JPS62236726A - Manufacture of multi layered substrate for additive process - Google Patents
Manufacture of multi layered substrate for additive processInfo
- Publication number
- JPS62236726A JPS62236726A JP61079221A JP7922186A JPS62236726A JP S62236726 A JPS62236726 A JP S62236726A JP 61079221 A JP61079221 A JP 61079221A JP 7922186 A JP7922186 A JP 7922186A JP S62236726 A JPS62236726 A JP S62236726A
- Authority
- JP
- Japan
- Prior art keywords
- pressure
- container
- composite material
- flexible container
- layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 81
- 239000000654 additive Substances 0.000 title claims abstract description 41
- 230000000996 additive effect Effects 0.000 title claims abstract description 41
- 239000000758 substrate Substances 0.000 title claims abstract description 41
- 238000004519 manufacturing process Methods 0.000 title claims description 10
- 230000008569 process Effects 0.000 title abstract description 33
- 239000002131 composite material Substances 0.000 claims description 62
- 239000010410 layer Substances 0.000 claims description 59
- 238000000465 moulding Methods 0.000 claims description 29
- 239000012790 adhesive layer Substances 0.000 claims description 18
- 239000000853 adhesive Substances 0.000 abstract description 9
- 230000001070 adhesive effect Effects 0.000 abstract description 9
- 238000005476 soldering Methods 0.000 abstract description 6
- 238000003825 pressing Methods 0.000 abstract description 3
- 230000015572 biosynthetic process Effects 0.000 abstract description 2
- 238000010030 laminating Methods 0.000 abstract 1
- 229920005989 resin Polymers 0.000 description 33
- 239000011347 resin Substances 0.000 description 33
- 238000003475 lamination Methods 0.000 description 20
- 238000007772 electroless plating Methods 0.000 description 5
- 238000007872 degassing Methods 0.000 description 4
- 239000004744 fabric Substances 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 238000000576 coating method Methods 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 238000000748 compression moulding Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- 229910001220 stainless steel Inorganic materials 0.000 description 3
- 239000010935 stainless steel Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 238000009489 vacuum treatment Methods 0.000 description 3
- CUZMQPZYCDIHQL-VCTVXEGHSA-L calcium;(2s)-1-[(2s)-3-[(2r)-2-(cyclohexanecarbonylamino)propanoyl]sulfanyl-2-methylpropanoyl]pyrrolidine-2-carboxylate Chemical compound [Ca+2].N([C@H](C)C(=O)SC[C@@H](C)C(=O)N1[C@@H](CCC1)C([O-])=O)C(=O)C1CCCCC1.N([C@H](C)C(=O)SC[C@@H](C)C(=O)N1[C@@H](CCC1)C([O-])=O)C(=O)C1CCCCC1 CUZMQPZYCDIHQL-VCTVXEGHSA-L 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 230000002950 deficient Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000005011 phenolic resin Substances 0.000 description 2
- 229920001568 phenolic resin Polymers 0.000 description 2
- 238000007747 plating Methods 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 229910000679 solder Inorganic materials 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000009713 electroplating Methods 0.000 description 1
- 238000007667 floating Methods 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 239000000123 paper Substances 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 230000007261 regionalization Effects 0.000 description 1
- 238000007788 roughening Methods 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
- 238000009849 vacuum degassing Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/46—Manufacturing multilayer circuits
- H05K3/4644—Manufacturing multilayer circuits by building the multilayer layer by layer, i.e. build-up multilayer circuits
Landscapes
- Laminated Bodies (AREA)
- Casting Or Compression Moulding Of Plastics Or The Like (AREA)
- Lining Or Joining Of Plastics Or The Like (AREA)
- Production Of Multi-Layered Print Wiring Board (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、アディティブ法用多層基板の製造方法に関し
、特に、はんだ耐熱性や寸法安定性等に優れ、ソリがな
いなど回路基板形成用としての良好な品質を有している
ばかりでなく、無電解メッキを基板との密着性良く、し
かも良好に実施できるなどアディティブ法による配線パ
ターンの形成用としての品質にも優れた多層基板を製造
できる方法に関する。[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for manufacturing a multilayer board for additive method, and in particular, it has excellent solder heat resistance, dimensional stability, etc., and is suitable for forming circuit boards because it has no warpage. In addition to having good quality, it is possible to manufacture multilayer boards with excellent quality for forming wiring patterns using additive methods, such as electroless plating with good adhesion to the board and good performance. Regarding the method.
アディティブ法による配線パターンの形成に用いる基板
としては、種々の構成のものが用いられているが、基板
内に内層回路を設けたり、あるいは一層構成では得られ
ない種々の特性が必要とされる場合には、多層構造から
なるものが適宜用いられている。Various configurations of substrates are used to form wiring patterns using the additive method, but when an inner layer circuit is provided within the substrate or various characteristics that cannot be obtained with a single layer configuration are required. For this, those having a multilayer structure are appropriately used.
例えば、内層回路等が設けられる内層板を配したアディ
ティブ法用多層基板は、内層板と、所望とする製品の構
成に応じて適宜選択されたブリプどの外層部材とを、内
層板が外層部材間に配置され、かつ各部材が所望の配列
となるように、これらを互いに重ね合せて形成した合材
を、圧縮成形して積層成形体とする過程を含む方法によ
って製造されてきた。For example, in a multilayer board for additive method, which has an inner layer board on which inner layer circuits etc. are provided, the inner layer board and an outer layer member such as a blip, which is appropriately selected depending on the configuration of the desired product, are connected between the inner layer board and the outer layer member. It has been manufactured by a method that includes a process of compression molding a composite material formed by stacking these members on top of each other so that each member is arranged in a desired arrangement to form a laminate molded product.
(発明が解決しようとする問題点)
上記のような従来の方法において合材を積層成形体とす
る際には、例えば40kg/cm2程度と非常に高いプ
レス圧で合材を圧縮成形する方法が用いられていた。す
なわち、このような高プレス圧とすることによって、低
プレス圧において顕著であった積層成形体中での、特に
樹脂からなる部分でのボイドの発生を防止することがで
きるという効果が得られる。(Problems to be Solved by the Invention) When making a composite material into a laminated molded product using the conventional method as described above, it is necessary to compression mold the composite material using a very high press pressure of about 40 kg/cm2, for example. It was used. That is, by setting such a high press pressure, it is possible to prevent the generation of voids in the laminate molded product, particularly in the resin portion, which was noticeable at a low press pressure.
ところが、このように圧縮成形過程で高プレス圧がかけ
られることによって、以下のような問題が新たに生じ、
従来の方法では多層基板に常に良好な品質を得ることが
できなかった。However, due to the high press pressure being applied during the compression molding process, the following new problems arise:
Conventional methods have not always been able to obtain good quality for multilayer substrates.
a)合材に十分に厚い樹脂層を有する部材を用いた場合
でも、この樹脂層が成形中に高いプレス圧で押されて広
がり、最終的に形成される樹脂層が薄くなってしまい、
この樹脂層を絶縁層として機能させる場合にはJそこに
良好な耐電圧を得ることができない。あるいはプリプレ
グを用いた場合に、成形中に樹脂が流動してプリプレグ
に用いられているガラスクロス等が樹脂から浮き出し、
これが基板表面に無電解メッキの不良原因となる凹凸を
発生させる。a) Even when a material with a sufficiently thick resin layer is used for the composite material, this resin layer is pressed and spread by high press pressure during molding, and the resin layer that is finally formed becomes thin.
When this resin layer functions as an insulating layer, a good withstand voltage cannot be obtained there. Or, when using prepreg, the resin flows during molding and the glass cloth used in the prepreg comes out from the resin.
This causes unevenness on the substrate surface, which causes defects in electroless plating.
b)プリプレグとアディティブ法用接着剤層の両者を用
いた合材では、これらの接触部分からこれらの混合が生
じ、そのために基板に配したアディティブ法用接着剤層
を有効に利用できず、無電解メッキの密着不良部分が発
生し易くなる。b) In a composite material that uses both prepreg and additive adhesive layer, mixing occurs at the contact area between them, making it impossible to effectively utilize the additive adhesive layer placed on the substrate, resulting in no use. Poor adhesion of electrolytic plating is likely to occur.
一方、油圧プレス等の機械的加圧手段を用いた多層基板
の製造においては、プレス圧が不均一に合材に加わり、
多層基板中の樹脂層に層厚ムラが発生することが避けら
れず、そのため得られた多層基板にソリが発生したり、
良好な寸法安定性やはんだ耐熱性が得られないという問
題があった。On the other hand, when manufacturing multilayer substrates using mechanical pressure means such as a hydraulic press, press pressure is applied unevenly to the composite material.
It is unavoidable that layer thickness unevenness occurs in the resin layer in the multilayer board, and as a result, the resulting multilayer board may warp or
There was a problem that good dimensional stability and soldering heat resistance could not be obtained.
本発明は、上記のような問題点に鑑みなされたものであ
り、その目的は、はんだ耐熱性や寸法安定性等に優れ、
ソリがないなど回路基板形成用としての良好な品質を有
しているばかりでなく、無電解メッキを基板との密着性
良く、しかも良好に実施できるなどアディティブ法によ
る配線パターンの形成用としての品質にも優れた多層基
板を製造できる方法を提供することにある。The present invention was made in view of the above-mentioned problems, and its purpose is to provide excellent soldering heat resistance, dimensional stability, etc.
Not only does it have good quality for forming circuit boards, such as no warping, but it also has good quality for forming wiring patterns using additive methods, such as good adhesion to the board and the ability to perform electroless plating. It is an object of the present invention to provide a method for manufacturing a multilayer board that is also excellent in terms of technology.
上記の目的は以下の本発明によって達成することができ
る。The above objects can be achieved by the following invention.
すなわち、本発明のアディティブ法用多層基板の製造方
法は、その内部が外部と気密に仕切られた柔軟性容器内
に、外層部材間に配置した内層板を有してなる合材を配
置した状態で、該容器内を予め減圧しておき、かつ/ま
たは該容器内を減圧しながら、該容器を配置した気体領
域の内圧を高めて該容器内の合材に圧力を加え、該合材
を構成する各部材を一体化し、成形する過程を含むこと
を特徴とする。That is, in the method for manufacturing a multilayer substrate for additive method of the present invention, a composite material having an inner layer plate arranged between outer layer members is placed in a flexible container whose inside is airtightly partitioned from the outside. Then, the pressure inside the container is reduced in advance and/or while the pressure inside the container is reduced, the internal pressure of the gas region in which the container is placed is increased to apply pressure to the composite material in the container, and the mixture material is It is characterized by including a process of integrating and molding the constituent members.
以下、図面を参照しつつ本発明の方法を詳細に説明する
。Hereinafter, the method of the present invention will be explained in detail with reference to the drawings.
本発明の方法においては、まず、例えば第1図(a)〜
(C)に示した例のように、所望とする多層基板に応じ
た構成の合材が形成される。In the method of the present invention, first, for example, FIGS.
As in the example shown in (C), a composite material having a configuration corresponding to a desired multilayer board is formed.
第1図(a)に示された合材は、内層回路が設けられて
いる内層基板1の上下面にプリプレグ2と、アディティ
ブ法用接着剤層と離形フィルムとからなる部材3aとを
この順に重ね合せて形成したものである。また、第1図
(b)に示された合材は、内層回路が設けられている内
層基板1の上下面にプリプレグ2と、離形フィルム3b
とをこの順に重ね合せて形成したものである。更に第1
図(C)に示された合材は、内層回路が設けられている
内層基板lの上下面にアディティブ法用接着剤層と離形
フィルムとからなる部材3aを重ね合せて形成したもの
である。もちろん、本発明において形成する合材の構成
は、これらの例に限定されるものではなく所望に応じて
種々の態様を取り得る。The composite material shown in FIG. 1(a) has a prepreg 2 on the upper and lower surfaces of an inner layer substrate 1 on which an inner layer circuit is provided, and a member 3a consisting of an additive adhesive layer and a release film. They are formed by sequentially overlapping each other. In addition, the composite material shown in FIG. 1(b) includes a prepreg 2 on the upper and lower surfaces of an inner layer substrate 1 on which an inner layer circuit is provided, and a release film 3b.
It is formed by overlapping these in this order. Furthermore, the first
The composite material shown in Figure (C) is formed by overlapping a member 3a consisting of an additive adhesive layer and a release film on the upper and lower surfaces of an inner layer substrate l on which an inner layer circuit is provided. . Of course, the structure of the composite material formed in the present invention is not limited to these examples, and can take various forms as desired.
なお、合材を構成するプリプレグ2としては、アディテ
ィブ法用多層基板の形成に用いられているものから適宜
選択されたものが使用される。また、プリプレグ2とし
て2種以上の異なるものを所望に応じて組合せて用いて
も良いことは言うまでもない。Note that the prepreg 2 constituting the composite material is appropriately selected from those used for forming multilayer substrates for additive methods. It goes without saying that two or more different prepregs 2 may be used in combination as desired.
次に、このようにして形成された合材は、その内部と外
部とを気密に仕切ることのできる柔軟性容器内に挿入さ
れる。Next, the composite material thus formed is inserted into a flexible container whose interior and exterior can be airtightly partitioned.
本発明で言う柔軟性容器とは、内容物に添ってその形状
を取り得る程度の柔軟性を有した容器であり、例えば、
内容物の変形に応じて、あるいは外部からの力に応じて
、容易にその形状を変化できる程度の柔軟性を有してい
ることを意味する。The flexible container referred to in the present invention is a container that is flexible enough to take on the shape of the contents, such as:
This means that it has enough flexibility to easily change its shape in response to deformation of the contents or in response to external forces.
また、本発明で用いる柔軟性容器としては、後に説明す
るような減圧処理が効果的に実施できる程度に気密性を
有しているものが使用される。Furthermore, the flexible container used in the present invention is one that has airtightness to the extent that depressurization treatment as described later can be effectively carried out.
このような柔軟性容器としては、例えば、樹脂、金属箔
、あるいは樹脂等を含浸した紙、布などからなるシート
から形成した袋状の容器などを挙げることができる。Examples of such a flexible container include a bag-shaped container formed from a sheet of resin, metal foil, or paper or cloth impregnated with resin or the like.
柔軟性容器内に挿入された合材は、後に詳述するような
積層成形過程を経て処理され、合材を構成する各部材が
一体化されるとともに成形されて積層成形体とされる。The composite material inserted into the flexible container is processed through a laminate molding process as will be described in detail later, and each member constituting the composite material is integrated and molded to form a laminate molded product.
本発明の方法においては、この積層成形過程が、合材が
挿入された柔軟性容器内を予め減圧しておいてから、か
つ/または該容器内を減圧しながら実施される。In the method of the present invention, this lamination molding process is carried out after the pressure inside the flexible container into which the composite material is inserted has been reduced in advance and/or while the pressure inside the container is reduced.
本発明でいう減圧処理とは、合材を挿入した柔軟性容器
内を脱気して、その内部を減圧して・処理する過程をい
う。The term "depressurization treatment" as used in the present invention refers to a process in which the interior of the flexible container into which the composite material is inserted is degassed, and the interior thereof is depressurized and treated.
予め減圧処理する場合には、例えば第2図(a)に示す
ように、必要に応じて均一な積層成形の際の圧力を得る
ために用りる支持板4に挟持させた状態の合材を柔軟性
容器5内に挿入した後、これに真空脱気装置6を接続し
て柔軟性容器5内を脱気すれば良い。このようにして、
脱気することにより、柔軟性容器5は第2図(b)に示
すように内容物表面に押し付けられて、それに添った形
状となる。あるいは、第3図に示したように、積層成形
過程を実施する気体領域7内に柔軟性容器5を配置し、
そこで積層成形過程を・実施する前に、上記の減圧処理
を実施すれば良い。In the case where the pressure is reduced in advance, for example, as shown in FIG. After inserting the flexible container 5 into the flexible container 5, the inside of the flexible container 5 may be degassed by connecting the vacuum deaerator 6 thereto. In this way,
By degassing, the flexible container 5 is pressed against the surface of the contents, as shown in FIG. 2(b), and assumes a shape that conforms to the surface of the contents. Alternatively, as shown in FIG. 3, the flexible container 5 is placed in the gas region 7 where the lamination molding process is carried out,
Therefore, before carrying out the lamination molding process, the above-mentioned pressure reduction treatment may be carried out.
また、積層成形過程と同時に実施する場合には、合材を
挿入した柔軟性容器を第3図に示すように気体領域9内
に配置した状態で、柔軟性容器内を脱気しながら、後述
の積層成形過程と同時に実施すれば良い。In addition, when carrying out the process simultaneously with the lamination molding process, the flexible container into which the composite material has been inserted is placed in the gas region 9 as shown in FIG. This may be carried out simultaneously with the lamination molding process.
なお、減圧処理における減圧の程度、温度あるいは処理
時間等は、用いる合材の構成に応じて、あるいは同時に
実施する場合の積層成形過程の操作条件などに応じて適
宜選択すれば良い。Note that the degree of pressure reduction, temperature, treatment time, etc. in the pressure reduction treatment may be appropriately selected depending on the composition of the composite material used, or the operating conditions of the lamination molding process when carried out simultaneously.
例えば、減圧の程度は、装置上可能な限り減圧するのが
効果的で通常100mm1g以下、好ましくは20m、
a+)1g以下が望ましい。積層成形の際の圧力を低く
するほど、またプリプレグや接着剤の流動性が小さい場
合はど減圧を十分に行なうのが良い。For example, it is effective to reduce the pressure as much as possible on the equipment, and usually 100 mm and 1 g or less, preferably 20 m,
a+) Desirably 1 g or less. The lower the pressure during lamination molding, or when the fluidity of the prepreg or adhesive is low, it is better to sufficiently reduce the pressure.
このような柔軟性容器中での減圧処理を実施することに
より、合材中の樹脂内から気泡を取り除いて、そこでの
ボイドの発生を防止できる。更に、合材を積層成形処理
する際に合材に加える圧力を大幅に低減化することがで
きるので、前述したような従来の高プレス圧による圧縮
成形での問題点を解消することが可能となり、その上、
気体による加圧によっても十分な積層成形過程が実施可
能となる。By carrying out such a depressurization process in the flexible container, air bubbles can be removed from the resin in the composite material, thereby preventing the generation of voids therein. Furthermore, since the pressure applied to the composite material can be significantly reduced when the composite material is laminated and molded, it is possible to eliminate the problems mentioned above with conventional compression molding using high press pressure. ,On top of that,
A sufficient lamination molding process can also be carried out by pressurizing with gas.
すなわち、合材に加わるプレス圧が低いので、合材を構
成する部材に用いた樹脂層が高いプレス圧によって押さ
れて広がり、薄くなってしまったり、部材にプリプレグ
を用いた場合、樹脂が流動してプリプレグのガラスクロ
ス等が樹脂がら浮き出し、基板表面に凹凸を発生させる
ようなことがなくなる。In other words, since the press pressure applied to the composite material is low, the resin layer used in the components that make up the composite material may be pushed by the high press pressure and spread and become thin, or if prepreg is used for the component, the resin may flow. This prevents the glass cloth of the prepreg from coming out from the resin and causing unevenness on the substrate surface.
なお、このように樹脂層に十分な層厚が得られることは
、樹脂層を絶縁層として機能させ、十分な耐電圧を得る
上で重要である。このことは、内層板に内層回路が設け
られている場合などには、更に重要となる。Note that it is important that the resin layer has a sufficient layer thickness in this way in order for the resin layer to function as an insulating layer and to obtain a sufficient withstand voltage. This becomes even more important when the inner layer board is provided with an inner layer circuit.
一方、プリプレグとアディティブ法用接着剤層とを用い
た合材の成形においても、プリプレグにアディティブ法
用接着剤層が必要以上に押し付けれられないので、プリ
プレグに用いた樹脂とアディティブ法用接着剤とが混合
されて、アディティブ法用接着剤を有効に利用できなく
なるということがない。On the other hand, even when molding a composite material using a prepreg and an additive adhesive layer, the additive adhesive layer is not pressed onto the prepreg more than necessary, so the resin used for the prepreg and the additive adhesive layer There is no possibility that the adhesive for the additive method cannot be used effectively due to the mixing of the two.
本発明において、減圧処理を、積層成形過程に先立って
、かつ/または積層成形過程と同時に行なうかは、用い
るプリプレグの特性と接着剤の特性から決定できる。例
えば、使用される樹脂の特性が、極端にレジンフローが
小さい場合においては、積層成形過程前に減圧処理を行
ない、十分に脱気した後、積層成形過程中も減圧処理す
るのが望ましい。In the present invention, whether the reduced pressure treatment is performed prior to and/or simultaneously with the lamination molding process can be determined based on the characteristics of the prepreg and the adhesive used. For example, if the characteristics of the resin used are that the resin flow is extremely small, it is desirable to perform a vacuum treatment before the lamination molding process, sufficiently deaerate the resin, and then perform a vacuum treatment during the lamination molding process as well.
本発明における積層成形過程は、気体が充填された領域
内に、合材を挿入した柔軟性容器を配置し、必要に応じ
た温度条件下で、該領域内の内圧(気体の圧力)を高め
て該容器内の合材に圧力を加え、合材の構成部材として
配した樹脂の機能を利用して各部材を圧着して一体化す
る方法によって実施される。従って、この積層成形過程
における、例えば温度、処理時間、気体圧等の操作条件
は、合材を構成する各部材、特にプリプレグ等に用いた
樹脂や内層板の種類、あるいは合材が予め減圧処理され
たものであるかどうかに応じて適宜選択される。しかし
ながら、本発明の方法においては、合材に適当な段階で
減圧処理を実施するので、この積層成形過程における気
体圧を、減圧処理をしない場合の174〜178程度と
することができ、それによって前述のような効果を有効
に得ることができる。In the lamination molding process of the present invention, a flexible container with a composite material inserted is placed in a region filled with gas, and the internal pressure (gas pressure) in the region is increased under appropriate temperature conditions. This is carried out by applying pressure to the composite material in the container and using the function of the resin disposed as a component of the composite material to press and integrate each member. Therefore, operating conditions such as temperature, processing time, gas pressure, etc. in this lamination molding process depend on each member making up the composite material, especially the type of resin or inner layer plate used for prepreg, etc., or whether the composite material has been previously subjected to reduced pressure treatment. The appropriate selection is made depending on whether the However, in the method of the present invention, the composite material is subjected to depressurization treatment at an appropriate stage, so the gas pressure during this lamination molding process can be reduced to about 174 to 178 ℃ compared to when no depressurization treatment is performed. The effects described above can be effectively obtained.
しかも、積層成形過程を気体圧を利用した加圧方法を用
いて実施することにより、合材に、その周囲から均一な
圧力を付加することが常に可能となり、従来の機械的加
圧手段を用いた方法におけるように、不均一な加圧状態
による樹脂層の層厚ムラの発生が防止でき、はんだ耐熱
性や寸法安定性等に優れ、ソリがないなど品質に優れた
多層基板を常に得ることが可能となる。Moreover, by carrying out the lamination molding process using a pressurization method that uses gas pressure, it is always possible to apply uniform pressure to the composite material from its surroundings, making it possible to use conventional mechanical pressurization methods. To always obtain a multilayer board with excellent quality such as preventing the occurrence of uneven layer thickness of the resin layer due to uneven pressurized conditions, excellent soldering heat resistance and dimensional stability, and no warping as in the method described above. becomes possible.
以下、本発明の方法において、積層成形過程を柔軟性容
器内を予め減圧しておき、かつ該容器内を減圧しながら
実施する場合の一例を説明する。Hereinafter, an example will be described in which, in the method of the present invention, the pressure inside the flexible container is reduced in advance and the pressure in the flexible container is reduced during the lamination molding process.
まず、第3図に示すように、所望に応じた構成に各部材
を重ね合わせて形成した合材(ここでは第1図(a)に
示した構成のもの)の上下に支持板としてのステンレス
板4を重ね合せて、これを柔軟性容器5内に挿入し、こ
れを更に気体8の領域を形成する容器7内に配置する。First, as shown in Figure 3, stainless steel supporting plates are placed above and below a composite material formed by overlapping each member in a desired configuration (here, the configuration shown in Figure 1 (a)). The plates 4 are placed one on top of the other and inserted into a flexible container 5, which in turn is placed in a container 7 forming a region of gas 8.
次に、真空脱気装置6を柔軟性容器5に接続した状態で
、真空脱気装置6を作動させ、柔軟性容器5内を脱気す
る。この脱気により柔軟性容器5は第2図(b)に示し
たように変形する。該容器内部に十分な減圧状態が得ら
れとところで、更に真空脱気装置6を作動させつつ容器
7の内圧(気体8の圧力)を高める。すると、気体8の
圧力によって柔軟性容器Sごと合材が加圧され、合材を
構成する各部材が一体化されて成形される。このとき、
柔軟性容器5は、先の脱気によってすでに変形して内容
物の外壁に添って密着しており、その結果、気体8から
の圧力は支障なく合材に付加される。容器7の内圧は前
述のように種々選択されるものであるが、例えば5〜2
5 kg/cm’程度とすることができる。Next, with the vacuum deaerator 6 connected to the flexible container 5, the vacuum deaerator 6 is operated to degas the inside of the flexible container 5. This degassing causes the flexible container 5 to deform as shown in FIG. 2(b). When a sufficiently reduced pressure state is obtained inside the container, the internal pressure of the container 7 (pressure of the gas 8) is increased while further operating the vacuum deaerator 6. Then, the composite material together with the flexible container S is pressurized by the pressure of the gas 8, and each member constituting the composite material is integrally molded. At this time,
The flexible container 5 has already been deformed by the previous degassing and is in close contact with the outer wall of the contents, so that the pressure from the gas 8 can be applied to the mixture without any problem. The internal pressure of the container 7 can be selected variously as mentioned above, for example, 5 to 2.
It can be about 5 kg/cm'.
なお、容器7の内圧を高めるには、気体8を容器7内に
送り込む、あるいは容器7の容積を減少させるなどの方
法を適用することができる。Note that in order to increase the internal pressure of the container 7, methods such as sending gas 8 into the container 7 or reducing the volume of the container 7 can be applied.
また、第3図の例のように、第1図(a)の構成の合材
を用いた場合、あるいは第1図(C)の構成の合材を用
いた場合には、積層成形過程を経て、最外層にアディテ
ィブ法用接着剤層が設けられた多層基板を直接得ること
ができる。また、第1図(b)に示した構成の合材を用
いた場合には、積層成形処理後に得られたM層体から離
形フィルムを剥離した後、所定表面にアディティブ法用
接着剤を、プロコ−ターやロールコータ−等を用いた塗
布法によって塗布し、これを硬化させて多層基板を得る
ことができる。In addition, as in the example shown in Fig. 3, when using a composite material having the structure shown in Fig. 1(a) or when using a composite material having the structure shown in Fig. 1(C), the lamination molding process is Through this process, a multilayer substrate having an additive adhesive layer provided on the outermost layer can be directly obtained. In addition, when using a composite material having the structure shown in FIG. 1(b), after peeling off the release film from the M-layer body obtained after the laminated molding process, an adhesive for additive method is applied to the predetermined surface. A multilayer substrate can be obtained by coating by a coating method using a procoater, a roll coater, or the like, and curing the coating.
以下、実施例に従って本発明を更に詳細に説明する。 Hereinafter, the present invention will be explained in more detail according to Examples.
実施例1
内層回路が形成されている東芝ケミカル製の内層板1(
厚さ; 0.6mm )と、東芝ケミカル製(品番、
TLP−55] )のプリプレグ2(厚さ; 0.2m
m )と、アディティブ法用接着剤層と離形フィルムと
からなるシート3a(デュポン社製のテトラ−フィルム
にN0R−フェノール樹脂系接着剤を塗布したもの)と
を第1図(a)に示したのと同様に互いに重ね合せて合
材を形成した。なお、この合材の最外層には、シート3
aの離形フィルムが位置するようにした。Example 1 Inner layer board 1 manufactured by Toshiba Chemical on which an inner layer circuit is formed (
Thickness: 0.6mm) and manufactured by Toshiba Chemical (product number:
TLP-55] prepreg 2 (thickness: 0.2 m
Fig. 1(a) shows a sheet 3a (made by DuPont Tetra film coated with N0R-phenolic resin adhesive) and a sheet 3a consisting of an adhesive layer for additive method and a release film. They were stacked on top of each other in the same manner as before to form a composite material. In addition, the outermost layer of this composite material is sheet 3.
The release film shown in a was placed in the same position.
次に、この合材をナイロン製の袋状容器5内に挿入−し
てから、第3図に示したような構成の空気8が充填され
ている容器7内に配置し、袋状容器5と真空脱気装置6
とを接続した。Next, this composite material is inserted into a bag-like container 5 made of nylon, and then placed in a container 7 filled with air 8 having the structure shown in FIG. and vacuum deaerator 6
was connected.
なお、容器7には容器内に空気を送り込んでその内圧を
高めるための装置(不図示)を設けである。Note that the container 7 is provided with a device (not shown) for feeding air into the container to increase its internal pressure.
この状態で、真空脱気装置6を作動させ、柔軟性容器5
内を脱気し、十分な減圧状態が該容器内に得られたとこ
ろで、更に、脱気装置6を作動させつつ容器7に空気を
送り込んでその内圧を14kg/CII+2程度に高め
、それにより柔軟性容器5内の合材に圧力をかけてこれ
を積層成形処理し、アディティブ法用多層基板を得た。In this state, the vacuum deaerator 6 is operated, and the flexible container 5
After the inside of the container is degassed and a sufficient reduced pressure state is obtained in the container, air is fed into the container 7 while operating the deaerator 6 to increase the internal pressure to about 14 kg/CII + 2, thereby making the container flexible. A multilayer substrate for additive method was obtained by applying pressure to the composite material in the container 5 and carrying out a lamination molding process.
なお、柔軟性容器5内の脱気の程度は、 5mmHgで
あり、また容器7内の温度は170℃であった。The degree of degassing in the flexible container 5 was 5 mmHg, and the temperature in the container 7 was 170°C.
更に、上記の操作を繰返してアディティブ法用多層基板
の多数を得た。得られた基板から任意に選択した2個(
試料AIILI−1−1−2)を用いて、以Fの項目に
ついての試験を実施し、これを評価した。その結果を表
1に示す。Furthermore, the above operation was repeated to obtain a large number of multilayer substrates for additive method. Two pieces arbitrarily selected from the obtained substrates (
Using sample AIILI-1-1-2), tests regarding the following items were conducted and evaluated. The results are shown in Table 1.
a)樹脂層の層厚;
各基板におけるプリプレグとアディティブ法用接着剤層
とから形成された樹脂層の層厚を計測し、理論厚に対し
て上限と下限を示した。a) Layer thickness of resin layer; The layer thickness of the resin layer formed from the prepreg and additive adhesive layer on each substrate was measured, and the upper and lower limits of the theoretical thickness were shown.
b)樹脂層でのボイドの発生:
積層成形品を目視で観察することにより、プリプレグと
アディティブ法用接着剤層とから形成された樹脂層にボ
イドの発生があるかどうかを試験した。ボイドの発生が
顕著に認められたものをO1認ぬれなかったものを×と
した。b) Occurrence of voids in resin layer: By visually observing the laminate molded product, it was tested whether or not voids were generated in the resin layer formed from the prepreg and the additive adhesive layer. Those in which the occurrence of voids was significantly observed were marked as O, and those in which no voids were observed were marked as ×.
C)基板表面の平滑性:
各基板の表面を、表面粗さ計によって111察し、基板
表面に顕著な凹凸の発生があるがどうかを試験し、基板
表面に凹凸の発生が顕著に認められたものを0、認ぬれ
なかったものを×とした。C) Smoothness of the substrate surface: The surface of each substrate was inspected using a surface roughness meter and tested to see if there was any noticeable unevenness on the substrate surface. Those that were not approved were marked as 0, and those that were not approved were marked as ×.
d)回路パターン形成における不良箇所の発生;基板か
ら離形フィルムを剥離し、露出させた接着剤を粗化した
後、そこにめっき触媒を付着させてから、回路パターン
以外の部分にめっきレジストを形成した後、無電解めっ
き法を行なうアディティブ法によって、基板のそれぞれ
に回路パターンを形成し、回路パターンに不良箇所が発
生したかどうかを目視により観察し、不良箇所の発生が
認められたものをO1認めれなかったものを×とした。d) Occurrence of defective areas during circuit pattern formation: After peeling off the release film from the substrate and roughening the exposed adhesive, a plating catalyst is attached thereto, and then a plating resist is applied to areas other than the circuit pattern. After the formation, a circuit pattern is formed on each board using an additive method using electroless plating, and the circuit pattern is visually observed to see if any defective areas have occurred. Those in which O1 was not recognized were marked as ×.
e)回路パターンの密着性;
上記d)においで基板表面に形成された回路パターンの
基板表面との密着性を、引剥し強度を測定して評価し、
良好なものをO1不良であったものを×とした。e) Adhesion of the circuit pattern; Evaluate the adhesion of the circuit pattern formed on the substrate surface in d) above to the substrate surface by measuring the peel strength,
Those that were good were marked as O1 and those that were poor were marked as ×.
f)ソリ:
各基板を、定盤上に置きスキマゲージで、基板にソリの
発生があるがどうかを試験し、基板にソリが認められた
ものをO,認めれなかったものを×とした。f) Warpage: Each board was placed on a surface plate and tested with a feeler gauge to see if there was any warpage on the board. Those where warpage was observed were rated O, and those where no warpage was observed were rated x.
g)はんだ耐熱性;
前記d)においてその表面に無電解銅め・つきを行なっ
た基板を25x25nunの大きさに切断した後、26
0℃のはんだトに浮かべ20秒以上たっても、ふくれ、
はがれが発生しなかったものを0120秒たたないうち
に、ふくれ、はがれが発生したものを×とした。g) Soldering heat resistance; After cutting the board whose surface was electroless copper plated in d) above into a size of 25x25nun,
Even after floating it on a solder plate at 0℃ for more than 20 seconds, it does not swell.
Those in which no peeling occurred were rated as x, and those in which blistering and peeling occurred within 0120 seconds were rated as x.
実施例2
内層回路が形成されている東芝ケミカル製の内層板1(
厚さ; 0.8mm )と、アディティブ法用接着剤層
と離形フィルムとからなるシート3a(デュポン社製の
テトラ−フィルムにN0R−フェノール樹脂系接着剤を
塗布したもの)とを第1図(C)に示したのと同様に互
いに重ね合せ合材を形成した。Example 2 Inner layer board 1 manufactured by Toshiba Chemical on which an inner layer circuit is formed (
Thickness: 0.8 mm) and a sheet 3a consisting of an adhesive layer for additive method and a release film (a Tetra film made by DuPont Co., Ltd. coated with N0R-phenolic resin adhesive) are shown in Fig. 1. A composite material was formed by overlapping each other in the same manner as shown in (C).
なお、この合材の最外層には、シート3aの離形フィル
ムが位置するようにした。Note that the release film of the sheet 3a was positioned at the outermost layer of this composite material.
次に、この合材を、実施例1と同様にして積層形成処理
し、アディティブ法用多層基板の多数を得た。Next, this composite material was laminated and formed in the same manner as in Example 1 to obtain a large number of multilayer substrates for additive method.
このようにして得られたアディティブ法用多層基板から
任意に選択した2個(試料A1112−1〜2−2)を
実施例1と同様にして評価した。その結果を表1に示す
。Two arbitrarily selected samples (Samples A1112-1 to A1112-2-2) from the multilayer substrates for additive method obtained in this manner were evaluated in the same manner as in Example 1. The results are shown in Table 1.
なお、本実施例において得られた多層基板における樹脂
層は、アディティブ法用接着剤層から形成されたもので
ある。Note that the resin layer in the multilayer substrate obtained in this example was formed from an additive adhesive layer.
比較例1
実施例1で用いたのと同様の構成の合材の上下に反テン
レス製の板を重ねてから、油圧プレスの熱板間にこれを
挿入し、油圧プレスを作動させ、熱板によって、170
℃、14 kg/cm2の条件でプレスして合材を構成
する各部材を一体化して成形し、更にこの操作を繰返し
てアディティブ法用多層基板を多数得た。Comparative Example 1 After stacking anti-stainless steel plates on top and bottom of a composite material having the same structure as that used in Example 1, the plates were inserted between the hot plates of a hydraulic press, the hydraulic press was operated, and the hot plate by 170
℃ and 14 kg/cm2 to integrally mold each member constituting the composite material, and this operation was repeated to obtain a large number of multilayer substrates for additive methods.
得られた基板から任意に選択した2個(試料A11−1
〜1l−2)について実施例1と同様にして評価した結
果を表1に示す。Two pieces arbitrarily selected from the obtained substrates (sample A11-1
~1l-2) was evaluated in the same manner as in Example 1, and the results are shown in Table 1.
比較例2
合材のプレス圧を40kg/cm2とする以外は比較例
1と同様にしてアディティブ法用多層基板を多数得た。Comparative Example 2 A large number of multilayer substrates for additive method were obtained in the same manner as Comparative Example 1 except that the press pressure of the composite material was 40 kg/cm 2 .
得られた基板から任意に選択した2個(試料A12−1
〜12−2)について実施例1と同様にして評価した結
果を表1に示す。Two arbitrarily selected substrates from the obtained substrates (sample A12-1
-12-2) were evaluated in the same manner as in Example 1, and the results are shown in Table 1.
〔発明の効果〕
本発明の方法に、おいては、合材を減圧処理し、かつ気
体による加圧方法で積層成形過程を実施することによっ
て、以下のような効果が得られる。[Effects of the Invention] In the method of the present invention, the following effects can be obtained by subjecting the composite material to reduced pressure treatment and carrying out the lamination molding process using a pressurization method using gas.
a)減圧処理により、樹脂中の気泡が効果的に取り除か
れボイドの発生が防止できる。a) The vacuum treatment effectively removes air bubbles in the resin and prevents the generation of voids.
b)減圧処理により、合材の積層成形過程に低プレス圧
を適用でき、従来の高プレス圧での方法におけるような
樹脂層の層厚の減少や、プリプレグを用いた場合のガラ
スクロス等の浮き出しによる基板表面での無電解メッキ
の不良の原因となる凹凸の発生を防止できるので、十分
な層厚の樹脂層を形成でき、また基板表面に良好な平滑
性を得ることができる。b) Due to the reduced pressure treatment, low press pressure can be applied to the lamination molding process of composite materials, reducing the layer thickness of the resin layer as in the conventional high press pressure method, and reducing the thickness of glass cloth etc. when using prepreg. Since it is possible to prevent the occurrence of unevenness on the surface of the substrate due to embossment, which causes defects in electroless plating, it is possible to form a resin layer with a sufficient thickness and to obtain good smoothness on the surface of the substrate.
C)プリプレグとアディティブ法用接着剤層とを用いた
合材の成形においても、プリプレグにアディティブ法用
接着剤層が必要以上に押し付けれられないので、プリプ
レグに用いた樹脂とアディティブ法用接着剤とが混合さ
れて、アディティグ法用接着剤の機能が低下してしまう
ということがない。C) Even when molding a composite material using a prepreg and an additive adhesive layer, the additive adhesive layer is not pressed onto the prepreg more than necessary, so the resin used for the prepreg and the additive adhesive layer are There is no possibility that the function of the Aditig adhesive will deteriorate due to mixing of the two.
d)合材に、その周囲から均一な圧力を付加することが
常に可能となり、従来の機械的加圧手段を用いた方法に
おけるように、不均一な加圧状態による樹脂層の層厚ム
ラの発生が防止でき、はんだ耐熱性や寸法安定性等に優
れ、ソリがないなど品質に優れた多層基板を常に得るこ
とが可能となる。d) It is always possible to apply uniform pressure to the composite material from the surrounding area, which eliminates uneven layer thickness of the resin layer due to uneven pressurization, unlike in methods using conventional mechanical pressure means. It is possible to always obtain a multilayer board with excellent quality such as prevention of occurrence, excellent soldering heat resistance, dimensional stability, etc., and no warping.
従って、本発明によれば、回路基板形成用としてばかり
でなく、アディティブ法による配線パターン形成用とし
ての品質にも優れた多層基板を供給することが可能とな
った。Therefore, according to the present invention, it has become possible to supply a multilayer board with excellent quality not only for forming a circuit board but also for forming a wiring pattern by an additive method.
第1図(a)〜(C)は、本発明の方法に用いる合材の
構成例を示す側面図であり、第2図(a)及び第2図(
b)は本発明の方法における減圧過程を示すための合材
を柔軟性容器内に配置した際の模式的概略図、第3図は
発明の方法における積層成形過程を示すための合材を気
体領域内に配置した際の模式的概略図である。
1;内層板 2;プリプレグ
3a:アディティブ法用接着剤層と離形フィルムとから
なるシート
3b;III形フィルム 4;ステンレス板5;柔軟
性容器 6;真空脱気装置7;気体領域を形成する
容器
8:気体FIGS. 1(a) to (C) are side views showing examples of the composition of the composite material used in the method of the present invention, and FIGS.
b) is a schematic diagram of the composite material placed in a flexible container to show the depressurization process in the method of the present invention, and Figure 3 is a schematic diagram of the composite material placed in a gaseous state to show the layered molding process in the method of the invention. It is a typical schematic diagram at the time of arrangement|positioning in a area|region. 1; Inner layer plate 2; Prepreg 3a: Sheet 3b consisting of additive adhesive layer and release film; Type III film 4; Stainless steel plate 5; Flexible container 6; Vacuum degassing device 7; Forms gas region Container 8: Gas
Claims (1)
、外層部材間に配置した内層板を有してなる合材を配置
した状態で、該容器内を予め減圧しておき、かつ/また
は該容器内を減圧しながら、該容器を配置した気体領域
の内圧を高めて該容器内の合材に圧力を加え、該合材を
構成する各部材を一体化し、成形する過程を含むことを
特徴とするアディティブ法用多層基板の製造方法。 2)前記合材が、プリプレグ間に挾み込まれた内層板を
有してなるものである特許請求の範囲第1項記載のアデ
ィティブ法用多層基板の製造方法。 3)前記合材が、その最外層にアディティブ法用接着剤
層を有する部材が配置されてなるものである特許請求の
範囲第1項または第2項記載のアディティブ法用多層基
板の製造方法。 4)前記内層板に内層回路が設けられてなる特許請求の
範囲第1項〜第3項のいずれかに記載のアディティブ法
用多層基板の製造方法。[Claims] 1) In a flexible container whose inside is airtightly partitioned from the outside, a composite material having an inner layer plate arranged between outer layer members is placed, and the inside of the container is preliminarily inspected. The pressure is reduced and/or while the pressure inside the container is reduced, the internal pressure of the gas region in which the container is placed is increased to apply pressure to the composite material in the container, thereby integrating each member constituting the composite material. 1. A method for manufacturing a multilayer substrate for an additive method, the method comprising a step of molding. 2) The method for producing a multilayer substrate for additive method according to claim 1, wherein the composite material has an inner layer plate sandwiched between prepregs. 3) The method for producing a multilayer substrate for additive method according to claim 1 or 2, wherein the composite material has a member having an adhesive layer for additive method disposed in its outermost layer. 4) The method for manufacturing a multilayer substrate for additive method according to any one of claims 1 to 3, wherein the inner layer board is provided with an inner layer circuit.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61079221A JPS62236726A (en) | 1986-04-08 | 1986-04-08 | Manufacture of multi layered substrate for additive process |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61079221A JPS62236726A (en) | 1986-04-08 | 1986-04-08 | Manufacture of multi layered substrate for additive process |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS62236726A true JPS62236726A (en) | 1987-10-16 |
Family
ID=13683859
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61079221A Pending JPS62236726A (en) | 1986-04-08 | 1986-04-08 | Manufacture of multi layered substrate for additive process |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62236726A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0226096A (en) * | 1988-07-15 | 1990-01-29 | Yokohama Rubber Co Ltd:The | Manufacture of additive process wiring board |
-
1986
- 1986-04-08 JP JP61079221A patent/JPS62236726A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0226096A (en) * | 1988-07-15 | 1990-01-29 | Yokohama Rubber Co Ltd:The | Manufacture of additive process wiring board |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5098646B2 (en) | Circuit board manufacturing method | |
US7816611B2 (en) | Circuit board | |
US8007629B2 (en) | Method of manufacturing multi-layer circuit board | |
US7281325B2 (en) | Method of manufacturing circuit board | |
US7716825B2 (en) | Method for manufacturing printed wiring board | |
JPS62236726A (en) | Manufacture of multi layered substrate for additive process | |
JP3277195B2 (en) | Multilayer printed wiring board and method of manufacturing the same | |
JP2003298212A (en) | Printed wiring board and manufacturing method thereof | |
TWI224556B (en) | Method and apparatus for manufacturing multi-layer printed wiring board | |
JPS62236727A (en) | Multi layer substrate for additive process | |
JPH10190225A (en) | Manufacture of multiplayer printed wiring board | |
JPH0697661A (en) | Manufacture of ceramics multi-layer substrate | |
JPH09153682A (en) | Manufacture of multilayered printed board | |
RU2619913C2 (en) | Method of printed circuit board filled transition metallized holes producing | |
JPH0235477B2 (en) | ||
JPH0790626B2 (en) | Laminated board manufacturing method | |
JPH05110254A (en) | Manufacture of multilayer printed wiring board | |
JPH036093A (en) | Prepreg sheet for multilayer printed wiring board | |
JPH02181997A (en) | Multilayer printed circuit board | |
US20230053225A1 (en) | Via Bond attachment | |
JPH0430595A (en) | Manufacture of metallic base printed circuit board | |
JPH05110256A (en) | Manufacture of copper-clad laminated board for multilayer printed board | |
JPH06344502A (en) | Production of laminated sheet | |
JPH0563304B2 (en) | ||
JPH04215498A (en) | Manufacture of multilayer circuit board |