JPS63128128A - Manufacture of sintered ore - Google Patents

Manufacture of sintered ore

Info

Publication number
JPS63128128A
JPS63128128A JP27317786A JP27317786A JPS63128128A JP S63128128 A JPS63128128 A JP S63128128A JP 27317786 A JP27317786 A JP 27317786A JP 27317786 A JP27317786 A JP 27317786A JP S63128128 A JPS63128128 A JP S63128128A
Authority
JP
Japan
Prior art keywords
ore
sintering
product
sintered
sieve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27317786A
Other languages
Japanese (ja)
Inventor
Takazo Kawaguchi
尊三 川口
Shun Sato
駿 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP27317786A priority Critical patent/JPS63128128A/en
Publication of JPS63128128A publication Critical patent/JPS63128128A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To reduce briquetting energy and also to improve sintered-ore quality, by screening starting material for sintering and by using the oversize product as a sole to be used at the time of sintered ore manufacture and also using the undersize product as a sintering material. CONSTITUTION:Ore as centering material in which that of <=3.0wt% content of water of crystallization and >=5mm grain size comprises >=20wt% and which is comparatively reduced in heat crack characteristic is classified by means of a 4-6mm sieve (e.g., 5mm sieve) 9 into the oversize and the undersize product. Next, the oversize product is fed to a sole hopper 1 of a DL-type sintering machine and, on the other hand, the undersize product is fed to drum mixer 8 to undergo pelletization with the addition of water and then fed into a surge hopper 2 as sintering material. Subsequently, the sole hopper is supplied from the sole hopper 1 onto a moving pallet 4 of the DL-type sintering machine until a thickness of about 60mm is reached, and then, the sintering material is fed onto the above from the surge hopper 2 so that a thickness of about 450mm is reached, followed by downward suction at a pressure of about 1,000mmH2O so as to carry out sintering with high efficiency.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、焼結鉱を製造する際に、焼結原料を4〜6+
w+sで分級し篩上のものを床敷鉱として使用する焼結
鉱の製造方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention provides a method for producing sintered ore using sintered raw materials of 4 to 6+
This invention relates to a method for producing sintered ore, which is classified using W+S and the sintered ore is used as bedding ore.

〔従来の技術〕[Conventional technology]

一般に鉄鉱石の焼結鉱製造においては、第4図に示され
るごとく、DL型焼結機にあっては、移動するパレット
4上に床敷ホッパー1から4〜6mm以上の焼結鉱を約
10〜5(1wmの厚みでグレート上に敷きえ、その上
にサージホッパー2から焼結造粒処理原料(焼成原料)
を約300〜600mn+の厚みで敷いた後、点火炉3
で原料層表面を着火するとともに下方吸引により焼成を
行っている。5はクラッシャー、6は篩、7は焼結原料
ホッパー、8はミキサーである。
Generally, in the production of sintered ore from iron ore, as shown in Fig. 4, in the DL type sintering machine, sintered ore with a thickness of 4 to 6 mm or more is placed on a moving pallet 4 from a bedding hopper 1. 10 to 5 (1wm thick) on the grate, and on top of it from the surge hopper 2, the raw material for sintering and granulation processing (firing raw material)
After laying the ignition furnace 3 with a thickness of about 300 to 600 mm+,
The surface of the raw material layer is ignited, and firing is performed by downward suction. 5 is a crusher, 6 is a sieve, 7 is a sintering raw material hopper, and 8 is a mixer.

この場合、グレート直上に敷いたものを床敷鉱と称して
いるが、これは焼結焼成が上面から下面に向って進行し
焼結完了排鉱時にパレ7)底グレートと焼結物とが焼き
付きにより離れなくなるのを防止する役目をもっている
。すなわち床敷鉱中には造粒原料と異なり燃料となる粉
コークスが含まれていないので熔融せず、かつ上からの
溶融物の滴下物をグレート面まで浸透させない働きがあ
り、これが焼結物とグレートとの間に位置することによ
って焼結物とグレート面との焼き付きを防止している。
In this case, the material laid directly above the grate is called bedding ore, which means that sintering progresses from the top surface to the bottom surface, and when the sintering is completed and the ore is discharged, the bottom grate and the sintered material are separated from each other. It has the role of preventing it from becoming stuck due to burn-in. In other words, bedding ore does not contain coke powder, which serves as a fuel, unlike the granulation raw material, so it does not melt and has the function of preventing molten material dripping from above from penetrating to the grate surface. By being located between the sintered material and the grate, it is possible to prevent the sintered material from seizing on the surface of the grate.

さて、この床敷鉱には通常4〜6mm以上の焼結鉱が用
いられているがこの理由はグレートの開目間隔が4〜6
mm程度であることと関連しており、4〜6mm以下の
ものが主体となるとその多くがグレート下に落下するた
めである。また、その材質が焼結鉱である理由は通常焼
結鉱産物を4〜6mmで分級しており、その篩上成品が
4〜6mIIt以上で粒径が一致すること及び熱割れ性
が無いことに起因する。
Now, sintered ore with a diameter of 4 to 6 mm or more is usually used for this bedding ore, and the reason for this is that the gap between the openings of the grate is 4 to 6 mm.
This is related to the fact that the diameter is about mm, and if the diameter is mainly 4 to 6 mm, most of it will fall under the grate. In addition, the reason why the material is sintered ore is that sintered mineral products are usually classified into 4 to 6 mm, and the sieved product has a particle size of 4 to 6 mIIt or more, which matches the particle size, and there is no thermal cracking property. caused by.

また、一部、材質については特開昭54−125103
号にみられるように熱割れ性を有する塊鉄鉱石を用いる
ものもあるし、また特開昭52−71306号のように
石灰石を用いるものもある。
In addition, some materials are disclosed in Japanese Patent Application Laid-Open No. 54-125103.
Some use lump iron ore having thermal crackability, as shown in Japanese Patent Application Laid-open No. 71306/1982, and others use limestone, as shown in Japanese Patent Application Laid-Open No. 71306/1983.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし床敷として既に塊成化処理されたのを用いる方法
では、成品がプロセスで熱処理を受け、また、焼結成品
として回収されるまでに搬送・破砕工程を経るので劣化
し返鉱となり、再度塊成化処理を行うロスを生じる。ま
た、さらに熱割れ塊鉄鉱石あるいは石灰石では焼結熱処
理により著しく劣化崩壊し、その大部分が返鉱となり、
同様なロスを生じる。すなわち、溶鉱炉に焼結処理をほ
どこすことなく直接、高炉に装入できる塊鉱石や成品焼
結鉱を床敷鉱として用いることは、焼結工程で劣化粉化
する分だけ、溶鉱炉装入量が減りロスを発生させる。
However, in the method of using material that has already been agglomerated as bedding, the finished product undergoes heat treatment in the process, and also undergoes transportation and crushing steps before being recovered as a sintered product, which deteriorates and becomes return ore, which can be recycled again. A loss occurs due to the agglomeration process. In addition, hot-cracked iron ore or limestone undergoes significant deterioration and collapse due to sintering heat treatment, and most of it becomes return ore.
Similar losses occur. In other words, using lump ore or finished sintered ore, which can be directly charged into the blast furnace without sintering, as bedding ore, reduces the amount charged in the blast furnace by the amount that deteriorates and becomes powder in the sintering process. decreases and causes loss.

さて、焼結鉱製造における使用原料としては、一般には
第3図に示されるように、ベレット及び塊鉄鉱石の篩下
鉱石、焼結用粒度の鉱石(シンターフィード)、ベレッ
ト用粒度の鉱石(ベレットフィード)、製鉄所発生の雑
原料、造滓剤(石灰Niスラグ等)、返鉱及び粉コーク
スが挙げられる。
Now, as shown in Figure 3, the raw materials used in the production of sintered ore are generally subsieve ore of pellets and lump iron ore, ore of grain size for sintering (sinter feed), and ore of grain size for pellets (sinter feed). These include pellet feed), miscellaneous raw materials generated at steel mills, slag-forming agents (lime-Ni slag, etc.), return ore, and coke powder.

ここで、ベレット及び塊鉄鉱石は鉱山光で整粒されたも
のではあるが、篩分級の不完全さ及び輸送過程での粉化
により、約10%近い溶鉱炉への直接装入に好ましくな
い微粉が混入している。そのため、溶鉱炉装入前に8〜
10mm程度の篩により分級されるが、この篩下鉱は焼
結原料として用いている。
Although the pellets and lump iron ore are sized using mine light, due to incomplete sieve classification and pulverization during transportation, approximately 10% of the iron ore is finely divided, which is undesirable for direct charging into the blast furnace. is mixed in. Therefore, before charging the blast furnace,
It is classified using a sieve of about 10 mm, and this sieve ore is used as a sintering raw material.

また、ジンターフ、イードは鉱山光で分級された焼結用
原料であるが、この原料中には4〜6mm以上のものも
多少含まれている。以上のような理由から焼結原料中に
は第1表に示されるごとく、5rRm以上は10%程度
、10nuw以上は1%以下である。
Furthermore, Ginturf and Eid are raw materials for sintering that have been classified by mine light, and some of these raw materials have a diameter of 4 to 6 mm or more. For the above reasons, as shown in Table 1, the sintering raw material contains about 10% of 5rRm or more, and 1% or less of 10nuw or more.

第  1 表 (焼結原料の粒度構成例) しかし、これら4〜6IIII11以上の鉄鉱石は焼結
過程において粗粒であるがゆえに焼結するに必要な溶融
がほとんど行われず、溶は残りとなり品質を悪化させる
要因となっている。また、焼結鉱の成品歩留りを悪化さ
せる要因ともなっている。
Table 1 (Example of particle size composition of sintering raw materials) However, because these iron ores with sizes of 4 to 6 III and 11 or more are coarse particles during the sintering process, the melting required for sintering is hardly done, and the melt remains and the quality deteriorates. This is a factor that worsens the situation. It is also a factor that deteriorates the yield of sintered ore.

すなわち、本来は溶鉱炉装入鉄源原料は、通気性の関係
から粒径は4〜6mm以上である必要があるが、含水し
た鉄鉱石を4〜6al111で分級すると、多くの微粉
の混入が発生する。従って鉱山光では通常10〜12a
+a+程度の篩で分級し、篩上をベレット及び塊鉱石、
篩下をシンターフィードとして製鉄所に供給を行ってい
る。そして製鉄所ではベレット及び塊鉄鉱石を再度分級
処理を行い、その篩下鉱とシンターフィードとは焼結用
原料として用いられる。
In other words, originally, the particle size of the iron source material charged into a blast furnace must be 4 to 6 mm or more due to air permeability, but when hydrated iron ore is classified using 4 to 6Al111, a large amount of fine powder is mixed in. do. Therefore, mine light is usually 10~12a
Classify with a sieve of +a+ grade, pellets and lump ore,
The sifter is used as sinter feed and is supplied to steel mills. At the steelworks, the pellets and lump iron ore are classified again, and the sieve ore and sinter feed are used as raw materials for sintering.

従って、含水原料の4〜6mm分級が不完全であるがゆ
えにベレット及び塊鉄鉱石の下限サイズが上昇しその収
率を悪化させるとともに、焼結鉱製造サイドでは原料粗
粒比率が上昇しその品質・歩留を悪化せしめているとい
う欠点があった。
Therefore, since the 4-6 mm classification of the water-containing raw material is incomplete, the minimum size of pellets and lump iron ore increases, deteriorating the yield, and at the same time, in the sinter production side, the raw material coarse grain ratio increases and the quality of the raw material increases.・There was a drawback that the yield was deteriorated.

C問題点を解決するための手段〕 上記問題点を解決するための本発明は、焼結用原料の一
部又は全部を4〜6m+aで分級し、この篩上を床敷鉱
の一部または全部として用い、篩下を焼結焼成原料とし
て用いることを特徴とするものである。
Means for Solving Problem C] The present invention for solving the above problems classifies part or all of the raw material for sintering at 4 to 6m+a, and passes over this sieve into a part or part of bedding ore. It is characterized in that it is used as a whole, and the bottom of the sieve is used as a raw material for sintering and firing.

〔発明の具体的構成〕 以下、本発明法についてさらに詳説する。[Specific structure of the invention] The method of the present invention will be explained in more detail below.

まず焼結用原料を4〜6IIII11で篩分級する。し
かし含水状態では完全な分級は難しく、篩上産物中には
4〜6ml11以下の粉が約10〜50%程度混入する
First, the raw material for sintering is classified through a 4 to 6III11 sieve. However, in a water-containing state, complete classification is difficult, and about 10 to 50% of powder of 4 to 6 ml11 or less is mixed into the sieved product.

篩下産物は概ね4〜6ml1l以下のものであるが、こ
れに他の焼結原料や粉コークスを添加し造粒処理をほど
こし焼成原料を作成する。そして焼結機パレットグレー
ト上に、高さ概ね10IIl111〜100IIII1
1で前記篩上産物を床敷鉱として装入し、その上に高さ
概ね300mm〜700mmで前記焼成原料を装入し、
表層部を着火せしめ下方より吸引することにより焼結を
行う。焼成原料は焼結され床敷鉱は熱処理を受は排鉱さ
れる。排鉱された焼結ケーキ及び床敷鉱は破砕工程を経
て4〜6mmの篩分級設備に送られる。ここでの分級に
おいては分級産物が焼成熱処理をうけているので乾燥状
態であり目詰りを起こさないので篩上での分級効率は良
く、篩上産物は、4〜6mm以下の籾混入はほとんど認
められず、4〜6mm以上の焼結鉱成品と床敷熱処理を
行った鉱石等により構成される。そして篩上産物は成品
として溶鉱炉に装入される。一方ここでの篩下産物は4
〜6mll1以下のもので焼結ケーキの破砕片と床敷鉱
石の破砕片および混入籾により構成される。
The sifted product is generally 4 to 6 ml or less, and other sintering raw materials and coke powder are added thereto and granulated to create a firing raw material. And on the sintering machine pallet grate, the height is approximately 10IIl111~100III1
In step 1, the sieved product is charged as bedding ore, and the fired raw material is charged thereon at a height of approximately 300 mm to 700 mm,
Sintering is performed by igniting the surface layer and suctioning it from below. The raw materials for sintering are sintered, the bedding ore is subjected to heat treatment, and the ore is discharged. The discharged sintered cake and bedding ore are sent to a 4-6 mm sieve classification equipment after a crushing process. In this classification, the classified product is subjected to baking heat treatment, so it is in a dry state and does not cause clogging, so the classification efficiency on the sieve is good, and the product on the sieve has almost no paddy contamination of 4 to 6 mm or less. It is composed of sintered mineral products of 4 to 6 mm or more and ore that has undergone bedding heat treatment. The sieved product is then charged into a blast furnace as a finished product. On the other hand, the sieved product here is 4
It is composed of crushed pieces of sintered cake, crushed pieces of bedding ore, and mixed rice, with a volume of ~6 ml or less.

そしてこの篩下産物は返鉱として焼結焼成原料に用いら
れる。
This sieved product is used as a return ore as a raw material for sintering and firing.

すなわち、本発明法では4〜6mm以下の粉が混入し問
題のある4〜61篩上産物鉱石を焼結プロセスの床敷鉱
として用いることによって、熱処理をほどこした後、焼
結プロセスの篩分級設備を活用し、4〜6mm以下の粉
を混入させることなく、また4〜6+b く溶鉱炉に装入できる特徴をもつ。この特徴は次の4つ
の利点を有する。
That is, in the method of the present invention, by using the 4-61 sieve product ore, which has a problem of contamination with powder of 4-6 mm or less, as bedding ore in the sintering process, it is subjected to heat treatment and then classified through the sieve in the sintering process. It has the feature that it can be charged into the blast furnace by utilizing the equipment and without mixing powder with a diameter of 4 to 6 mm or less. This feature has four advantages:

■ 床敷として用いられた4〜6a+m以上の鉱石は熱
処理は受けるが、焼結処理をほどこしていないので、通
常の4〜6IIIII+以上を含めた焼結法に較べ、4
〜6mm以上の鉱石分について焼結処理(造粒、粉コー
クス添加、送風)が不要となる。
■ Ore of 4 to 6 a+m or more used as bedding is heat treated but not sintered, so compared to the usual sintering method including 4 to 6 III+ or more,
Sintering treatment (granulation, addition of coke powder, air blowing) is not necessary for ores larger than ~6 mm.

■ 通常の4〜6mm以上の径が存在する原料での焼結
ケーキおよび成品に較べ、4〜611101以上の径の
存在しない原料での焼結ケーキ及び成品は、成品歩留の
改善及び品質改善を達成できる。
■ Compared to sintered cakes and products made from raw materials with a diameter of 4 to 6 mm or more, sintered cakes and products made from raw materials that do not have a diameter of 4 to 611101 or more improve product yield and quality. can be achieved.

■ 4〜6mmで分級した篩上鉱石を直接溶鉱炉に装入
する場合に較べ、熱処理後分級を行うので、混入籾を除
去して4〜6mm以上のみを溶鉱炉に装入できる。
(2) Compared to the case where sieved ore classified at 4 to 6 mm is directly charged into the blast furnace, since classification is performed after heat treatment, mixed rice can be removed and only rice grains of 4 to 6 mm or more can be charged into the blast furnace.

■ 完全分級された4〜6mm以上の鉱石を直接溶鉱炉
に装入する場合に較べ、熱処理後分級を行うので、事前
に熱割れを起こさせているから溶鉱炉内での熱割れ粉の
発生を防止できる。
■ Compared to charging fully classified ore of 4 to 6 mm or more directly into the blast furnace, classification is performed after heat treatment, so thermal cracking is caused in advance, which prevents the generation of thermal cracking powder in the blast furnace. can.

ところで、床敷を得るために4〜6IllIIlで分級
する原料鉱石の種類としては、次の性状をもつものが上
記利点を顕在化させ好ましい。
By the way, as the type of raw material ore to be classified by 4 to 6IllIII to obtain the bedding, those having the following properties are preferable because they bring out the above-mentioned advantages.

(1)結晶水含有率(C,W、)が3.0wt%以上の
もの(2) 5ms以上の粒径が20w t%以上含む
もの(3)  熱割れ性をあまり有しないものここで結
晶水含有率が3.0wt%以上の鉱石は、焼結反応にお
いて結晶水の熱分解に多量の熱を必要とするので焼結過
程での粉コークス量を多く必要とする欠点がある。従っ
て、結晶水含有率の高い鉱石は焼成原料とて用いずにコ
ークス添加を必要としない朦敷鉱として用いて、4〜6
IIII11以上の成品として溶鉱炉に装入するのが有
利である。また粒径が4〜6+++m以上のものを20
−t%以上含むもの及び熱割れ性をあまり有しない鉱石
が望ましい理由は、床敷装入後熱処理され排鉱後成品分
級される時に篩上成品となる量が多いためである。すな
わち、床敷用に分級する鉱石粒度が4〜6mm以上のも
のが多いものは粉の混入比率が少ないし、また熱割れ性
をあまり有しないものは熱割れして4〜6mm以下とな
るものが少ないので、焼結成品4〜611111篩下の
発生量が少なく篩上成品量が増加するためである。
(1) Those with a crystal water content (C, W, ) of 3.0 wt% or more (2) Those containing 20 wt% or more of grains with a grain size of 5 ms or more (3) Those that do not have much thermal crackability Ore with a water content of 3.0 wt% or more requires a large amount of heat to thermally decompose crystallized water in the sintering reaction, and therefore has the disadvantage of requiring a large amount of coke breeze in the sintering process. Therefore, the ore with a high crystallization water content is not used as a raw material for sintering, but is used as an ore that does not require the addition of coke.
It is advantageous to charge the blast furnace as a product of III11 or higher. In addition, those with a particle size of 4 to 6+++m or more are
The reason why ores containing more than -t% and having little thermal crackability are desirable is that when the ores are heat-treated after bed charging, discharged, and classified, a large amount becomes sieved products. In other words, ore that is classified for bedding and has a particle size of 4 to 6 mm or more has a small proportion of powder mixed in, and those that do not have much thermal cracking property are those that crack under heat to a size of 4 to 6 mm or less. This is because the amount of sintered products 4 to 611111 produced under the sieve is small, and the amount of products on the sieve increases.

なお、本性における床敷鉱を得る篩目が4〜61111
である理由は成品篩目が現状4〜6ml11であること
と関連しており、基本的には成品篩目と同一サイズであ
る必要がある。この意味においては溶鉱炉の要求と対応
しており概ね5+u+程度が望ましい。
In addition, the sieve size for obtaining bedding ore in nature is 4 to 61111.
The reason for this is related to the fact that the sieve size of the finished product is currently 4 to 6 ml11, and basically it needs to be the same size as the sieve size of the finished product. In this sense, it corresponds to the requirements of blast furnaces and is preferably about 5+u+.

〔実施例〕〔Example〕

(実施例1) 第2表に示す焼結全配合原料を、第1図に示すごとく、
5mm篩9で分級を行い、篩上と篩下に分けた。篩上産
物はDL型焼結機床敷ホッパー1に送る。一方、篩下産
物はドラムミキサー8に送り、水分を添加し造粒した後
焼成原料としてサージホッパー2に送られた。次にDL
型焼結機内においてはまず移動パレット4に床敷ホッパ
ー1から厚さ60mmにて床敷鉱が敷かれて次にサージ
ホッパー2から厚さ450amにて焼成原料が敷かれ、
1000m100Oの圧力にて下方吸引で焼成された。
(Example 1) The entire sintering raw materials shown in Table 2 were used as shown in Figure 1.
Classification was performed using a 5 mm sieve 9, and the material was divided into upper and lower sieves. The sieved product is sent to DL type sintering machine bedding hopper 1. On the other hand, the unsieved product was sent to the drum mixer 8, water was added thereto, granulated, and then sent to the surge hopper 2 as a raw material for firing. Next DL
In the mold sintering machine, bedding ore is first laid on the moving pallet 4 from the bedding hopper 1 to a thickness of 60 mm, then firing raw materials are laid from the surge hopper 2 to a thickness of 450 am,
It was fired with downward suction at a pressure of 1000 m and 100 O.

焼成完了後、排鉱されクラッシャー5により破砕された
後焼結成品篩6により5+mで分級された。
After completion of firing, the ore was discharged, crushed by a crusher 5, and then classified by a sintered product sieve 6 at 5+m.

一方、従来法の第4図に示すごとく床敷鉱として焼結成
品ラインより焼結鉱を供給した場合と、第5図に示すご
と<25〜811IllO熱割れ鉄鉱石及び石灰石を別
途準備し床敷ラインに送り焼成した場合との効果対比を
行った。
On the other hand, as shown in Fig. 4 of the conventional method, sintered ore is supplied from the sintered product line as bedding ore, and as shown in Fig. 5, <25~811IllO hot-crackable iron ore and limestone are separately prepared and bedded. The effect was compared with the case where the material was sent to the laying line and fired.

結果は第3表に示すごとく、本発明法は従来法に較べ少
ないエネルギー使用量で5III11以上の塊成成品を
溶鉱炉に供給できた。
As shown in Table 3, the method of the present invention was able to supply agglomerated products of 5III11 or more to the blast furnace with less energy consumption than the conventional method.

なお、この場合、本発明法において、配合−原料中の石
灰石及び粉コークスの粒度は51以下のものであり、床
敷鉱中への石灰石または粉コークスの混入はほとんど認
められなかった。従って、グレートと床敷鉱との焼き付
きは発生しなかった。
In this case, in the method of the present invention, the particle size of limestone and coke powder in the blended raw materials was 51 or less, and almost no limestone or coke powder was observed to be mixed into the bedding ore. Therefore, no burning occurred between the grate and the bedding ore.

また床敷鉱中への若干の籾混入はあったが5mm以上の
ものが多く占めているのでグレート下に落下するものは
少なかった。
In addition, although some paddy was mixed into the bedding ore, since most of the paddy was larger than 5 mm, there was little that fell under the grate.

(実施例2) 第2図に示すごとく、焼結原料用鉄鉱石11を51篩1
0でまず分級し、篩上産物を成品から戻されてくる床敷
鉱ラインに供給した。篩下産物は焼結原料ラインに送ら
れ焼結焼成原料として他の鉱石及び石灰石、粉コークス
とともにミキサー8において混合・調湿・造粒処理され
、焼成原料供給のためのサージホッパー2に送られた。
(Example 2) As shown in Fig. 2, iron ore 11 for sintering raw material was passed through 51 sieves 1
0, and the sieved product was supplied to the bedding line where the finished product was returned. The sifted product is sent to the sintering raw material line, where it is mixed, humidified, and granulated together with other ores, limestone, and coke powder as a sintering raw material in a mixer 8, and sent to a surge hopper 2 for supplying firing raw materials. Ta.

次にOL型焼結機内においては、まず移動パレット4に
床敷ホッパー1から送り量のバランスがとれる量だけ床
敷が敷かれ、次に厚さ450mmにて焼成原料が敷かれ
、1000m100Oの圧力にて下方吸引で焼成された
Next, in the OL type sintering machine, bedding is first laid on the movable pallet 4 from the bedding hopper 1 in an amount that balances the feeding amount, then the firing raw materials are laid down to a thickness of 450 mm, and a pressure of 1000 m and 100 O is applied. It was fired using downward suction.

焼成完了後、排鉱されクラッシャー5により破砕された
後、焼結成品篩6により5mmで分級された。
After completion of firing, the ore was discharged and crushed by a crusher 5, and then classified by a sintered product sieve 6 to a size of 5 mm.

分級後の篩下物は返鉱として原料ビンに送られるが篩上
物は一部は床敷鉱として、残りは溶鉱炉へと成品として
送付された。
After classification, the sifted material was sent to the raw material bin as return ore, while some of the sieved material was sent as bedding ore, and the rest was sent to the blast furnace as a finished product.

この方法において、第4表に示す条件で焼結原料を選択
し、また同条件の成品床敷使用量で生産を行った結果、
第4表に示すごとく、成品生産量当りのエネルギー使用
を大幅に改善するとともに品質改善を果たすことができ
た。この中でC,W、値が3.0%を超える鉱石、5f
fiII+以上の粒径が20%を超える鉱石、熱割れ性
の小さい鉱石を床敷用に分級処理したケースがとくに改
善効果が大きかった。
In this method, sintering raw materials were selected under the conditions shown in Table 4, and production was performed using the same conditions for the finished product bedding usage.
As shown in Table 4, we were able to significantly improve energy usage per unit of product production, as well as improve quality. Among these, C, W, ore with a value exceeding 3.0%, 5f
The improvement effect was particularly great in cases where ores with fiII+ or higher grain sizes exceeding 20% and ores with low thermal crackability were classified for bedding.

〔発明の効果〕〔Effect of the invention〕

以上のごとく、本発明法によれば、溶鉱炉に供給する5
1111以上の塊成成品量当りの塊成化エネルギーを低
減せしめ、また焼結鉱品質を改善させることができる。
As described above, according to the method of the present invention, 5
The agglomeration energy per agglomerated product amount of 1111 or more can be reduced, and the quality of sintered ore can be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図は本発明法例の処理フロー図、第3
図は焼結原料のフロー図、第4図および第5図は従来例
の処理法のフロー図である。
Figures 1 and 2 are process flow diagrams of the method example of the present invention;
The figure is a flow diagram of sintering raw materials, and FIGS. 4 and 5 are flow diagrams of conventional processing methods.

Claims (2)

【特許請求の範囲】[Claims] (1)焼結用原料を4〜6mmで篩分級し、篩上産物を
焼結鉱製造時の床敷として使用するとともに、篩下産物
を焼結原料として用いることを特徴とする焼結鉱の製造
方法。
(1) A sintered ore characterized by classifying the raw material for sintering through a 4-6 mm sieve, using the sieved product as a bedding during the production of sintered ore, and using the unsieved product as a sintering raw material. manufacturing method.
(2)焼結用粉鉄鉱石類の一部を4〜6mmで篩分級し
、篩上産物を焼結鉱製造時の床敷の一部または全部とし
て用いるとともに、篩下産物を焼結原料の一部として用
いることを特徴とする焼結鉱の製造方法。
(2) Part of the powdered iron ore for sintering is classified through a 4-6 mm sieve, and the sieved product is used as part or all of the bedding during the production of sintered ore, and the sieved product is used as a raw material for sintering. A method for producing sintered ore, characterized in that it is used as a part of sintered ore.
JP27317786A 1986-11-17 1986-11-17 Manufacture of sintered ore Pending JPS63128128A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27317786A JPS63128128A (en) 1986-11-17 1986-11-17 Manufacture of sintered ore

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27317786A JPS63128128A (en) 1986-11-17 1986-11-17 Manufacture of sintered ore

Publications (1)

Publication Number Publication Date
JPS63128128A true JPS63128128A (en) 1988-05-31

Family

ID=17524172

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27317786A Pending JPS63128128A (en) 1986-11-17 1986-11-17 Manufacture of sintered ore

Country Status (1)

Country Link
JP (1) JPS63128128A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0250921A (en) * 1988-08-11 1990-02-20 Sumitomo Metal Ind Ltd Method for operating sintering apparatus
JPH03130326A (en) * 1989-10-17 1991-06-04 Nippon Steel Corp Production of sintered ore for blast furnace using high-goethite ore

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4899018A (en) * 1972-03-30 1973-12-15
JPS61273178A (en) * 1985-05-24 1986-12-03 Kyocera Corp Low loss power converter

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4899018A (en) * 1972-03-30 1973-12-15
JPS61273178A (en) * 1985-05-24 1986-12-03 Kyocera Corp Low loss power converter

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0250921A (en) * 1988-08-11 1990-02-20 Sumitomo Metal Ind Ltd Method for operating sintering apparatus
JPH03130326A (en) * 1989-10-17 1991-06-04 Nippon Steel Corp Production of sintered ore for blast furnace using high-goethite ore
JPH0730417B2 (en) * 1989-10-17 1995-04-05 新日本製鐵株式会社 Manufacturing method of sinter for blast furnace using high goethite ore

Similar Documents

Publication Publication Date Title
JPS6223944A (en) Refining method for nickel oxide or the like
US5169434A (en) Method for manufacturing agglomerates of sintered pellets
US6451085B1 (en) Method for producing reduced iron
EP0614993B1 (en) Method for producing sintered ore
TWI775855B (en) Method of operating a sinter plant and method of operating a blast furnace in a blast furnace plant
JPS63128128A (en) Manufacture of sintered ore
JPH01147023A (en) Manufacture of sintered ore
JPH0629470B2 (en) Sintered ore manufacturing method
KR102175837B1 (en) The assembly for manufacturing sintered ore, sintered ore manufacturing method of using the same, material for manufacturing pig iron, and pig iron manufacturing method of using the same
JPS5935971B2 (en) How to process sintered ore
JPH0742519B2 (en) Pretreatment method for raw material for blast furnace
JPS58133331A (en) Preparation of sintered ore
JP2663803B2 (en) Powder coke sizing method and apparatus for sintering
JP2589633B2 (en) Pre-treatment method of sinter ore raw material for blast furnace
JPH01205038A (en) Production of sintered ore
JPS63128127A (en) Manufacture of sintered ore
JPS60114526A (en) Production of sintered ore
SU1100325A1 (en) Method for producing felletized material from finely comminuted concentrates
JPS61174339A (en) Production of sintered ore
JPH05132722A (en) Method for cooling sintered ore
AU762647B2 (en) Apparatus for producing reduced iron
JPH06212291A (en) Pretreatment method of sintered raw material in manufacturing sintered ore
JP2001164325A (en) Method for manufacturing sintered ore for blast furnace and operational method for manufacturing sintered ore for blast furnace
JPS61174338A (en) Production of sintered ore
JPH03249138A (en) Operation method for sintering