JPS62237996A - Apparatus for treating waste water - Google Patents

Apparatus for treating waste water

Info

Publication number
JPS62237996A
JPS62237996A JP8171986A JP8171986A JPS62237996A JP S62237996 A JPS62237996 A JP S62237996A JP 8171986 A JP8171986 A JP 8171986A JP 8171986 A JP8171986 A JP 8171986A JP S62237996 A JPS62237996 A JP S62237996A
Authority
JP
Japan
Prior art keywords
microorganisms
reactor
immobilized
treatment
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8171986A
Other languages
Japanese (ja)
Other versions
JPH0638957B2 (en
Inventor
Nobuyuki Machida
町田 信幸
Jun Kimura
純 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP61081719A priority Critical patent/JPH0638957B2/en
Publication of JPS62237996A publication Critical patent/JPS62237996A/en
Publication of JPH0638957B2 publication Critical patent/JPH0638957B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Treatment Of Biological Wastes In General (AREA)

Abstract

PURPOSE:To obtain good quality treated water through efficient treatment, by mounting a culture tank and an apparatus for obtaining immobilized microorganism. CONSTITUTION:A part of raw water 8 is guided to a culture tank 1 and bacteria corresponding to the components of raw water are collectively cultured and a culture solution 13 is guided to a sedimentation tank 2. Conc. microorganisms are sent to a microorganism immobilizing tank 3 to prepare immobilized microorganism which are, in turn, supplied to a first stage treatment reactor 4, a second stage treatment reactor 5 and a final stage treatment reactor 6 while separated water 9 is returned to raw water flowing in the treatment reactor 4. A part of raw water is made to flow in the culture tank 1 and proper bacteria corresponding to the components of waste water containing the org. components in raw water as a main substrate are collectively cultured. Subsequently, conc. microorganisms 14 are sent to the immobilized tank 3 and enclosed in the polymer supplied from a polymer tank 5 to obtain immobilized microorganisms.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は固定化微生物を利用した、廃水の処理装置に関
する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a wastewater treatment device using immobilized microorganisms.

(従来の技術) 都市下水や、有機系産業廃水の処理には、活性汚泥法が
最も普及している。しかし、この活性汚泥法では、処理
装置容積当りの微生物濃度が低く、処理時間も長いこと
から装置が大型化し、広大な面積を必要とする。又、処
理後の固液分解の工程でしばしばバルキング現像が起こ
ること、多量の余剰汚泥が発生すること等多くの問題を
有する。これに対し、微生物を、様々な担体に付着させ
る固着型の処理装置が考えられ、浸漬炉床法や回転円板
法等が実用化されている。これらは担体の表面に微生物
が自然に付着し、膜を形成する現象を利用したものであ
り、処理装置容積当りの微生物濃度を高く維持すること
が出来、処理装置も小型に出来る。又、処理が安定に行
なわれている場合には、固液分離も容易である。しかし
、微生物の老化、処理水質の変動等により、生物膜が剥
離したり、生物膜の生成が困難になることがあり、維持
管理が難しい。
(Prior Art) The activated sludge method is the most popular method for treating urban sewage and organic industrial wastewater. However, in this activated sludge method, the concentration of microorganisms per volume of the treatment device is low and the treatment time is long, so the device becomes large and requires a vast area. Further, there are many problems such as bulking development often occurring in the solid-liquid decomposition step after treatment and a large amount of surplus sludge being generated. On the other hand, fixed-type processing devices have been considered in which microorganisms are attached to various carriers, and the immersion hearth method, the rotating disk method, and the like have been put into practical use. These utilize the phenomenon of microorganisms naturally adhering to the surface of a carrier and forming a film, and it is possible to maintain a high concentration of microorganisms per volume of the processing equipment, and the processing equipment can also be made smaller. Further, if the treatment is carried out stably, solid-liquid separation is also easy. However, due to aging of microorganisms, fluctuations in the quality of treated water, etc., the biofilm may peel off or it may become difficult to generate a biofilm, making maintenance management difficult.

一方、医薬の製造や発酵工業の分野では、樹脂等に微生
物を包括固定し、ペレット状、膜状にして用いるバイオ
リアクター法が開発されており、近年廃水処理の分野に
おいても採用されはじめている。この方法では、微生物
をあらかじめ高濃度に培養し、固定化するため、微生物
濃度を、ある程度まで任意に高めることが可能である。
On the other hand, in the fields of pharmaceutical manufacturing and the fermentation industry, a bioreactor method has been developed in which microorganisms are immobilized in a resin or the like and made into pellets or membranes, and in recent years they have also begun to be adopted in the field of wastewater treatment. In this method, microorganisms are cultured in advance at a high concentration and immobilized, so it is possible to arbitrarily increase the microorganism concentration to a certain degree.

さらに固定化により生物活性が安定し、処理温度、pH
等の許容範囲が広くなることもある。更に菌体を包括固
定しであるため、固液分離も容易である。したがって、
小さな処理装置で、短時間のうちに処理が出来るという
特徴がある。
Furthermore, immobilization stabilizes biological activity and increases the processing temperature and pH.
etc. may have a wider tolerance range. Furthermore, since the bacterial cells are immobilized, solid-liquid separation is easy. therefore,
It is characterized by the fact that it can be processed in a short time using a small processing device.

(発明が解決しようとする問題点) 固定化に供する微生物は、一般の下水処理場がら得られ
る活性汚泥を濃縮して用いるが、又は活性汚泥を種汚泥
として任意の人工培地により培養し、分離操作により、
高濃度微生物が得られる。
(Problems to be solved by the invention) The microorganisms to be immobilized are concentrated activated sludge obtained from general sewage treatment plants, or activated sludge is used as a seed sludge and cultured in any artificial medium and separated. By operation,
Highly concentrated microorganisms can be obtained.

この場合、処理対象とする廃水の組成が、微生物を培養
した人工培地の組成と異なる場合、十分な処理効率が得
られないことがある。
In this case, if the composition of the wastewater to be treated differs from the composition of the artificial medium in which the microorganisms were cultured, sufficient treatment efficiency may not be obtained.

又、処理対象とする廃水の水質が変動した場合にも処理
効率が低下することがある。さらに、処理対象とする廃
水中に有害物質や難分解性の物質が含まれている場合に
は、処理効率の低下は著しい。
Furthermore, the treatment efficiency may also decrease when the quality of the wastewater to be treated changes. Furthermore, if the wastewater to be treated contains harmful substances or difficult-to-decompose substances, the treatment efficiency will be significantly reduced.

一方、固定化担体としては、アルギン酸、k−カラギー
ナンアクリルアミド、光硬化性樹脂等が知られており、
微生物を固定化した時点では、十分な強度を持っている
が、処理時間の経過とともに、微生物の増殖や、代謝に
より生成するガス、廃水中の成分の影響等により担体は
膨張し、やがて崩壊することがある。その結果、処理水
中に遊離した微生物や担体の破片が流出し、処理水質が
悪化することがある。
On the other hand, alginic acid, k-carrageenan acrylamide, photocurable resin, etc. are known as immobilization carriers.
When microorganisms are immobilized, the carrier has sufficient strength, but as processing time progresses, the carrier swells due to the growth of microorganisms, gases generated through metabolism, and the effects of components in wastewater, and eventually collapses. Sometimes. As a result, free microorganisms and carrier fragments may flow out into the treated water, deteriorating the quality of the treated water.

本発明の目的は、前記従来技術の問題点を解消し、処理
対象とする廃水の水質にかかわらず、効率良く処理を行
ない、良質の処理水が得られる固定化微生物による廃水
の処理装置を提供することにある。
An object of the present invention is to provide a wastewater treatment device using immobilized microorganisms that solves the problems of the prior art, efficiently processes wastewater to be treated, and provides high-quality treated water regardless of the quality of the wastewater. It's about doing.

(問題点を解決するための手段) すなわち、本発明は、原水の一部を導き、前記原水中の
有機成分を主な基質とし、原水の成分に対応した適切な
微生物を高濃度に集積培養する培養槽と、得られた前記
微生物を分離し、濃縮微生物と、分離水を得る装置と、
得られた前記濃縮微生物を包括固定化し、固定化微生物
を得る装置とを備え、前記固定化微生物を処理リアクタ
ーに供給し、前記分離水を第1処理リアクターに返送す
る廃水の処理装置である。
(Means for Solving the Problems) That is, the present invention introduces a portion of raw water, uses the organic components in the raw water as the main substrate, and cultivates suitable microorganisms corresponding to the raw water components at a high concentration. an apparatus for separating the obtained microorganisms and obtaining concentrated microorganisms and separated water;
The present invention is a wastewater treatment device comprising a device for entrapping and immobilizing the obtained concentrated microorganisms to obtain immobilized microorganisms, supplying the immobilized microorganisms to a treatment reactor, and returning the separated water to the first treatment reactor.

(作用) 次に図面に従って、本発明の作用について詳細に説明す
る。
(Operation) Next, the operation of the present invention will be explained in detail according to the drawings.

第1図は、本発明に係る廃水の処理装置の一例を示す構
成図である。本発明では、原水8の一部を培養槽1に導
き、原水の成分に対応した適切な微生物を集積培養し、
得られた高濃度に微生物を含有す・る培養液13を沈降
分離槽2に導く、ここで前記培養液は沈降分離され、濃
縮微生物14と分離水9が得られる。前記濃縮微生物は
、微生物固定化槽3に送られ、固定化微生物が製造され
る。得られた前記固定化微生物は、第1段処理リアクタ
ー4、第2段処理リアクター5、第3段(最終段)処理
リアクター6に供給され、前記分離水9は、処理リアク
ター流入原水に返送される。以上の各装置を包含するこ
とが本発明の第1の特徴である。原水8の一部は培養槽
1に流入され、ここで原水中の有機成分を主な基質とし
て廃水の成分に対応した適切な微生物が集積培養される
。又、必要に応じて、グルコース、酢酸等の基質、微生
物の培養を助ける窒素、リン無機塩類酵母エキス等を、
栄養物槽7より供給してもよい。始めに接種する微生物
としては、一般の都市下水処理汚泥や産業廃水処理汚泥
でも良いが、あらかしめ処理対象とする廃水を用いて、
小規模に集積培養した微生物を用いれば、早い立ち上が
りが期待できる。又、原水1月こ難分解性物質が含有さ
れる場合には、栄養物槽7より適量の前記難分解性物質
を培養槽に流入するとともに、前記難分解性物質を分解
する特殊な菌株を培養槽1に接種することにより、難分
解性物質を含有する廃水にも対応出来る。培養槽1内で
の前記微生物の培養条件は、微生物により変化するが概
ね、温度は摂氏25〜35度、pHは6〜8が望ましい
。又、好気的な条件とする場合には、空気、酸素等で曝
気を行い、溶存酸素の供給を行う。前記培養槽1内で集
積培養した培養液13は、沈降分離槽2へ流入する。沈
降分離槽2で、培養液13を静置の状態にして分離水9
と濃縮微生物14に分離する。分離を行うためには、前
記培養液13に含まれる微生物が静置により活性汚泥状
に凝集沈降することが望ましく、そのため前記濃縮微生
物14の一部は前記培養槽1へ返送する。この操作を繰
り返すことにより培養槽1の中で沈降する微生物は増加
し、ひいては、培養槽内の微生物濃度が増加する。前記
沈降分離槽2で生じた分離水9は、原水8と混合し、処
理リアクターに流入する。
FIG. 1 is a configuration diagram showing an example of a wastewater treatment apparatus according to the present invention. In the present invention, a part of the raw water 8 is introduced into the culture tank 1, and appropriate microorganisms corresponding to the components of the raw water are enriched and cultured.
The obtained culture solution 13 containing microorganisms at a high concentration is led to the sedimentation separation tank 2, where the culture solution is sedimented and separated to obtain concentrated microorganisms 14 and separated water 9. The concentrated microorganisms are sent to the microorganism immobilization tank 3 to produce immobilized microorganisms. The obtained immobilized microorganisms are supplied to the first stage treatment reactor 4, the second stage treatment reactor 5, and the third stage (final stage) treatment reactor 6, and the separated water 9 is returned to the raw water flowing into the treatment reactor. Ru. The first feature of the present invention is that it includes each of the above devices. A portion of the raw water 8 is flowed into the culture tank 1, where appropriate microorganisms corresponding to the components of the wastewater are enriched and cultured using the organic components in the raw water as a main substrate. In addition, as necessary, substrates such as glucose and acetic acid, nitrogen to help culture microorganisms, phosphorus inorganic salts, yeast extract, etc.
It may also be supplied from the nutrient tank 7. The microorganisms to be inoculated initially may be general municipal sewage treatment sludge or industrial wastewater treatment sludge, but if the wastewater to be treated is used in advance,
If microorganisms cultured on a small scale are used, a rapid start-up can be expected. In addition, if the raw water contains a non-degradable substance, an appropriate amount of the non-degradable substance is introduced into the culture tank from the nutrient tank 7, and a special strain of bacteria that decomposes the non-degradable substance is added. By inoculating the culture tank 1, it is possible to deal with wastewater containing difficult-to-decompose substances. The conditions for cultivating the microorganism in the culture tank 1 vary depending on the microorganism, but in general, it is desirable that the temperature be 25 to 35 degrees Celsius and the pH be 6 to 8. In addition, in the case of aerobic conditions, aeration is performed with air, oxygen, etc., and dissolved oxygen is supplied. The culture solution 13 that has been enriched and cultured in the culture tank 1 flows into the sedimentation separation tank 2 . In the sedimentation separation tank 2, the culture solution 13 is left standing and the separated water 9
and concentrated microorganisms 14. In order to carry out separation, it is desirable that the microorganisms contained in the culture solution 13 coagulate and settle in the form of activated sludge by standing still, and therefore a part of the concentrated microorganisms 14 is returned to the culture tank 1. By repeating this operation, the number of microorganisms settling in the culture tank 1 increases, and as a result, the concentration of microorganisms in the culture tank increases. The separated water 9 produced in the settling tank 2 mixes with the raw water 8 and flows into the treatment reactor.

次に、前記沈降分離槽2で得られた濃縮微生物14は固
定化槽3に送られる。ここで高分子槽15より供給され
る高分子中に包括し、固定化微生物を得る。現在、固定
化に使用する高分子として、天然高分子であるアルギン
酸、k−カラギーナン、寒天、ゼラチン、アルブミン等
、合成高分子であるアクリルアミド、光硬化性樹脂等が
知られているが、本発明においては、どの高分子を用い
てもよい。又、製造の方法により、固定化微生物の形状
はペレット状、シート状、ファイバー状等に成形出来る
が、これは処理リアクターの構造によって任意に選択出
来る。前記濃縮微生物14は、高分子槽15から供給さ
れる高分子と、任意の割合で混合され、前記固定化槽3
に送られ、固定化反応を行なう。得られた固定化微生物
の表面には多数の微細孔が開いており、原水中の成分は
、この微細孔を通過して内部に拡散する。一方、内部に
固定化された微生物は、この微細孔を通過出来ないので
、外部に漏出しにくく拡散した原水中の成分を代謝分解
しながら、担体中に保持される。
Next, the concentrated microorganisms 14 obtained in the sedimentation separation tank 2 are sent to the immobilization tank 3. Here, the microorganisms are incorporated into the polymer supplied from the polymer tank 15 to obtain immobilized microorganisms. Currently, natural polymers such as alginic acid, k-carrageenan, agar, gelatin, and albumin, and synthetic polymers such as acrylamide and photocurable resins are known as polymers used for immobilization. Any polymer may be used. Further, depending on the manufacturing method, the shape of the immobilized microorganism can be formed into pellets, sheets, fibers, etc., and this can be arbitrarily selected depending on the structure of the processing reactor. The concentrated microorganisms 14 are mixed with polymers supplied from the polymer tank 15 in an arbitrary ratio, and then transferred to the immobilization tank 3.
to perform the immobilization reaction. The surface of the obtained immobilized microorganism has many micropores, and components in the raw water pass through these micropores and diffuse inside. On the other hand, since the microorganisms immobilized inside cannot pass through the micropores, they are retained in the carrier while metabolizing and decomposing components in the diffused raw water that are difficult to leak to the outside.

上述のように、固定化微生物中の微生物濃度は、原水の
負荷量により、任意に選択出来、又、高分子に包括され
ることにより、物理的な安定が得られる事や高分子の緩
衝作用等により、対応出来る温度範囲、pH範囲は広く
なることが多い。得られた固定化微生物は、処理リアク
ターに供給される。固定化微生物、固定化酵素を用いる
バイオリアクターの構造として様々のものが提案されて
いる。固定床方式としては充填層型、模型、管壁、板状
の方式があり、流動床方式としては粒子分散型、板状型
がある。さらに分離膜との組み合わせによる限外濾過膜
型も考案されている。固定化微生物は、固定化反応の直
後では十分な強度があるが処理時間の経過とともに、微
生物の増殖も代謝により生成するガス、原水中の成分の
影響等で担体が膨張し、やがて崩壊することがある。し
たがって、複数の処理リアクターを連結し、多段′で8
!>′I+ 処理を行うことにより、後段の処理リアクターにかかる
負荷量を小さくし、後段の処理リアクターの担体の膨張
を小さくするとともに、前段から流入してくる遊離した
微生物や、担体の破片を後段の処理リアクターで捕捉す
る方法が有効である。
As mentioned above, the concentration of microorganisms in immobilized microorganisms can be arbitrarily selected depending on the loading amount of raw water, and physical stability can be obtained by being encapsulated in polymers, and the buffering effect of polymers etc., the applicable temperature range and pH range are often widened. The obtained immobilized microorganisms are supplied to a processing reactor. Various structures have been proposed for bioreactors using immobilized microorganisms and immobilized enzymes. Fixed bed systems include packed bed type, model, pipe wall, and plate type, and fluidized bed systems include particle dispersion type and plate type. Furthermore, an ultrafiltration membrane type in combination with a separation membrane has also been devised. Immobilized microorganisms have sufficient strength immediately after the immobilization reaction, but as processing time progresses, the carrier expands due to the proliferation of microorganisms, gases generated by metabolism, and the effects of components in the raw water, and eventually collapses. There is. Therefore, multiple processing reactors can be connected and 8
! >'I+ By performing the treatment, the amount of load applied to the downstream processing reactor is reduced, the expansion of the carrier in the downstream processing reactor is reduced, and the free microorganisms and debris of the carrier that flow in from the upstream stage are removed from the downstream stage. An effective method is to capture it in a processing reactor.

本発明の第2の特徴として固定化微生物を処理リアクタ
ーに供給する際には、上記の点を考慮し、第1段処理リ
アクターの劣化した固定化微生物を廃棄し、固定化直後
の十分な強度を持った固定化微生物を充填するとともに
、この処理リアクターを最終処理リアクターにし、第2
段処理リアクター以降を各々一段ずつ前へ位置するよう
に、順次、流入順序をずらすことがあげられる。
As a second feature of the present invention, when supplying immobilized microorganisms to the processing reactor, the above-mentioned points are taken into account, and the deteriorated immobilized microorganisms in the first stage processing reactor are discarded and the immobilized microorganisms are sufficiently strong immediately after immobilization. At the same time, this processing reactor is used as the final processing reactor, and the second
An example of this is to sequentially shift the inflow order so that the stages after the stage processing reactor are positioned one stage forward.

第1図は、3つの処理リアクターを連結した、3段処理
の例である。処理開始の時点では、原水8は、第1段処
理リアクターである、No、1処理リアクター4に流入
し、処理対象成分の大部分がここで処理される。次いで
第2段処理リアクターであるNo、2処理リアクター5
に流入し、最後に、最終段処理リアクターである、No
、3処理リアクターに流入する。第2段と最終段処理リ
アクターでは、第1段で処理しきれなかった処理対象成
分が処理され、処理水12として放流される。処理時間
の経過とともに、最も大きな負荷量がかかる、No、1
処理リアクター4の中の固定化微生物は、劣化し、膨張
、崩壊が始まり、流出水中に遊離した微生物や、担体の
破片等が混入するようになる。しかし、No、2処理リ
アクター5、No、3処理リアクター6を通る間に、遊
離した微生物、担体の破片等は、捕捉され、処理水12
の水質は悪化しない。N091処理リアクター4中の固
定化微生物の劣化が激しくなった場合には、中の固定化
微生物を廃棄し、固定化槽3で得られた、新しい、固定
化直後の、十分な強度を持った固定化微生物を充填する
。この時点で、原水8の流入経路を切り変え、まずNo
、2処理リアクター5に流入する。次にNo、3処理リ
アクター6に流入し、最後にNo、1処理リアクター4
に流入し、処理水12として放流される。ここでNo、
2処理リアクター5が、第1段処理リアクターに、NO
63処理リアクター6が、第2段処理リアクターに、N
o、1処理リアクター4が、最終段処理リアクターに順
次ずれたことになる。
FIG. 1 is an example of a three-stage process in which three process reactors are connected. At the start of the treatment, the raw water 8 flows into the No. 1 treatment reactor 4, which is the first stage treatment reactor, and most of the components to be treated are treated here. Next, the second stage processing reactor No. 2 processing reactor 5
Finally, the final stage processing reactor, No.
, 3 into the treatment reactor. In the second and final stage treatment reactors, components to be treated that could not be treated in the first stage are treated and discharged as treated water 12. No. 1, which takes the largest amount of load as processing time progresses
The immobilized microorganisms in the treatment reactor 4 begin to deteriorate, expand, and disintegrate, and free microorganisms, carrier fragments, and the like come to be mixed into the effluent water. However, while passing through the No. 2 treatment reactor 5 and the No. 3 treatment reactor 6, free microorganisms, carrier fragments, etc. are captured, and the treated water 12
water quality will not deteriorate. When the deterioration of the immobilized microorganisms in the N091 treatment reactor 4 becomes severe, the immobilized microorganisms inside are discarded and the new, freshly immobilized, sufficiently strong one obtained in the immobilization tank 3 is used. Fill with immobilized microorganisms. At this point, change the inflow route of raw water 8 and first
, flows into the two-process reactor 5. Next, it flows into No. 3 processing reactor 6, and finally No. 1 processing reactor 4.
and is discharged as treated water 12. No here,
The 2-processing reactor 5 supplies NO to the 1st-stage processing reactor.
63 processing reactor 6 becomes the second stage processing reactor, N
o, 1 processing reactor 4 has been sequentially shifted to the final stage processing reactor.

同様にして、No2処理リアクター5の固定化微生物が
劣化した場合には、劣化した固定化微生物を廃棄し、新
しく得られた固定化微生物を充填するとともに、原水8
はNo、3処理リアクター6に流入し、次いでNo、1
処理リアクター4に流入し、最後にNo、2処理リアク
ター5に流入し、処理水12として放流される。
Similarly, when the immobilized microorganisms in the No. 2 treatment reactor 5 deteriorate, the deteriorated immobilized microorganisms are discarded and the newly obtained immobilized microorganisms are filled, and the raw water 8
flows into No. 3 processing reactor 6, and then No. 1
The water flows into the treatment reactor 4, and finally flows into the No. 2 treatment reactor 5, where it is discharged as treated water 12.

上述のように、劣化した固定化微生物を廃棄し、新しく
得られた固定化微生物を充填した処理リアクターを、最
終段処理リアクターにすることで処理水質の悪化を防ぎ
、第2段処理リアクターとして、適度の負荷を担い、担
体中の微生物が増殖し、固定化微生物の活性が大きくな
った処理リアクターを、第1段処理リアクターにするこ
とにより、効果的な処理が行なえる。各処理りアクタ−
からは、少量ではあるが余剰汚泥11が発生するが、一
部は返送汚泥10として、培養槽1に返送され、残りは
系外に排出される。
As mentioned above, the degraded immobilized microorganisms are discarded and the treatment reactor filled with the newly obtained immobilized microorganisms is used as the final stage treatment reactor to prevent deterioration of the quality of the treated water, and as the second stage treatment reactor. Effective treatment can be carried out by using a processing reactor that carries an appropriate load, the microorganisms in the carrier proliferate, and the activity of the immobilized microorganisms increases as the first stage processing reactor. Each processing actor
Although a small amount of surplus sludge 11 is generated, a portion is returned to the culture tank 1 as return sludge 10, and the rest is discharged outside the system.

(発明の効果) 以上詳述したように、本発明によれば次のような効果が
得られる。
(Effects of the Invention) As detailed above, according to the present invention, the following effects can be obtained.

(1)、廃水中の成分を主な基質として、微生物の集積
培養を行うことにより、廃水中の成分に対応した適切な
固定化微生物が得られ、随時、処理リアクターに供給す
ることにより、効果的な処理が行なえる。
(1) By performing enrichment culture of microorganisms using components in wastewater as the main substrate, immobilized microorganisms suitable for the components in wastewater can be obtained, and by supplying them to the treatment reactor as needed, the effect can be improved. processing can be performed.

(2)、廃水の水質の変動や、難分解性物質を含有する
廃水にも対応出来る。
(2) It can respond to fluctuations in the quality of wastewater and to wastewater containing difficult-to-decompose substances.

(3)、新しい固定化微生物を充填した処理リアクター
を最終段にすることにより、前段から流入する、浮遊性
の微生物や担体の破片等を捕捉でき、処理水の水質が良
い。
(3) By using the treatment reactor filled with new immobilized microorganisms as the final stage, floating microorganisms, carrier fragments, etc. that flow in from the previous stage can be captured, and the quality of the treated water is good.

(4)、高濃度の固定化微生物を使用するため、装置は
小さくなり、多段処理を行っても、広大な面積を必要と
しない。
(4) Since a high concentration of immobilized microorganisms is used, the device is small and does not require a large area even if multistage processing is performed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る装置の一例を示す構成図。 、図において、 1:培養槽  2:沈降分離槽  3:固定化槽4:第
1段処理リアクター5:第2段処理リアクター6:第3
段処理リアクター7:栄養物槽/:坩養糟 2:沈降分離槽 3 : 固定イヒ槽 φ二 1七1おし44哩リアクタニ ア: タン11中勿オ竹 8′:原木 序高分子糟
FIG. 1 is a configuration diagram showing an example of a device according to the present invention. In the figure, 1: Culture tank 2: Sedimentation tank 3: Immobilization tank 4: 1st stage processing reactor 5: 2nd stage processing reactor 6: 3rd stage processing reactor
Stage treatment reactor 7: Nutrient tank /: Cultivation tank 2: Sedimentation separation tank 3: Fixed tank φ2 171 feet 44 feet reactor: Tan 11 medium bamboo 8': Log polymer grain

Claims (2)

【特許請求の範囲】[Claims] (1)、固定化微生物を充填した複数の処理リアクター
を連結し、多段処理を行う廃水の処理装置において、原
水の一部を流入させ、微生物を集積培養する培養槽と、
集積培養した微生物を濃縮微生物と分離水に分離する装
置と、前記濃縮微生物を包括固定化し固定化微生物を得
る装置を備え、前記分離水を第1段処理リアクターに返
送し、前記固定化微生物を処理リアクターに供給するこ
とを特徴とする廃水の処理装置。
(1) In a wastewater treatment device that connects a plurality of treatment reactors filled with immobilized microorganisms and performs multistage treatment, a culture tank that allows a portion of the raw water to flow in and accumulates and cultivates the microorganisms;
It is equipped with a device that separates the microorganisms that have been enriched and cultured into concentrated microorganisms and separated water, and a device that comprehensively immobilizes the concentrated microorganisms to obtain immobilized microorganisms, and returns the separated water to the first stage treatment reactor to remove the immobilized microorganisms. A wastewater treatment device characterized by supplying wastewater to a treatment reactor.
(2)、前記固定化微生物の供給において、第1段処理
リアクター中の劣化した固定化微生物を廃棄し、新しい
固定化微生物を充填する場合 に、第1段処理リアクターを最終段処理リアクターに、
第2段処理リアクター以降を各々一段ずつ前段へ位置す
るように、処理リアクターへの廃水の流入順序を変更出
来る特許請求の範囲の第1項記載の廃水の処理装置。
(2) In the supply of the immobilized microorganisms, when discarding the deteriorated immobilized microorganisms in the first stage processing reactor and filling with new immobilized microorganisms, the first stage processing reactor is changed to the final stage processing reactor,
2. The wastewater treatment apparatus according to claim 1, wherein the order in which wastewater flows into the treatment reactor can be changed so that the second stage treatment reactor and subsequent stages are positioned one stage upstream.
JP61081719A 1986-04-08 1986-04-08 Wastewater treatment equipment Expired - Lifetime JPH0638957B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61081719A JPH0638957B2 (en) 1986-04-08 1986-04-08 Wastewater treatment equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61081719A JPH0638957B2 (en) 1986-04-08 1986-04-08 Wastewater treatment equipment

Publications (2)

Publication Number Publication Date
JPS62237996A true JPS62237996A (en) 1987-10-17
JPH0638957B2 JPH0638957B2 (en) 1994-05-25

Family

ID=13754218

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61081719A Expired - Lifetime JPH0638957B2 (en) 1986-04-08 1986-04-08 Wastewater treatment equipment

Country Status (1)

Country Link
JP (1) JPH0638957B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56168883A (en) * 1980-05-29 1981-12-25 Ebara Infilco Co Ltd Treatment of waste water
JPS59127693A (en) * 1983-01-08 1984-07-23 Hitachi Plant Eng & Constr Co Ltd Treatment of waste water

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56168883A (en) * 1980-05-29 1981-12-25 Ebara Infilco Co Ltd Treatment of waste water
JPS59127693A (en) * 1983-01-08 1984-07-23 Hitachi Plant Eng & Constr Co Ltd Treatment of waste water

Also Published As

Publication number Publication date
JPH0638957B2 (en) 1994-05-25

Similar Documents

Publication Publication Date Title
KR101274721B1 (en) Method for biological disposal of organic wastewater and biological disposal apparatus
KR20140067271A (en) Core-shell composite having poly-vinylalcohol and alginate and method for fabricating the same
KR20060043555A (en) Method for producing immobilized microorganism, immobilized microorganism produced therefrom and a reaction apparatus using the same
CZ288239B6 (en) Apparatus for simultaneous biological removal of phosphorus and nitrogen from waste water and removal process thereof
CN101977854A (en) Wang sijing [cn]
CN108383239B (en) Integrated biological treatment process for shortcut nitrification anaerobic ammonia oxidation and phosphorus removal under intermittent aeration mode
KR20160052292A (en) Effective Biomass Producing System by Combining Anaerobic, Anoxic and Microalgae Cultivation Tank Organically
CN101580331B (en) Tubificidae-microorganism symbiotic system muddy water degradation continuous flow reactor and application thereof
KR101425874B1 (en) Apparatus and method for cultivating micro-algae with nitrite
CN106947711A (en) A kind of high applicability nitrifies the preparation method of microbial inoculum
CN106045026A (en) Anaerobic-facultative up-flow reactor based landfill leachate treatment method and equipment
JP2005313152A (en) Anaerobic ammonia oxidation method an method and apparatus for treating waste water
CN105174653A (en) Sewage treatment process and sewage treatment system for garbage landfill
JPS62237996A (en) Apparatus for treating waste water
CN205061691U (en) Biological sewage treatment system of not sectionalized membrane
KR101622936B1 (en) Apparatus and method for cultivating micro-algae applied ozone oxidation
JPS6231637B2 (en)
CN113149212A (en) Radial calcium carbonate biological filler, preparation method and application thereof in sewage treatment
CN112723566A (en) BAF aeration pipe and method for removing COD through BAF denitrification
CN110734146A (en) landfill leachate treatment method
CN105174461A (en) Filler biofilm culturing wastewater treatment process and filler biofilm culturing wastewater treatment system used for milk wastewater
JPS62102896A (en) Treatment of organic waste water containing colored substance
RU2753657C1 (en) Method for biological purification of waste water from phosphates
JPS63158194A (en) Biological treatment of organic sewage
CN111517586B (en) Device and process for treating low-carbon-nitrogen-ratio sewage based on short-cut denitrification