JPH0638957B2 - Wastewater treatment equipment - Google Patents

Wastewater treatment equipment

Info

Publication number
JPH0638957B2
JPH0638957B2 JP61081719A JP8171986A JPH0638957B2 JP H0638957 B2 JPH0638957 B2 JP H0638957B2 JP 61081719 A JP61081719 A JP 61081719A JP 8171986 A JP8171986 A JP 8171986A JP H0638957 B2 JPH0638957 B2 JP H0638957B2
Authority
JP
Japan
Prior art keywords
microorganisms
treatment reactor
treatment
immobilized
stage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61081719A
Other languages
Japanese (ja)
Other versions
JPS62237996A (en
Inventor
信幸 町田
純 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP61081719A priority Critical patent/JPH0638957B2/en
Publication of JPS62237996A publication Critical patent/JPS62237996A/en
Publication of JPH0638957B2 publication Critical patent/JPH0638957B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は固定化微生物を利用した、廃水の処理装置に関
する。
TECHNICAL FIELD The present invention relates to a wastewater treatment apparatus using immobilized microorganisms.

(従来の技術) 都市下水や、有機系産業廃水の処理には、活性汚泥法が
最も普及している。しかし、この活性汚泥法では、処理
装置容積当りの微生物濃度が低く、処理時間も長いこと
から装置が大型化し、広大な面積を必要とする。又、処
理後の固液分離の工程でしばしばバルキング現像が起こ
ること、多量の余剰汚泥が発生すること等多くの問題を
有する。これに対し、微生物を、様々な担体に付着させ
る固着型の処理装置が考えられ、浸漬炉床法や回転円板
法等が実用化されている。これらは担体の表面に微生物
が自然に付着し、膜を形成する現象を利用したものであ
り、処理装置容積当りの微生物濃度を高く維持すること
が出来、処理装置も小型に出来る。又、処理が安定に行
なわれている場合には、固液分離も容易である。しか
し、微生物活性の低下、処理水質の変動等により、生物
膜が剥離したり、生物膜の生成が困難になることがあ
り、維持管理が難しい。
(Prior Art) The activated sludge method is most popular for the treatment of municipal sewage and organic industrial wastewater. However, in this activated sludge method, the concentration of microorganisms per volume of the treatment equipment is low, and the treatment time is long, so that the equipment becomes large in size and requires a large area. In addition, there are many problems such as bulking development often occurring in the solid-liquid separation step after the treatment and generation of a large amount of excess sludge. On the other hand, a fixed-type processing device for adhering microorganisms to various carriers has been considered, and a dipping hearth method, a rotating disk method, and the like have been put into practical use. These utilize the phenomenon that microorganisms spontaneously adhere to the surface of a carrier to form a film, and it is possible to maintain a high concentration of microorganisms per unit volume of a processing apparatus, and to reduce the size of the processing apparatus. Also, solid-liquid separation is easy when the treatment is carried out stably. However, maintenance of the biofilm may be difficult because the biofilm may be peeled off or the biofilm may be difficult to produce due to a decrease in microbial activity, a change in treated water quality, or the like.

一方、医薬の製造や発酵工業の分野では、樹脂等に微生
物を包括固定し、ペレット状、膜状にして用いるバイオ
リアクター法が開発されており、近年廃水処理の分野に
おいても採用されはじめている。この方法では、微生物
をあらかじめ高濃度に培養し、固定化するため、微生物
濃度を、ある程度まで任意に高めることが可能である。
さらに固定化により生物活性が安定し、処理温度、pH等
の許容範囲が広くなることもある。更に菌体を包括固定
してあるため、固液分離も容易である。したがって、小
さな処理装置で、短時間のうちに処理が出来るという特
徴がある。
On the other hand, in the fields of pharmaceutical manufacturing and fermentation industry, a bioreactor method has been developed in which microorganisms are entrapped and immobilized in a resin or the like and used in the form of pellets or membranes, and in recent years it has also begun to be adopted in the field of wastewater treatment. In this method, since the microorganisms are previously cultured at a high concentration and immobilized, the concentration of the microorganisms can be arbitrarily increased to some extent.
Further, the immobilization stabilizes the biological activity, and the permissible range of treatment temperature, pH, etc. may be widened. Furthermore, since the cells are entrapped and fixed, solid-liquid separation is easy. Therefore, there is a feature that processing can be performed in a short time with a small processing device.

(発明が解決しようとする問題点) 固定化に供する微生物は、一般の下水処理場から得られ
る活性汚泥を濃縮して用いるか、又は活性汚泥を種汚泥
として任意の人工培地により培養し、分離操作により、
高濃度微生物が得られる。この場合、処理対象とする廃
水の組成が、微生物を培養した人工培地の組成と異なる
場合、十分な処理効率が得られないことがある。
(Problems to be solved by the invention) Microorganisms to be immobilized are used by concentrating activated sludge obtained from general sewage treatment plants, or by culturing activated sludge as seed sludge in any artificial medium and separating it. By operation,
Highly concentrated microorganisms are obtained. In this case, when the composition of the wastewater to be treated is different from the composition of the artificial medium in which the microorganism is cultured, sufficient treatment efficiency may not be obtained.

又、処理対象とする廃水の水質が変動した場合にも処理
効率が低下することがある。さらに、処理対象とする廃
水中に有害物質や難分解性の物質が含まれている場合に
は、処理効率の低下は著しい。
Further, the treatment efficiency may decrease even when the quality of the wastewater to be treated changes. Furthermore, when the wastewater to be treated contains harmful substances or substances which are hardly decomposed, the treatment efficiency is significantly reduced.

通常、微生物の固定化に使用する固定化担体としては、
アルギン酸、k-カラギーナン、アクリルアミド、光硬化
性樹脂等が知られており、微生物を固定化した時点で
は、十分な強度を持っているが、処理時間の経過ととも
に、微生物の増殖や、代謝により生成するガス、廃水中
の成分の影響等により担体は膨張し、やがて崩壊するこ
とがある。その結果、処理水中に遊離した微生物や担体
の破片が流出し、処理水質が悪化することがある。
Usually, as an immobilization carrier used for immobilization of microorganisms,
Alginic acid, k-carrageenan, acrylamide, photo-curable resin, etc. are known and have sufficient strength at the time of immobilization of microorganisms, but with the progress of treatment time, they are produced by the growth and metabolism of microorganisms. The carrier may expand and eventually collapse due to the influence of the generated gas and the components in the waste water. As a result, free microorganisms and carrier debris may flow out into the treated water, and the treated water quality may deteriorate.

本発明の目的は、前記従来技術の問題点を解消し、長期
間にわたり、効率良く処理を行ない、良質の処理水が得
られる固定化微生物による廃水の処理装置を提供するこ
とにある。
An object of the present invention is to solve the above-mentioned problems of the prior art and to provide an apparatus for treating wastewater by immobilized microorganisms, which can efficiently perform treatment for a long period of time and can obtain good quality treated water.

(問題点を解決するための手段) すなわち、本発明は、原水の一部を導き、前記原水中の
有機成分を主な基質とし、原水の成分に対応した適切な
微生物を高濃度に集積培養する培養槽と、得られた前記
微生物を分離し、濃縮微生物と、分離水を得る装置と、
得られた前記濃縮微生物を包括固定化し、固定化微生物
を得る装置とを備え、前記固定化微生物を処理リアクタ
ーに供給し、前記分離水を第1処理リアクターに返送す
る廃水の処理装置であって、前記固定化微生物を供給す
る際に、第1段処理リアクター中の劣化した固定化微生
物を廃棄し、新しい固定化微生物を充填する場合に、新
しい固定化微生物を充填した第1段処理リアクターを最
終段処理リアクターに、第2段処理リアクター以降を一
段ずつ前段へ位置するように、処理リアクターへの廃水
の流入順序を変更できることを特徴とする。
(Means for Solving Problems) That is, according to the present invention, a part of raw water is introduced, an organic component in the raw water is used as a main substrate, and an appropriate microorganism corresponding to the raw water component is concentrated and cultured at a high concentration. And a culture tank for separating the obtained microorganisms, concentrated microorganisms, and a device for obtaining separated water,
An apparatus for treating wastewater, comprising: a device for entrapping and immobilizing the obtained concentrated microorganisms to obtain immobilized microorganisms, supplying the immobilized microorganisms to a treatment reactor, and returning the separated water to the first treatment reactor. When supplying the immobilized microorganisms, the deteriorated immobilized microorganisms in the first-stage treatment reactor are discarded, and when a new immobilized microorganism is filled, the first-stage treatment reactor filled with the new immobilized microorganism is It is characterized in that the order of inflow of wastewater into the treatment reactor can be changed so that the second-stage treatment reactor and the subsequent stages are positioned one stage before the last-stage treatment reactor.

(作用) 次に図面に従って、本発明の作用について詳細に説明す
る。
(Operation) Next, the operation of the present invention will be described in detail with reference to the drawings.

第1図は、本発明に係る廃水の処理装置の一例を示す構
成図である。本発明では、原水8の一部を培養槽1に導
き、原水の成分に対応した適切な微生物を集積培養し、
得られた高濃度に微生物を含有する培養液13を沈降分離
槽2に導く、ここで前記培養液は沈降分離され、濃縮微
生物14と分離水9が得られる。前記濃縮微生物は、微生
物固定化槽3に送られ、固定化微生物が製造される。得
られた前記固定化微生物は、第1段処理リアクター4、
第2段処理リアクター5、第3段(最終段)処理リアク
ター6に供給され、前記分離水9は、処理リアクター流
入原水に返送される。原水8の一部は培養槽1に流入さ
れ、ここで原水中の有機成分を主な基質として廃水の成
分に対応した適切な微生物が集積培養される。又、必要
に応じて、グリコース、酢酸等の基質、微生物の培養を
助ける窒素、リン無機塩類酵母エキス等を、栄養物槽7
より供給してもよい。始めに接種する微生物としては、
一般の都市下水処理汚泥や産業廃水処理汚泥でも良い
が、あらかじめ処理対象とする廃水を用いて、小規模に
集積培養した微生物を用いれば、早い立ち上がりが期待
できる。又、原水中に難分解性物質が含有される場合に
は、栄養物槽7より適量の前記難分解性物質を培養槽に
流入するとともに、前記難分解性物質を分解する特殊な
菌株を培養槽1に接種することにより、難分解性物質を
含有する廃水にも対応出来る。培養槽1内での前記微生
物の培養条件は、微生物により変化するが概ね、温度は
摂氏25〜35度、pHは6〜8が望ましい。又、好気的な条
件とする場合には、空気、酸素等で曝気を行い、溶存酸
素の供給を行う。前記培養槽1内で集積培養した培養液
13は、沈降分離槽2へ流入する。沈降分離槽2で、培養
液13を静置の状態にして分離水9と濃縮微生物14に分離
する。分離を行うためには、前記培養液13に含まれる微
生物が静置により活性汚泥状に凝集沈降することが望ま
しく、そのため前記濃縮微生物14の一部は前記培養槽1
へ返送する。この操作を繰り返すことにより培養槽1の
中で沈降する微生物は増加し、ひいては、培養槽内の微
生物濃度が増加する。前記沈降分離槽2で生じた分離水
9は、原水8と混合し、処理リアクターに流入する。
FIG. 1 is a block diagram showing an example of a wastewater treatment apparatus according to the present invention. In the present invention, a part of the raw water 8 is introduced into the culture tank 1, and suitable microorganisms corresponding to the components of the raw water are accumulated and cultured,
The obtained culture broth 13 containing microorganisms at a high concentration is introduced into the sedimentation / separation tank 2, where the culture broth is sedimented and separated to obtain concentrated microorganisms 14 and separated water 9. The concentrated microorganisms are sent to the microorganism immobilization tank 3 to produce the immobilized microorganisms. The obtained immobilized microorganisms are used in the first stage treatment reactor 4,
It is supplied to the second stage treatment reactor 5 and the third stage (final stage) treatment reactor 6, and the separated water 9 is returned to the raw water flowing into the treatment reactor. Part of the raw water 8 flows into the culture tank 1, where appropriate microorganisms corresponding to the components of the wastewater are integrated and cultured by using the organic components of the raw water as a main substrate. In addition, if necessary, a substrate such as glucose, acetic acid, etc., nitrogen, phosphorus inorganic salts yeast extract, etc. for assisting the culture of microorganisms, etc.
You may supply more. The first microorganisms to inoculate are:
General municipal sewage treatment sludge or industrial wastewater treatment sludge may be used, but if the wastewater to be treated is used in advance and microorganisms accumulated in a small scale are used, a quick start-up can be expected. When the raw water contains a hardly-decomposable substance, an appropriate amount of the hardly-decomposable substance is introduced into the culture tank from the nutrient tank 7, and a special strain that decomposes the hardly-decomposable material is cultured. By inoculating the tank 1, it is possible to deal with waste water containing hardly decomposable substances. The culture conditions of the microorganism in the culture tank 1 vary depending on the microorganism, but it is generally desirable that the temperature is 25 to 35 degrees Celsius and the pH is 6 to 8. In addition, when aerobic conditions are used, aeration is performed with air, oxygen, etc., and dissolved oxygen is supplied. Culture solution accumulated in the culture tank 1
13 flows into the sedimentation separation tank 2. In the sedimentation / separation tank 2, the culture solution 13 is allowed to stand and separated into separated water 9 and concentrated microorganisms 14. In order to carry out the separation, it is desirable that the microorganisms contained in the culture solution 13 are aggregated and settled in the form of activated sludge upon standing. Therefore, part of the concentrated microorganisms 14 is contained in the culture tank 1
Return to. By repeating this operation, the number of microorganisms that settle in the culture tank 1 increases, which in turn increases the concentration of microorganisms in the culture tank. The separated water 9 generated in the sedimentation separation tank 2 is mixed with the raw water 8 and flows into the treatment reactor.

次に、前記沈降分離槽2で得られた濃縮微生物14は固定
化槽3に送られる。ここで高分子槽15より供給される高
分子中に包括し、固定化微生物を得る。現在、固定化に
使用する高分子として、天然高分子であるアルギン酸、
k-カラギーナン、寒天、ゼラチン、アルブミン等、合成
高分子であるアクリルアミド、光硬化性樹脂等が知られ
ているが、本発明においては、どの高分子を用いてもよ
い。又、製造の方法により、固定化微生物の形状はペレ
ット状、シート状、ファイバー状等に成形出来るが、こ
れは処理リアクターの構造によって任意に選択出来る。
前記濃縮微生物14は、高分子槽15から供給される高分子
と、任意の割合で混合され、前記固定化槽3に送られ、
固定化反応を行なう。得られた固定化微生物の表面には
多数の微細孔が開いており、原水中の成分は、この微細
孔を通過して内部に拡散する。一方、内部に固定化され
た微生物は、この微細孔を通過出来ないので、外部に漏
出しにくく拡散した原水中の成分を代謝分解しながら、
担体中に保持される。
Next, the concentrated microorganisms 14 obtained in the sedimentation separation tank 2 are sent to the immobilization tank 3. Here, it is entrapped in the polymer supplied from the polymer tank 15 to obtain an immobilized microorganism. Currently, as a polymer used for immobilization, a natural polymer, alginic acid,
Although k-carrageenan, agar, gelatin, albumin, and other synthetic polymers such as acrylamide and photocurable resins are known, any polymer may be used in the present invention. In addition, the shape of the immobilized microorganisms can be formed into a pellet shape, a sheet shape, a fiber shape or the like depending on the production method, and this can be arbitrarily selected depending on the structure of the treatment reactor.
The concentrated microorganisms 14 are mixed with the polymer supplied from the polymer tank 15 at an arbitrary ratio and sent to the immobilization tank 3,
Perform the immobilization reaction. A large number of fine pores are formed on the surface of the obtained immobilized microorganism, and the components in the raw water pass through these fine pores and diffuse inside. On the other hand, since the microorganisms immobilized inside cannot pass through these micropores, while metabolically decomposing the components in the raw water that are difficult to leak to the outside and diffused,
Retained in the carrier.

上述のように、固定化微生物中の微生物濃度は、原水の
負荷量により、任意に選択出来、又、高分子に包括され
ることにより、物理的な安定が得られる事や高分子の緩
衝作用等により、対応出来る温度範囲、pH範囲は広くな
ることが多い。得られた固定化微生物は、処理リアクタ
ーに供給される。固定化微生物、固定化酵素を用いるバ
イオリアクターの構造として様々のものが提案されてい
る。固定床方式としては充填層型、膜型、管型、板状の
方式があり、流動床方式としては粒子分散型、板状型が
ある。さらに分離膜との組み合わせによる限外炉過膜型
も考案されている。固定化微生物は、固定化反応の直後
では十分な強度があるが処理時間の経過とともに、微生
物の増殖も代謝により生成するガス、原水中の成分の影
響等で担体が膨張し、やがて崩壊することがある。した
がって、複数の処理リアクターを連結し、多段処理を行
うことにより、後段の処理リアクターにかかる負荷量を
小さくし、後段の処理リアクターの担体の膨張を小さく
するとともに、前段から流入してくる遊離した微生物
や、担体の破片を後段の処理リアクターで捕捉する方法
が有効である。
As described above, the concentration of microorganisms in the immobilized microorganisms can be arbitrarily selected according to the load amount of raw water, and by being included in the polymer, physical stability can be obtained and the buffering action of the polymer can be obtained. Therefore, the temperature range and pH range that can be handled are often widened. The obtained immobilized microorganism is supplied to the processing reactor. Various structures have been proposed as structures of bioreactors using immobilized microorganisms and immobilized enzymes. The fixed bed system includes a packed bed type, a membrane type, a tube type and a plate type, and the fluidized bed system includes a particle dispersion type and a plate type. Furthermore, an ultra-reactor over-membrane type by combining with a separation membrane has been devised. Immobilized microorganisms have sufficient strength immediately after the immobilization reaction, but as the treatment time elapses, the carrier expands due to the effects of gas generated by metabolism and components in raw water, and the carrier will eventually collapse. There is. Therefore, by connecting a plurality of treatment reactors and performing multi-stage treatment, the load applied to the treatment reactor of the subsequent stage is reduced, the expansion of the carrier of the treatment reactor of the succeeding stage is reduced, and the inflow from the preceding stage is released. It is effective to capture microorganisms and debris of the carrier in the treatment reactor in the subsequent stage.

本発明の特徴として固定化微生物を処理リアクターに供
給する際には、上記の点を考慮し、第1段処理リアクタ
ーの劣化した固定化微生物を廃棄し、固定化直後の十分
な強度を持った固定化微生物を充填するとともに、この
処理リアクターを最終処理リアクターにし、第2段処理
リアクター以降を各々一段ずつ前へ位置するように、順
次、流入順序をずらすことがあげられる。
As a feature of the present invention, when supplying the immobilized microorganisms to the treatment reactor, the deteriorated immobilized microorganisms in the first-stage treatment reactor are discarded in consideration of the above points, and sufficient strength immediately after immobilization is obtained. It is possible to load the immobilized microorganisms, make this treatment reactor the final treatment reactor, and sequentially shift the inflow order so that the second stage treatment reactor and the subsequent stages are positioned one stage forward.

第1図は、3つの処理リアクターを連結した、3段処理
の例である。処理開始の時点では、原水8は、第1段処
理リアクターである、No.1処理リアクター4に流入し、
処理対象成分の大部分がここで処理される。次いで第2
段処理リアクターであるNo.2処理リアクター5に流入
し、最後に、最終段処理リアクターである、No.3処理リ
アクターに流入する。第2段と最終段処理リアクターで
は、第1段で処理しきれなかった処理対象成分が処理さ
れ、処理水12として放流される。処理時間の経過ととも
に、最も大きな負荷量がかかる、No.1処理リアクター4
の中の固定化微生物は、劣化し、膨張、崩壊が始まり、
流出水中に遊離した微生物や、担体の破片等が混入する
ようになる。しかし、No.2処理リアクター5、No.3処理
リアクター6を通る間に、遊離した微生物、担体の破片
等は、捕捉され、処理水12の水質は悪化しない。No.1処
理リアクター4中の固定化微生物の劣化が激しくなった
場合には、中の固定化微生物を廃棄し、固定化槽3が得
られた、新しい、固定化直後の、十分な強度を持った固
定化微生物を充填する。この時点で、原水8の流入経路
を切り変え、まずNo.2処理リアクター5に流入する。次
にNo.3処理リアクター6に流入し、最後にNo.1処理リア
クター4に流入し、処理水12として放流される。ここで
No.2処理リアクター5が、第1段処理リアクターに、N
o.3処理リアクター6が、第2段処理リアクターに、No.
1処理リアクター4が、最終段処理リアクターに順次ず
れたことになる。
FIG. 1 is an example of a three-stage process in which three process reactors are connected. At the start of treatment, the raw water 8 flows into the No. 1 treatment reactor 4, which is the first stage treatment reactor,
Most of the components to be processed are processed here. Second then
It flows into the No. 2 treatment reactor 5 which is the stage treatment reactor, and finally into the No. 3 treatment reactor which is the final stage treatment reactor. In the second-stage and final-stage treatment reactors, the components to be treated that could not be treated in the first stage are treated and discharged as treated water 12. No. 1 processing reactor 4, which has the largest load as the processing time elapses
The immobilized microorganisms in the inside deteriorate, expand, and begin to collapse,
The liberated microorganisms, carrier debris, etc. become mixed in the effluent. However, while passing through the No. 2 treatment reactor 5 and the No. 3 treatment reactor 6, the liberated microorganisms, carrier debris, etc. are captured, and the quality of the treated water 12 does not deteriorate. When the immobilized microorganisms in the No. 1 treatment reactor 4 are severely deteriorated, the immobilized microorganisms in the reactor are discarded and the immobilization tank 3 is obtained. Fill with the immobilized microorganisms. At this point, the inflow path of the raw water 8 is switched to first flow into the No. 2 treatment reactor 5. Next, it flows into the No. 3 treatment reactor 6, finally flows into the No. 1 treatment reactor 4, and is discharged as treated water 12. here
No.2 processing reactor 5 is
o.3 Processing reactor 6 is the second stage processing reactor, No.
This means that the 1-treatment reactor 4 is sequentially displaced from the final-stage treatment reactor.

同様にして、No.2処理リアクター5の固定化微生物が劣
化した場合には、劣化した固定化微生物を廃棄し、新し
く得られた固定化微生物を充填するとともに、原水8は
No.3処理リアクター6に流入し、次いでNo.1処理リアク
ター4に流入し、最後にNo.2処理リアクター5に流入
し、処理水12として放流される。
Similarly, when the immobilized microorganisms in the No. 2 treatment reactor 5 are deteriorated, the deteriorated immobilized microorganisms are discarded, the newly obtained immobilized microorganisms are filled, and the raw water 8 is
It flows into the No. 3 treatment reactor 6, then into the No. 1 treatment reactor 4, finally into the No. 2 treatment reactor 5, and is discharged as treated water 12.

上述のように、劣化した固定化微生物を廃棄し、新しく
得られた固定化微生物を充填した処理リアクターを、最
終段処理リアクターにすることで処理水質の悪化を防
ぎ、第2段処理リアクターとして、適度の負荷を担い、
担体中の微生物が増殖し、固定化微生物の活性が大きく
なった処理リアクターを、第1段処理リアクターにする
ことにより、効果的な処理が行なえる。各処理リアクタ
ーからは、少量ではあるが余剰汚泥11が発生するが、一
部は返送汚泥10として、培養槽1に返送され、残りは系
外に排出される。
As described above, the deteriorated immobilized microorganisms are discarded, and the treatment reactor filled with the newly obtained immobilized microorganisms is used as the final stage treatment reactor to prevent deterioration of the treated water quality, and as the second stage treatment reactor, Bear a moderate load,
Effective treatment can be performed by using the treatment reactor in which the microorganisms in the carrier grow and the activity of the immobilized microorganisms becomes large as the first stage treatment reactor. Although a small amount of surplus sludge 11 is generated from each treatment reactor, a part of the sludge is returned to the culture tank 1 as return sludge 10 and the rest is discharged outside the system.

(発明の効果) 以上詳述したように、本発明によれば次のような効果が
得られる。
(Effects of the Invention) As described in detail above, according to the present invention, the following effects can be obtained.

(1),新しい固定化微生物を充填した処理リアクターを
最終段にすることにより、前段から流入する、浮遊性の
微生物や担体の破片等を捕捉でき、処理水の水質が良
い。
(1) By setting the treatment reactor filled with new immobilized microorganisms at the final stage, it is possible to capture the floating microorganisms and carrier debris flowing in from the previous stage, and the quality of the treated water is good.

(2),固定化微生物の劣化により、第1段処理リアクタ
ー中の固定化微生物を新しいものに充填し直した場合、
これまで第1段処理リアクターであったものを最終段と
して処理水質の悪化を防ぎ、更に第2段処理リアクター
以降を一段ずつ前段へ位置するように、処理リアクター
への廃水の流入順序を変更することにより、それまでの
期間で固定化微生物の活性が大きくなった第2段処理リ
アクターを最も負荷の大きい原水が流入する第1段処理
リアクターとすることにより、処理の安定化が計れる。
(2) When the immobilized microorganisms in the first-stage treatment reactor are recharged with new ones due to the deterioration of the immobilized microorganisms,
Until now, the first stage treatment reactor was used as the final stage to prevent deterioration of the treated water quality, and the order of the wastewater inflow to the treatment reactor was changed so that the second stage treatment reactor and the subsequent stages were positioned one stage before the other stage. As a result, the stabilization of the treatment can be achieved by using the second-stage treatment reactor in which the activity of the immobilized microorganisms has increased during that period as the first-stage treatment reactor into which the raw water with the largest load flows.

【図面の簡単な説明】 第1図は本発明に係る装置の一例を示す構成図。 図において、 1:培養槽、2:沈降分離槽、3:固定化槽 4:第1段処理リアクター、5:第2段処理リアクター 6:第3段処理リアクター、7:栄養物槽 8:原水、15:高分子槽である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a block diagram showing an example of an apparatus according to the present invention. In the figure, 1: culture tank, 2: sedimentation separation tank, 3: immobilization tank, 4: first stage treatment reactor, 5: second stage treatment reactor, 6: third stage treatment reactor, 7: nutrient tank 8: raw water , 15: Polymer tank.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】固定化微生物を充填した複数の処理リアク
ターを連結し、多段処理を行う廃水の処理装置におい
て、原水の一部を流入させ、微生物を集積培養する培養
槽と、集積培養した微生物を濃縮微生物と分離水に分離
する装置と、前記濃縮微生物を包括固定化し固定化微生
物を得る装置を備え、前記分離水を第1段処理リアクタ
ーに返送し、前記固定化微生物を処理リアクターに供給
する廃水の処理装置であって、前記固定化微生物を供給
する際に、第1段処理リアクター中の劣化した固定化微
生物を廃棄し、新しい固定化微生物を充填する場合に、
新しい固定化微生物を充填した第1段処理リアクターを
最終段処理リアクターに、第2段処理リアクター以降を
一段ずつ前段へ位置するように、処理リアクターへの廃
水の流入順序を変更できることを特徴とする廃水の処理
装置。
1. In a wastewater treatment apparatus for performing a multi-stage treatment by connecting a plurality of treatment reactors filled with immobilized microorganisms, a culture tank in which a part of raw water is introduced and the microorganisms are accumulated and cultured, and the accumulated microorganisms are cultured. Equipped with a device for separating concentrated microorganisms and separated water, and a device for entrapping and fixing the concentrated microorganisms to obtain immobilized microorganisms, returning the separated water to the first-stage treatment reactor, and supplying the immobilized microorganisms to the treatment reactor A waste water treatment apparatus for supplying the immobilized microorganisms, when the deteriorated immobilized microorganisms in the first-stage treatment reactor are discarded and new immobilized microorganisms are filled,
It is possible to change the order of inflow of wastewater into the treatment reactor so that the first-stage treatment reactor filled with the new immobilized microorganism is located in the final-stage treatment reactor and the second-stage treatment reactor and the subsequent stages are located in the preceding stages one by one. Wastewater treatment equipment.
JP61081719A 1986-04-08 1986-04-08 Wastewater treatment equipment Expired - Lifetime JPH0638957B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61081719A JPH0638957B2 (en) 1986-04-08 1986-04-08 Wastewater treatment equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61081719A JPH0638957B2 (en) 1986-04-08 1986-04-08 Wastewater treatment equipment

Publications (2)

Publication Number Publication Date
JPS62237996A JPS62237996A (en) 1987-10-17
JPH0638957B2 true JPH0638957B2 (en) 1994-05-25

Family

ID=13754218

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61081719A Expired - Lifetime JPH0638957B2 (en) 1986-04-08 1986-04-08 Wastewater treatment equipment

Country Status (1)

Country Link
JP (1) JPH0638957B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56168883A (en) * 1980-05-29 1981-12-25 Ebara Infilco Co Ltd Treatment of waste water
JPS59127693A (en) * 1983-01-08 1984-07-23 Hitachi Plant Eng & Constr Co Ltd Treatment of waste water

Also Published As

Publication number Publication date
JPS62237996A (en) 1987-10-17

Similar Documents

Publication Publication Date Title
US4284508A (en) Methane production by attached film
Jewell et al. Municipal wastewater treatment with the anaerobic attached microbial film expanded bed process
EP3411339B1 (en) Process for aerobic nitritation of ammonia
Schraa et al. High rate conversions of soluble organics with a thermophilic anaerobic attached film expanded bed
JP5150993B2 (en) Denitrification method and apparatus
Yang et al. Immobilized mixed microbial cells for wastewater treatment
JP2001170684A (en) Ammonia-containing waste water treatment method and device therefor
JP5098183B2 (en) Waste water treatment method and apparatus
WO2008091113A1 (en) Multi-stage cstr bioreactor system equipped with cell recycle unit
JP6821498B2 (en) How to set up a nitrogen-containing wastewater treatment system
KR20160052292A (en) Effective Biomass Producing System by Combining Anaerobic, Anoxic and Microalgae Cultivation Tank Organically
Elmitwalli et al. Treatment of domestic sewage at low temperature in a two-anaerobic step system followed by a trickling filter
JP2005313152A (en) Anaerobic ammonia oxidation method an method and apparatus for treating waste water
JPH0638957B2 (en) Wastewater treatment equipment
JPS6231637B2 (en)
JP2006061879A (en) Waste water treatment method and device
JPS62102896A (en) Treatment of organic waste water containing colored substance
JPH06154785A (en) High temperature anaerobic processing method and device
JPS63158194A (en) Biological treatment of organic sewage
RU2753657C1 (en) Method for biological purification of waste water from phosphates
Ilias et al. Membrane bioreactor model for removal of organics from wastewater
KR100583063B1 (en) Manufacturing method of immobilized-microorganism product using cellulose acetate and the immobilized-microorganism product produced by the method
CN117568331A (en) Quick membrane hanging method for biological carrier in MBBR (moving bed biofilm reactor) process
JPH0217676Y2 (en)
Jin et al. Research on a Sequencing Batch Three Phase Fluidized Bed Biofilm Reactor for Treatment of Sugar Factory Wastewater