JPH0563304B2 - - Google Patents

Info

Publication number
JPH0563304B2
JPH0563304B2 JP13190989A JP13190989A JPH0563304B2 JP H0563304 B2 JPH0563304 B2 JP H0563304B2 JP 13190989 A JP13190989 A JP 13190989A JP 13190989 A JP13190989 A JP 13190989A JP H0563304 B2 JPH0563304 B2 JP H0563304B2
Authority
JP
Japan
Prior art keywords
prepreg
resin
metal plate
hole
flowability
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP13190989A
Other languages
Japanese (ja)
Other versions
JPH02310040A (en
Inventor
Koji Sato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP13190989A priority Critical patent/JPH02310040A/en
Publication of JPH02310040A publication Critical patent/JPH02310040A/en
Publication of JPH0563304B2 publication Critical patent/JPH0563304B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

本発明は、金属板を基板として用いた多層の電
気積層板の製造方法に関するものである。
The present invention relates to a method for manufacturing a multilayer electrical laminate using a metal plate as a substrate.

【従来の技術】[Conventional technology]

金属板2を基板とする電気積層板においては、
スルーホール5を形成するために孔明きの金属板
2が用いられる。すなわち、第3図aに示すよう
に金属板2にスルーホール5を形成すべき箇所に
おいてスルーホール5の径よりも大きな通孔1,
1…を設けておき、この複数枚の金属板2,2…
をプリプレグ3を介して重ねて加熱加圧成形をお
こなうことによつて、プリプレグ3に含浸した樹
脂を硬化させて各金属板2,2…を積層接着させ
ると共にプリプレグ3に含浸した樹脂を金属板2
の各通孔1,1…に流入充填させて硬化させる。
このとき各金属板2間には片面プリント配線板や
両面プリント配線板、多層プリント配線板などの
回路板12,12…を挟み込むと共に最外層に銅
箔などの金属箔13を重ねて成形をおこなうもの
であり、第3図bのように回路板12,12…を
各金属板2,2…間に積層すると共に最外層に金
属箔13を積層する。そして通孔1に充填させた
樹脂14の部分において第3図cのようにスルー
ホール5を穿孔加工することによつて、樹脂14
で金属板2との間の絶縁性が確保されたスルーホ
ール5を形成することができるのである。このの
ちに、金属箔13をエツチング加工して回路形成
をすると共にスルーホール5内にスルーホールメ
ツキを施すことによつて、多層の金属板2をベー
スとし、回路板12,12…による内層回路と金
属箔13による外層回路とで多層の回路を形成し
た多層の電気積層板に仕上げることができるので
ある。 しかし、第3図のような工程で成形をおこなつ
て電気積層板を製造するに際して、金属板2の通
孔1はプリプレグ3に含浸されている樹脂14で
充填されるために、金属板2が薄い場合には問題
はないが金属板2の厚みが厚くなると、プリプレ
グ3のうち通孔1に対応する部分の樹脂が通孔1
内に多量に流入されて通孔1の部分で電気積層板
の表面にくぼみが生じ、電気積層板の表面に凹凸
が発生して回路形成が困難になる等の問題が生じ
るものであつた。 そこで、第1図bに示すように金属板2の片面
にプリプレグ3aを重ねて加熱することによつて
金属板2にプリプレグ3aを仮接着し、金属板2
に設けた通孔1の片側の開口を閉じた状態で第1
図cのように通孔1内に樹脂4を充填し、そして
第1図dのように、この通孔1に樹脂4を充填し
た金属板2を他のプリプレグ3bを介して重ね、
加熱加圧成形することによつて電気積層板を製造
することが検討されている。このものでは金属板
2の通孔1には予め樹脂4が充填されているため
に、通孔1の部分でくぼみが生じて電気積層板の
表面に凹凸が発生するようなことがなくなるので
ある。
In the electrical laminate using the metal plate 2 as a substrate,
A perforated metal plate 2 is used to form the through holes 5. In other words, as shown in FIG.
1... is provided, and the plurality of metal plates 2, 2...
By stacking them with the prepreg 3 interposed therebetween and performing heat and pressure molding, the resin impregnated in the prepreg 3 is cured and the metal plates 2, 2... are laminated and bonded, and the resin impregnated in the prepreg 3 is bonded to the metal plate. 2
It is made to flow into each of the through holes 1, 1, . . . and harden.
At this time, circuit boards 12, 12, such as a single-sided printed wiring board, a double-sided printed wiring board, a multilayer printed wiring board, etc., are sandwiched between each metal plate 2, and a metal foil 13 such as copper foil is layered on the outermost layer, and the molding is performed. As shown in FIG. 3B, the circuit boards 12, 12... are laminated between the respective metal plates 2, 2..., and a metal foil 13 is laminated on the outermost layer. Then, by drilling a through hole 5 in the part of the resin 14 filled in the through hole 1 as shown in FIG.
This makes it possible to form a through hole 5 with guaranteed insulation between it and the metal plate 2. Thereafter, by etching the metal foil 13 to form a circuit and plating the insides of the through holes 5, an inner layer circuit formed by the circuit boards 12, 12, etc. is formed using the multilayer metal plate 2 as a base. A multilayer electrical laminate can be completed in which a multilayer circuit is formed by the outer layer circuit formed by the metal foil 13 and the outer layer circuit formed by the metal foil 13. However, when manufacturing an electrical laminate by molding in the process shown in FIG. There is no problem if the metal plate 2 is thin, but if the thickness of the metal plate 2 becomes thick, the resin in the portion of the prepreg 3 corresponding to the through hole 1
This caused problems such as a large amount flowing into the interior of the electrical laminate, causing depressions on the surface of the electrical laminate at the through holes 1, and unevenness on the surface of the electrical laminate, making it difficult to form circuits. Therefore, as shown in FIG. 1b, the prepreg 3a is overlapped on one side of the metal plate 2 and heated to temporarily bond the prepreg 3a to the metal plate 2.
With the opening on one side of the through hole 1 closed,
The through hole 1 is filled with resin 4 as shown in FIG.
It has been considered to produce electrical laminates by hot pressing. In this case, since the through holes 1 of the metal plate 2 are filled with resin 4 in advance, there is no possibility that depressions would be formed at the through holes 1 and unevenness would occur on the surface of the electrical laminate. .

【発明が解決しようとする課題】[Problem to be solved by the invention]

しかし、上記のように金属板2の片面にプリプ
レグ3aを仮接着した後に、積層成形をおこなつ
て電気積層板を製造する場合には、積層板の成形
性が低下し、積層板内にボイドが発生し易いとい
う問題があつた。これは、第1図dのようにプリ
プレグ3aを金属板1に仮接着するにあたつて加
熱をおこなう必要があるために、仮接着の際の加
熱でプリプレグ3aに含浸されている樹脂の硬化
が進行することになり、従つて第1図dのように
積層成形をおこなう際にこのプリプレグ3aに含
浸されている樹脂の流れが不十分になつて、ボイ
ドが発生するものと考えられる。このようにボイ
ドが発生すると湿気が浸入して絶縁信頼性が低下
したりするおそれがある。 本発明は上記の点に鑑みて為されたものであ
り、ボイドが発生するようなことなく成形性良く
積層成形をおこなうことができる電気積層板の製
造方法を提供することを目的とするものである。
However, when producing an electrical laminate by laminating the prepreg 3a on one side of the metal plate 2 after temporarily adhering it to one side of the metal plate 2 as described above, the formability of the laminate decreases and voids are formed within the laminate. There was a problem that this was likely to occur. This is because it is necessary to heat the prepreg 3a to the metal plate 1 as shown in Fig. 1d, so the resin impregnated in the prepreg 3a hardens due to the heating during the temporary bonding. Therefore, it is thought that when lamination molding is performed as shown in FIG. 1d, the flow of the resin impregnated into the prepreg 3a becomes insufficient and voids are generated. When voids are generated in this way, there is a risk that moisture may infiltrate and the insulation reliability may deteriorate. The present invention has been made in view of the above points, and an object of the present invention is to provide a method for manufacturing an electrical laminate that can be laminated with good moldability without producing voids. be.

【課題を解決するための手段】[Means to solve the problem]

上記課題を解決するために本発明は、通孔1を
設けた金属板2の片面にプリプレグ3aを重ねて
仮接着することによつてプリプレグ3aで通孔1
の片側の開口を閉じ、樹脂4を通孔1内に充填し
た後に、この金属板2とプリプレグ3aとの複合
体6を他のプリプレグ3bを介して重ねると共に
加熱加圧して積層成形し、しかる後に通孔1内の
樹脂4の部分でスルーホール5を穿孔加工するこ
とによつて電気積層板を製造するにあたつて、金
属板2に仮接着した後のプリプレグ3aの170℃、
20Kg/cm2、10分間の条件での樹脂流れ性が20%以
上になる条件で、金属板2へのプリプレグ3aの
仮接着をおこなうことを特徴とするものである。 以下本発明を詳細に説明する。 金属板2は銅板やアルミニウム板などで形成さ
れるものであり、スルーホール5を形成する箇所
において第1図aに示すように通孔1が穿孔加工
してある。通孔1はスルーホール5の直径よりも
大きな直径で形成されるものである。通孔1を形
成したのちに金属板2には樹脂との密着性を高め
るために表面処理を施しておくのが好ましい。表
面処理としては、酸化処理液などを用いる黒化処
理やブラウン処理、電解メツキによる表面こぶ付
け処理などを採用することができる。 一方、プリプレグ3aはガラス繊維の織布や不
織布、紙などを基材とし(特にガラス繊維の不織
布が望ましい)、これにエポキシ樹脂やポリイミ
ドなどの熱硬化性樹脂のワニスを固形分換算量で
40〜90重量%程度含浸して、これを乾燥すること
によつて調製されるものである。このプリプレグ
3aにおいて、含浸した樹脂の樹脂流れ性(グリ
ニスと称される)が30〜90%になるように、乾燥
条件等を調整するものである。本出願において、
樹脂流れ性とは、JIS C6487(1980年)に規定さ
れる試験法に準拠して、170℃、20Kg/cm2、10分
間の条件で測定した樹脂流れ性であると定義され
るものである。すなわち、約20gの試験片を秤量
した後に170℃のプレスに入れて20Kg/cm2の圧力
を10分間加え、次いで試験片をプレスから取り出
して冷却し、その試験片から流れ出した樹脂を取
り除いて再び試験片を秤量し、プレス前の試験片
の重量W1からプレス後の試験片の重量W2を差し
引いた数値をプレス前の試験片の重量W1で除し
た値の100分率として次式より求めた数値である。 樹脂流れ性(%)=〔(W1−W2)/W1〕×100 プリプレグ3aを作成するにあたつて上記のよ
うに樹脂流れ性が30〜90%になるようにする乾燥
条件は、プリプレグ3aに含浸する樹脂の種類等
によつて異なるが、例えば加熱温度を130〜170
℃、加熱時間を2〜10分程度に設定するのが一般
的である。尚、このプリプレグ3aは金属板2の
通孔1の底の開口を閉塞する作用をなせばよいの
で、厚みが0.1mm程度の薄いもので十分である。 そしてまず、金属板2の片面(下面)にプリプ
レグ3aを重ねて第1図bのように仮接着させ
る。一体化は金属板2にプリプレグ3aを重ねる
と共にさらにその上下に離型紙などを重ね、この
状態で熱を加えて熱溶着させたり、あるいは加熱
加圧成形したりすることによつておこなうことが
できる。このようにプリプレグ3aを仮接着する
にあたつて、プリプレグ3aに含浸した樹脂の樹
脂流れ性が20%未満にならないように、加熱温
度、加熱時間、加圧力を調整しておこなうもので
ある。樹脂流れ性が20%以上であれば、後述の積
層成形の際においてもこのプリプレグ3aに含浸
した樹脂の流動性を十分に確保することができ、
ボイドが発生することなく成形性良く積層成形を
おこなうことができるのである。つまり、本発明
はこのように、金属板2に仮接着した後のプリプ
レグ3aの樹脂の樹脂流れ性が20%以上であれ
ば、積層成形の際の成形性が悪くならないという
知見を得て完成されたのである。プリプレグ3a
に含浸した樹脂の樹脂流れ性が20%未満にならな
いように仮接着できる、加熱温度、加熱時間、加
圧力の条件は、プリプレグ3aに含浸した樹脂の
種類や配合等に左右されるために、特定の数値範
囲で規定することはできないが、プリプレグ3a
に含浸した樹脂がエポキシ樹脂やポリイミド樹脂
の場合には、加熱温度は80〜130℃、加熱時間は
30秒〜5分、加圧力は接触圧(すなわち0Kg/
cm2)〜10Kg/cm2の範囲が一般的である。これらの
条件の上限を超えると、プリプレグ3aに含浸し
た樹脂の樹脂流れ性が20%未満になるおそれがあ
る。逆に下限以下の条件であれば金属板2へのプ
リプレグ3aの接着が不十分になるおそれがあ
る。尚、金属板2に仮接着した後のプリプレグ3
aの樹脂の樹脂流れ性の上限は特に限定されない
が、樹脂流れ性が大き過ぎると積層成形の際の樹
脂の流出量が多くなるために、70%を上限として
設定するのが好ましい。 また、金属板2にプリプレグ3aを仮接着する
にあたつて、多段成形によつて生産性良く作業を
おこなうことができる。すなわち第2図に示すよ
うに、金属板2とプリプレグ3aとを重ねたもの
を1組とし、これを離型紙や金属プレートなどの
スペーサ14を介して複数組み重ねて熱盤15間
にセツトし、そしてこれをさらに複数段に重ねて
加熱成形することによつて、多数組みの金属板2
とプリプレグ3aとの仮接着を同時に生産性良く
おこなうことができるのである。しかしこの場
合、各段において熱盤15に近い組みのプリプレ
グ3aには高温度で熱が加わると共に熱盤15か
ら遠い中央部の組みのプリプレグ3aには熱は低
い温度で加わることになり、各組みでプリプレグ
3aに加わる熱履歴は異なつてくる。そして各段
での熱盤15間の組み数が多くなるとこの熱履歴
の差も大きくなり、熱盤15から遠い組みのプリ
プレグ3aの樹脂流れ性は20%以上でも、熱盤1
5に近い組みのプリプレグ3aの樹脂流れ性は20
%未満になるおそれがある。このために各プリプ
レグ3aでの熱履歴に差が大きく生じないように
して樹脂流れ性が総て20%以下になるようにする
ためには、各段の熱盤15間にセツトする組み数
を4組以下に設定するのが好ましい。 上記のように金属板2の片面にプリプレグ3a
を仮接着した後に、樹脂4を金属板2の通孔1に
流し込んで第1図cのように充填する。この樹脂
4としては特に限定されるものではないが、エポ
キシ樹脂やポリイミドなどプリプレグ3aに含浸
した樹脂と同種のものを用いるのが好ましい。ま
たこの樹脂には充填剤を配合しておくのが好まし
い。充填剤としては、Al2O3、Al2O3・H2O、
Al2O3・3H2O、タルク、MgO、CaCO3、Sb2O3
Sb2O5などの球状粉末や、EガラスやDガラス、
Tガラス、Rガラス、Qガラスなどのガラス繊維
や、ケプラー(デユポン社製)、テクノーラ(帝
人社製)などのアラミド繊維等を細かく切断して
すりつぶした針状粉末を例示することができる。
通孔1への樹脂4の充填は、樹脂4をワニス状な
ど液状に調製して流し込むようにする他、粉末状
に調製して流し込むようにしたり、予め通孔1の
形に成形しておいて固形の状態で嵌め込んでおこ
なうことができる。そして必要に応じて減圧脱気
しつつ加熱することによつて通孔1内の樹脂を硬
化させる。 次に、上記のように金属板2とプリプレグ3a
とを仮接着すると共に通孔1に樹脂4を充填して
形成される複合体6を用いて電気積層板を製造す
るにあたつては、第1図dのようにプリプレグ3
bを介して複合体6を数枚重ねると共に最外層の
複合体6の外面にプリプレグ3bを介して銅箔な
どの金属箔13を重ねる。このとき各複合体6間
にはプリプレグ3bを介して片面プリント配線板
や両面プリント配線板、多層プリント配線板など
の内層用回路を形成した回路板12,12…がセ
ツトしてある。このプリプレグ3bとしては、前
記プリプレグ3aと同様にガラス布や紙などを基
材とし、これにエポキシ樹脂やポリイミドなどの
熱硬化性樹脂を含浸して乾燥することによつて調
製されるものが用いられるものであり、この樹脂
としてはプリプレグ3aの調製に用いる樹脂と同
種のものを使用するのが好ましく、プリプレグ3
aとプリプレグ3bとは同じものを用いるように
することもできる。 そして加熱加圧成形をおこなうことによつて、
プリプレグ3aとプリプレグ3bに含浸した樹脂
をそれぞれ一旦溶融させると共に硬化させて金属
板2と回路板12とを交互に積層接着させ、第3
図bの場合と同様な層構成で金属板2と回路板1
0とを交互に積層すると共に最外層に金属箔13
を積層接着した電気積層板を得ることができる。
このとき、金属板2の通孔1には樹脂4が予め充
填されているために、通孔1に対応する部分でく
ぼみが生じるようなおそれはなく、くぼみによつ
て金属箔13の表面に凹凸が生じるようなおそれ
もない。そして、この積層成形にあたつてプリプ
レグ3aに含浸した樹脂は樹脂流れ性が20%以上
であるために、この成形の際にも十分な溶融流動
性が確保されるものであり、ボイドが発生するよ
うなことなく良好な成形性で成形をおこなうこと
ができるものである。 以上のようにして金属板2と回路板12とを交
互に積層すると共に表面に金属箔13を積層した
のちに、ドリル加工やパンチ加工などでスルーホ
ール5を穿孔加工する。スルーホール5は第3図
cに示すと同様に、通孔1に充填した樹脂4の部
分において通孔1の直径よりも小さい直径で形成
されるものであり、従つてスルーホール5の内周
と金属板2との間の電気絶縁性は樹脂4によつて
確保されることになる。尚、スルーホール5のう
ち一部のものはアースなどのために金属板2を貫
通して形成されている。そしてスルーホール5を
加工したのちに、スルーホール5の内周に銅メツ
キなどでスルーホールメツキを形成したり、金属
箔13をエツチング処理して外層回路を形成した
りして、多層の金属板2をベースとし回路板12
による内層回路と金属箔13による外層回路とを
設けた多層の電気積層板として仕上げるのであ
る。このものにあつて、金属板2の通孔1に充填
した樹脂4には充填剤が配合されているので、ス
ルーホール5を加工する際にスルーホール5の内
周面に充填剤が露出してスルーホール5の内周面
が凹凸面となり、凹凸面のアンカー効果などでス
ルーホール5の内周面に施すスルーホールメツキ
の密着性が高まるものである。
In order to solve the above-mentioned problems, the present invention has a structure in which a prepreg 3a is overlapped and temporarily bonded to one side of a metal plate 2 provided with a through hole 1.
After closing the opening on one side and filling the resin 4 into the through hole 1, the composite body 6 of the metal plate 2 and the prepreg 3a is stacked with another prepreg 3b interposed therebetween, and is laminated by heating and pressurizing. When producing an electrical laminate by later drilling through holes 5 in the resin 4 in the through holes 1, the prepreg 3a is heated at 170°C after being temporarily bonded to the metal plate 2.
The prepreg 3a is temporarily bonded to the metal plate 2 under conditions such that resin flowability is 20% or more at 20 kg/cm 2 for 10 minutes. The present invention will be explained in detail below. The metal plate 2 is made of a copper plate, an aluminum plate, or the like, and has through holes 1 drilled therein as shown in FIG. 1A at locations where through holes 5 are to be formed. The through hole 1 is formed with a diameter larger than that of the through hole 5. After forming the through holes 1, it is preferable that the metal plate 2 is subjected to a surface treatment in order to improve its adhesion to the resin. As the surface treatment, blackening treatment or browning treatment using an oxidizing treatment liquid or the like, surface bumping treatment using electrolytic plating, etc. can be adopted. On the other hand, prepreg 3a is made of glass fiber woven fabric, non-woven fabric, paper, etc. (glass fiber non-woven fabric is particularly desirable), and a thermosetting resin varnish such as epoxy resin or polyimide is applied to this in the solid content equivalent amount.
It is prepared by impregnating about 40 to 90% by weight and drying it. In this prepreg 3a, the drying conditions etc. are adjusted so that the resin flowability (referred to as Glinnis) of the impregnated resin is 30 to 90%. In this application,
Resin flowability is defined as the resin flowability measured at 170℃, 20Kg/cm 2 for 10 minutes in accordance with the test method specified in JIS C6487 (1980). . That is, after weighing approximately 20g of a test piece, it was placed in a press at 170°C and a pressure of 20Kg/ cm2 was applied for 10 minutes, then the test piece was removed from the press and cooled, and the resin that flowed from the test piece was removed. Weigh the test piece again, and calculate the value obtained by subtracting the weight W 2 of the test piece after pressing from the weight W 1 of the test piece before pressing, divided by the weight W 1 of the test piece before pressing, as follows: This is a numerical value obtained from the formula. Resin flowability (%) = [(W 1 - W 2 ) / W 1 ] × 100 When creating prepreg 3a, the drying conditions to make the resin flowability between 30 and 90% as described above are as follows: Although it varies depending on the type of resin impregnated into the prepreg 3a, for example, the heating temperature may be set to 130 to 170.
It is common to set the temperature and heating time to about 2 to 10 minutes. Incidentally, since this prepreg 3a only has to function to close the opening at the bottom of the through hole 1 of the metal plate 2, a thin one having a thickness of about 0.1 mm is sufficient. First, a prepreg 3a is overlapped on one side (lower side) of the metal plate 2 and temporarily bonded as shown in FIG. 1b. Integration can be carried out by stacking the prepreg 3a on the metal plate 2, and then layering release paper or the like on top and bottom of the prepreg 3a, and applying heat in this state to thermally weld them, or by heating and press forming. . When temporarily bonding the prepreg 3a in this way, the heating temperature, heating time, and pressure are adjusted so that the resin flowability of the resin impregnated into the prepreg 3a does not become less than 20%. If the resin flowability is 20% or more, sufficient fluidity of the resin impregnated into this prepreg 3a can be ensured even during lamination molding described later.
Lamination molding can be performed with good moldability without generating voids. In other words, the present invention was completed based on the knowledge that if the flowability of the resin of the prepreg 3a after temporarily adhering to the metal plate 2 is 20% or more, the moldability during lamination molding will not deteriorate. It was done. prepreg 3a
The conditions of heating temperature, heating time, and pressure that can be temporarily bonded so that the resin flowability of the resin impregnated in the prepreg 3a does not become less than 20% depend on the type and composition of the resin impregnated into the prepreg 3a. Although it cannot be specified in a specific numerical range, prepreg 3a
If the impregnated resin is epoxy resin or polyimide resin, the heating temperature is 80 to 130℃ and the heating time is
30 seconds to 5 minutes, the pressure is contact pressure (i.e. 0 kg/
cm 2 ) to 10 Kg/cm 2 is common. If the upper limits of these conditions are exceeded, the flowability of the resin impregnated into the prepreg 3a may be less than 20%. On the other hand, if the conditions are below the lower limit, there is a possibility that the adhesion of the prepreg 3a to the metal plate 2 will be insufficient. In addition, the prepreg 3 after being temporarily bonded to the metal plate 2
The upper limit of the resin flowability of the resin a is not particularly limited, but if the resin flowability is too high, the amount of resin flowing out during lamination molding will increase, so it is preferable to set the upper limit to 70%. Further, when temporarily adhering the prepreg 3a to the metal plate 2, the work can be carried out with high productivity by multi-stage molding. That is, as shown in FIG. 2, one set is made by stacking the metal plate 2 and the prepreg 3a, and a plurality of sets are stacked with spacers 14 such as release paper or metal plates interposed therebetween and set between the heating platens 15. , and by further stacking them in multiple stages and heat forming them, a large number of sets of metal plates 2 are made.
Temporary adhesion of the prepreg 3a and the prepreg 3a can be simultaneously performed with good productivity. However, in this case, in each stage, heat is applied at a high temperature to the set of prepregs 3a close to the heating plate 15, and heat is applied at a low temperature to the set of prepregs 3a in the central part far from the heating plate 15. The thermal history applied to the prepreg 3a differs depending on the assembly. As the number of sets between the heating plates 15 in each stage increases, the difference in thermal history also increases, and even if the resin flowability of the prepreg 3a of the set far from the heating plate 15 is 20% or more, the heating plate 15
The resin flowability of prepreg 3a, which is similar to 5, is 20.
%. For this reason, in order to prevent large differences in the thermal history of each prepreg 3a and to keep the resin flowability to 20% or less, the number of sets to be set between the heating plates 15 in each stage must be adjusted. It is preferable to set the number to 4 or less. Prepreg 3a on one side of the metal plate 2 as described above.
After temporary adhesion, resin 4 is poured into the through hole 1 of the metal plate 2 to fill it as shown in FIG. 1c. The resin 4 is not particularly limited, but it is preferable to use the same type of resin as the resin impregnated into the prepreg 3a, such as epoxy resin or polyimide. Further, it is preferable to add a filler to this resin. As fillers, Al 2 O 3 , Al 2 O 3・H 2 O,
Al2O3 3H2O , talc, MgO, CaCO3 , Sb2O3 ,
Spherical powder such as Sb 2 O 5 , E glass and D glass,
Examples include acicular powder obtained by finely cutting and grinding glass fibers such as T glass, R glass, and Q glass, and aramid fibers such as Kepler (manufactured by Dupont) and Technora (manufactured by Teijin).
The resin 4 can be filled into the through hole 1 by preparing the resin 4 in a liquid form such as varnish and pouring it in, or by preparing it in a powder form and pouring it in, or by molding it into the shape of the through hole 1 in advance. It can be done by inserting it in a solid state. Then, the resin in the through hole 1 is cured by heating while depressurizing and degassing as necessary. Next, as described above, the metal plate 2 and the prepreg 3a are
When manufacturing an electrical laminate using a composite 6 formed by temporarily adhering the prepreg 3 and filling the through holes 1 with the resin 4, as shown in FIG.
Several sheets of the composite body 6 are stacked via the prepreg 3b, and a metal foil 13 such as copper foil is stacked on the outer surface of the outermost composite body 6 via the prepreg 3b. At this time, circuit boards 12, 12, . . . on which internal layer circuits are formed, such as a single-sided printed wiring board, a double-sided printed wiring board, or a multilayer printed wiring board, are set between each composite body 6 via prepregs 3b. As with the prepreg 3a, this prepreg 3b is prepared by using glass cloth or paper as a base material, impregnating it with a thermosetting resin such as epoxy resin or polyimide, and drying it. It is preferable to use the same kind of resin as the resin used for preparing prepreg 3a.
It is also possible to use the same material as the prepreg a and the prepreg 3b. Then, by performing heating and pressure molding,
The resin impregnated into the prepreg 3a and the prepreg 3b is melted and cured, and the metal plate 2 and the circuit board 12 are laminated and bonded alternately.
Metal plate 2 and circuit board 1 with the same layer configuration as in Figure b.
0 and metal foil 13 on the outermost layer.
An electrical laminate can be obtained by laminating and bonding.
At this time, since the through holes 1 of the metal plate 2 are filled with the resin 4 in advance, there is no fear that dents will be formed in the portion corresponding to the through holes 1, and the dents will cause unevenness on the surface of the metal foil 13. There is no fear that this will occur. In addition, since the resin impregnated into the prepreg 3a during this laminated molding has resin flowability of 20% or more, sufficient melt flowability is ensured during this molding, and voids occur. It is possible to perform molding with good moldability without causing any damage. After the metal plates 2 and circuit boards 12 are alternately laminated and the metal foil 13 is laminated on the surface as described above, through holes 5 are formed by drilling, punching, or the like. As shown in FIG. 3c, the through hole 5 is formed with a smaller diameter than the diameter of the through hole 1 in the portion of the resin 4 filled in the through hole 1, and therefore the inner circumference of the through hole 5 Electrical insulation between the metal plate 2 and the metal plate 2 is ensured by the resin 4. Note that some of the through holes 5 are formed to penetrate through the metal plate 2 for grounding and the like. After processing the through-holes 5, through-hole plating is formed on the inner periphery of the through-holes 5 using copper plating or the like, and the metal foil 13 is etched to form an outer layer circuit, thereby forming a multilayer metal plate. 2 as a base and circuit board 12
It is finished as a multilayer electrical laminate with an inner layer circuit made of the metal foil 13 and an outer layer circuit made of the metal foil 13. In this case, since the resin 4 filled in the through hole 1 of the metal plate 2 contains a filler, the filler is not exposed on the inner peripheral surface of the through hole 5 when processing the through hole 5. The inner circumferential surface of the through hole 5 becomes an uneven surface, and the adhesion of the through hole plating applied to the inner circumferential surface of the through hole 5 is enhanced due to the anchor effect of the uneven surface.

【実施例】【Example】

次に、本発明を実施例によつて具体的に説明す
る。 末端官能型イミド樹脂(住友化学社製TMS−
20)200重量部、液状エポキシ樹脂149重量部、ブ
ロム化ノボラツク樹脂136重量部、ルイス酸化合
物82重量部、不飽和ビスマレイミド20重量部を混
合し、90℃で50分間加熱したのちに常温にまで冷
却して30分間撹拌下反応させることによつてエポ
キシ変性ポリイミド樹脂ワニスを調製した。次に
このエポキシ変性ポリイミド樹脂ワニスに基材と
してガラス不織布(日本バイリーン製EP−
4075:75g/m2)を浸漬し、次いで乾燥すること
によつて、780g/m2のプリプレグ3aを作成し
た。ここで乾燥の条件は140℃、5分に設定し、
プリプレグ3aに含浸した樹脂の樹脂流れ性が45
%になるように調整した。 一方、金属板2として500mm×400mm×0.5mmの
銅板を用い、直径が1.5mmの通孔1を1.8mmピツチ
で縦100×横60の個数設けた。そしてこの金属板
2の下面に上記プリプレグ3aを重ね、これを第
2図に示すように熱盤15間に複数組みセツト
し、さらに多段に重ねて加熱することによつて金
属板2にプリプレグ3aを仮接着した。この仮接
着の際の熱盤15による加熱温度と加熱時間を次
表に示す。また加圧力は2Kg/cm2になるように調
整した。さらにこの仮接着の際の各段の熱盤15
間にセツトした金属板2とプリプレグ3aの組み
数を次表に示す。このように金属板2の下面にプ
リプレグ3aを仮接着した後に、上記のエポキシ
変性ポリイミド樹脂ワニスに充填剤としてEガラ
ス微粉末を配合して調製した充填剤入り樹脂を流
し込んで充填した。Eガラス微粉末としては平均
長さが35μ、平均直径が13μのものを、300PHRの
配合量で配合して用いた。 そしてこの金属板2とプリプレグ3aとを仮接
着した複合体6を3枚、両面銅張ポリイミド樹脂
積層板の銅箔をエツチング加工して回路を設ける
ことによつて形成した両面プリント配線板を回路
板12として2枚用い、プリプレグ3bとして上
記プリプレグ3aと同じものを用い、これらを第
1図dのように重ねると共に上下にプリプレグ3
bを介して35μ厚の銅箔13を重ね、まず20Kg/
cm2の加圧条件を維持しつつ140℃で20分間、170℃
で90分間加熱すると共に20分間を要して冷却して
積層成形をおこなうことによつて、金属板2と回
路板12とを交互に積層し表面に銅箔13を張つ
た多層積層板を得た。こののちに金属板2の通孔
1の部分において多層積層板に直径が0.9mmのス
ルーホールをドリル加工し、次いで銅メツキをお
こなつてスルーホールの内周にスルーホールメツ
キを施すことによつて電気積層板を得た。 上記のようにして電気積層板を製造するにあた
つて、金属板2に仮接着した後のプリプレグ3a
の樹脂の樹脂流れ性を測定した。結果を次表の
「樹脂流れ性」の欄に示す。また得られた電気積
層板において各プリプレグ3aの部分にボイドが
発生しているか否かを検査し、結果を次表の「成
形性」の欄に示す。表において、熱盤15間にセ
ツトした複数組みのプリプレグ3aのうち、上端
のものから順に「1組目」〜「7組目」として示
した。また「成形性」の欄において、「〇」はボ
イドの発生無し、「△」は30cm四方の範囲内にボ
イド10個以下発生、「×」は30cm四方の範囲内に
ボイド11個以上発生、をそれぞれ示す。
Next, the present invention will be specifically explained using examples. Terminal functional imide resin (TMS- manufactured by Sumitomo Chemical Co., Ltd.)
20) Mix 200 parts by weight, 149 parts by weight of liquid epoxy resin, 136 parts by weight of brominated novolak resin, 82 parts by weight of Lewis acid compound, and 20 parts by weight of unsaturated bismaleimide, heat at 90°C for 50 minutes, and then cool to room temperature. An epoxy-modified polyimide resin varnish was prepared by cooling the mixture to a temperature of 100.degree. C. and reacting with stirring for 30 minutes. Next, this epoxy-modified polyimide resin varnish was coated with a glass nonwoven fabric (EP-
4075: 75 g/m 2 ) and then drying to prepare a prepreg 3a of 780 g/m 2 . Here, the drying conditions were set at 140℃ for 5 minutes.
Resin flowability of resin impregnated into prepreg 3a is 45
Adjusted to be %. On the other hand, a copper plate measuring 500 mm x 400 mm x 0.5 mm was used as the metal plate 2, and a number of through holes 1 each having a diameter of 1.5 mm were provided at a pitch of 1.8 mm, measuring 100 in length and 60 in width. Then, the prepreg 3a is stacked on the lower surface of the metal plate 2, a plurality of sets are set between the heating plates 15 as shown in FIG. I temporarily attached it. The heating temperature and heating time by the heating plate 15 during this temporary bonding are shown in the following table. Further, the pressing force was adjusted to 2 kg/cm 2 . Furthermore, the heating plate 15 of each stage during this temporary adhesion
The number of sets of metal plate 2 and prepreg 3a set between them is shown in the following table. After the prepreg 3a was temporarily bonded to the lower surface of the metal plate 2 in this manner, a filler-containing resin prepared by blending E glass fine powder as a filler into the above-mentioned epoxy-modified polyimide resin varnish was poured and filled. E-glass fine powder having an average length of 35 μm and an average diameter of 13 μm was used in a blended amount of 300 PHR. Then, a double-sided printed wiring board is formed by etching the copper foil of the double-sided copper-clad polyimide resin laminate and forming a circuit using three composites 6 in which the metal plate 2 and the prepreg 3a are temporarily bonded together. Two plates are used as the plate 12, and the same prepreg as the prepreg 3a is used as the prepreg 3b, and these are stacked as shown in FIG.
Layer the copper foil 13 with a thickness of 35μ through b, and first put 20Kg/
170°C for 20 min at 140°C while maintaining pressure conditions of cm2 .
By heating for 90 minutes and cooling for 20 minutes to perform lamination molding, a multilayer laminate in which metal plates 2 and circuit boards 12 are alternately laminated and copper foil 13 is stretched on the surface is obtained. Ta. After this, a through hole with a diameter of 0.9 mm is drilled in the multilayer laminate at the through hole 1 part of the metal plate 2, and then copper plating is performed to plate the inner periphery of the through hole. An electrical laminate was obtained. In manufacturing the electrical laminate as described above, the prepreg 3a after being temporarily bonded to the metal plate 2
The resin flowability of the resin was measured. The results are shown in the "Resin flowability" column of the following table. In addition, the obtained electrical laminate was inspected to see whether or not voids were generated in each prepreg 3a, and the results are shown in the "Moldability" column of the following table. In the table, among the plural sets of prepregs 3a set between the heating plates 15, the prepregs 3a are shown as "1st set" to "7th set" in order from the top. In addition, in the "Moldability" column, "〇" indicates that no voids occur, "△" indicates that 10 or less voids occur within a 30 cm square area, and "×" indicates that 11 or more voids occur within a 30 cm square area. are shown respectively.

【表】 表のNo.1、No.2、No.3にみられるように、プリ
プレグ3aの樹脂流れ性が20%以上になる条件で
金属板2にプリプレグ3aを仮接着することによ
つて、積層成形の際にボイドが発生することなく
成形性を高めることができることが確認される。
またNo.6にみられるように、仮接着する際に段内
の組み数が多いと段内の中央部ではプリプレグ3
aの樹脂流れ性は20%以上になつて成形性も良好
になるが、熱盤15に近い端部ではプリプレグ3
aの樹脂流れ性が20%未満になつて成形性が悪く
なるということも確認できる。尚、No.3では段内
の総てのプリプレグ3aの樹脂流れ性が20%以上
であり、しかも総てのものにおいて成形性が良好
であつたが、段内の組み数が多いためにプリプレ
グ3aの樹脂流れ性が27〜34%の範囲で大きくバ
ラツクために、積層成形した後の電気積層板の板
厚のバラツキの原因になるおそれがあり、好まし
くない。
[Table] As shown in No. 1, No. 2, and No. 3 of the table, by temporarily adhering the prepreg 3a to the metal plate 2 under the conditions that the resin flowability of the prepreg 3a is 20% or more. It is confirmed that moldability can be improved without generating voids during laminated molding.
In addition, as seen in No. 6, when temporarily gluing, if there are many sets in a row, the prepreg 3
The resin flowability of a is 20% or more, and the moldability is also good, but at the end near the hot platen 15, the prepreg 3
It can also be confirmed that when the resin flowability of sample a becomes less than 20%, the moldability deteriorates. In addition, in No. 3, the resin flowability of all the prepregs 3a in the stage was 20% or more, and the moldability was good in all of them, but because of the large number of sets in the stage, Since the resin flowability of 3a varies widely within the range of 27 to 34%, it may cause variations in the thickness of the electrical laminate after lamination molding, which is not preferable.

【発明の効果】【Effect of the invention】

上述のように本発明にあつては、通孔を設けた
金属板の片面にプリプレグを重ねて仮接着するこ
とによつてプリプレグで通孔の片側の開口を閉
じ、樹脂を通孔内に充填した後に、この金属板と
プリプレグとの複合体を他のプリプレグを介して
重ねると共に加熱加圧して積層成形するようにし
たので、金属板の通孔に樹脂を充填した状態で成
形をおこなうことができ、プリプレグに含浸した
樹脂は通孔内に流入されることがないものであつ
て、通孔に対応する部分でプリプレグにくぼみが
生じて積層板の表面に凹凸が発生することを防ぐ
ことができるものである。そして本発明ではさら
に、金属板に仮接着した後のプリプレグの170℃、
20Kg/cm2、10分間の条件での樹脂流れ性が20%以
上になる条件で、金属板へのプリプレグの仮接着
をおこなうようにしたので、積層成形にあたつて
プリプレグに含浸した樹脂は十分な流動性が確保
されるものであり、ボイドが発生するようなこと
なく良好な成形性で成形をおこなうことができる
ものである。
As described above, in the present invention, the opening on one side of the through hole is closed by overlapping the prepreg on one side of the metal plate provided with the through hole and temporarily bonding it, and the resin is filled into the through hole. After that, the composite of this metal plate and prepreg is layered with other prepregs interposed between them, and is then heated and pressurized for laminated molding. This makes it possible to perform molding with the resin filled in the holes in the metal plate. This prevents the resin impregnated into the prepreg from flowing into the through holes, which prevents depressions from forming in the prepreg in areas corresponding to the through holes and unevenness on the surface of the laminate. It is possible. In the present invention, the prepreg is further heated at 170°C after being temporarily bonded to the metal plate.
The prepreg was temporarily bonded to the metal plate under conditions such that the resin flowability was 20% or more at 20Kg/cm 2 for 10 minutes, so the resin impregnated into the prepreg during lamination molding was Sufficient fluidity is ensured, and molding can be performed with good moldability without generating voids.

【図面の簡単な説明】[Brief explanation of drawings]

第1図a乃至dは本発明に係る電気積層板の製
造の各工程を示す断面図、第2図は同上の金属板
へのプリプレグの仮接着の工程を示す断面図、第
3図a,b,cは従来例の断面図である。 1は通孔、2は金属板、3a,3bはプリプレ
グ、4は充填剤入り樹脂、5はスルーホール、6
は複合体である。
Figures 1a to d are cross-sectional views showing each step of manufacturing an electrical laminate according to the present invention, Figure 2 is a cross-sectional view showing the process of temporarily adhering the prepreg to the metal plate, and Figures 3a, b and c are cross-sectional views of the conventional example. 1 is a through hole, 2 is a metal plate, 3a and 3b are prepregs, 4 is a resin containing a filler, 5 is a through hole, 6
is a complex.

Claims (1)

【特許請求の範囲】[Claims] 1 通孔を設けた金属板の片面にプリプレグを重
ねて仮接着することによつてプリプレグで通孔の
片側の開口を閉じ、樹脂を通孔内に充填した後
に、この金属板とプリプレグとの複合体を他のプ
リプレグを介して重ねると共に加熱加圧して積層
成形し、しかる後に通孔内の樹脂の部分でスルー
ホールを穿孔加工することによつて電気積層板を
製造するにあたつて、金属板に仮接着した後のプ
リプレグの170℃、20Kg/cm2、10分間の条件での
樹脂流れ性が20%以上になる条件で、金属板への
プリプレグの仮接着をおこなうことを特徴とする
電気積層板の製造方法。
1 Overlap prepreg on one side of a metal plate with a through hole and temporarily adhere it to close the opening on one side of the through hole with the prepreg, fill the through hole with resin, and then connect the metal plate and the prepreg. In producing an electrical laminate by layering the composite with another prepreg interposed therebetween, heating and pressurizing it to form a laminate, and then punching a through hole in the resin part of the through hole, The prepreg is temporarily bonded to the metal plate under conditions such that the resin flowability of the prepreg after temporary bonding to the metal plate is 20% or more at 170℃, 20Kg/cm 2 for 10 minutes. A method for manufacturing electrical laminates.
JP13190989A 1989-05-25 1989-05-25 Preparation of electric laminated sheet Granted JPH02310040A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13190989A JPH02310040A (en) 1989-05-25 1989-05-25 Preparation of electric laminated sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13190989A JPH02310040A (en) 1989-05-25 1989-05-25 Preparation of electric laminated sheet

Publications (2)

Publication Number Publication Date
JPH02310040A JPH02310040A (en) 1990-12-25
JPH0563304B2 true JPH0563304B2 (en) 1993-09-10

Family

ID=15069013

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13190989A Granted JPH02310040A (en) 1989-05-25 1989-05-25 Preparation of electric laminated sheet

Country Status (1)

Country Link
JP (1) JPH02310040A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5581218B2 (en) * 2008-12-25 2014-08-27 三菱電機株式会社 Method for manufacturing printed wiring board

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4591181B2 (en) * 2005-04-25 2010-12-01 三菱電機株式会社 Printed wiring board

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5581218B2 (en) * 2008-12-25 2014-08-27 三菱電機株式会社 Method for manufacturing printed wiring board

Also Published As

Publication number Publication date
JPH02310040A (en) 1990-12-25

Similar Documents

Publication Publication Date Title
JP2012015562A (en) Method of manufacturing circuit board
KR20060037238A (en) Method of manufacturing circuit board
JPH10200258A (en) Manufacture of mulitlayer printed wiring board
JPH0563304B2 (en)
JP2006182918A (en) Prepreg, rigid flexible board and multilayer circuit board
JPS62277794A (en) Manufacture of inner layer circuit board
JPH1154922A (en) Manufacturing inner layer circuit-contg. laminate board
JP2675810B2 (en) Manufacturing method of electric laminate
JPH0466181B2 (en)
JP3058045B2 (en) Manufacturing method of multilayer printed wiring board
JPH11214844A (en) Production of multilayer board
JPH04215496A (en) Manufacture of multilayer circuit board
JPH09181421A (en) Manufacture of metal foil clad laminated board and manufacture of printed board
JPH01244855A (en) Manufacture of electric laminate
JP4207282B2 (en) Manufacturing method of multilayer printed wiring board
JPH02246298A (en) Manufacture of metal plate-containing multilayer printed board
JPH01235293A (en) Manufacture of electric laminated board
JP2570397B2 (en) Method of manufacturing metal core printer board for bending
JPH0946050A (en) Multilayered substrate
JPH01244851A (en) Manufacture of electric laminate
JPH0315536A (en) Preparation of printed wiring board
JPH01244853A (en) Manufacture of electric laminate
JP2924401B2 (en) Composite prepreg
JPH01244854A (en) Manufacture of electric laminate
JP2000210962A (en) Manufacture of laminate

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees