31 Bhp Billiton Ssm Technology Pty Ltd Production of ferronickel
KR100602654B1 (en) * 2005-06-16 2006-07-20 주식회사 에너텍 Manufacturing method of metal nickel using reduction reaction and metal nickel using the same method
JP2009198086A (en) * 2008-02-21 2009-09-03 Hyuga Seirensho:Kk Operation method of rotary kiln
JP2010280960A (en) * 2009-06-05 2010-12-16 Hyuga Seirensho:Kk Operational method of rotary kiln
JP2015168849A (en) * 2014-03-06 2015-09-28 株式会社日向製錬所 Method for manufacturing briquette
JP2017036473A (en) * 2015-08-10 2017-02-16 住友金属鉱山株式会社 Process for smelting nickel oxide ore
JP2017052995A (en) * 2015-09-08 2017-03-16 住友金属鉱山株式会社 Smelting method of nickel oxide ore
JP2020023730A (en) * 2018-08-06 2020-02-13 住友金属鉱山株式会社 Method for smelting oxide ore

Also Published As

Publication number Publication date
CA1332286C (en) 1994-10-11
FR2585037A1 (en) 1987-01-23
JPH0121855B2 (en) 1989-04-24
FR2585037B1 (en) 1989-04-21

Similar Documents

Publication Publication Date Title
US6811759B2 (en) Method of producing iron oxide pellets
JPS6223944A (en) Refining method for nickel oxide or the like
US7438730B2 (en) Method of producing iron oxide pellets
JP2003535972A (en) Method for producing metallized briquettes
KR20120035946A (en) Process for producing ferro coke
US4504306A (en) Method of producing agglomerates
US20230203607A1 (en) Biomass Direct Reduced Iron
TWI550100B (en) Process for the manufacture of ferrochrome
US6918947B2 (en) Method for making reduced iron
TWI477611B (en) Metallurgical composition for the manufacture of ferrochrome
JP5786668B2 (en) Method for producing unfired carbon-containing agglomerated mineral
JP7424339B2 (en) Raw material particles for producing agglomerates, method for producing raw material particles for producing agglomerates, agglomerates, method for producing agglomerates, and method for producing reduced iron
JPH0742519B2 (en) Pretreatment method for raw material for blast furnace
JPS61126199A (en) Preparation of powder coke for sintered fuel
JPH0365412B2 (en)
JP2024047288A (en) Manufacturing method of iron ore pellets and iron ore pellets
JPH0310026A (en) Method for briquetting clayey ni ore
JPS63128128A (en) Manufacture of sintered ore
JP2003277840A (en) Treating method for making bulky ore into raw material for blast furnace
Das et al. Agglomeration
KR19980075701A (en) Cold pellet
JPS62177130A (en) Manufacture of briquetted ore
JPH0365413B2 (en)