JPS62235748A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS62235748A
JPS62235748A JP8050786A JP8050786A JPS62235748A JP S62235748 A JPS62235748 A JP S62235748A JP 8050786 A JP8050786 A JP 8050786A JP 8050786 A JP8050786 A JP 8050786A JP S62235748 A JPS62235748 A JP S62235748A
Authority
JP
Japan
Prior art keywords
diffused
layer
layers
junction isolation
conductivity type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8050786A
Other languages
Japanese (ja)
Inventor
Hiroshi Yoshida
浩 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP8050786A priority Critical patent/JPS62235748A/en
Publication of JPS62235748A publication Critical patent/JPS62235748A/en
Pending legal-status Critical Current

Links

Landscapes

  • Element Separation (AREA)

Abstract

PURPOSE:To reduce the drop in the withstand voltage of a diffused layer for junction isolation due to a high-voltage wiring without increasing a manufacturing process by providing a diffused layer of the same conductivity type as that of the diffused layer at least one piece around the diffused layer for junction isolation whereon the high-voltage wiring crosses. CONSTITUTION: A diffused layer 3 of one conductivity type for junction isolation is formed in the conductivity type epitaxial layer 2 formed on semiconductor substrate 1 of a one conductivity type and an element region is isolated. The other conductivity type diffused layers 7 and B are provided around the diffused layer 3 and formed using the base diffusion of an N-P-N transistor of a constitution wherein the substrate 1 is a P-type, the epitaxial layer 2 is an N-type and the junction isolation layer 3 is a P-type. The distances between the diffused layer 3 for junction isolation and the diffused layers 7 and 8 are set in such a way that the diffused layers 7 are included in the interiors of depletion layers 4 though the depletion layers are curved inside at the surface by the effect of the electric field of a high-voltage wiring 6 on an insulating film 5. Moreover, the diffused layers 8 are provided in such a way that the diffused layers 6 are included in the interiors of the depletion layers to be extended from the diffused layers 7, which are similarly curved.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体装置に関し、特に高耐圧集積回路の接合
分離部の耐圧低下の防止構造に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a semiconductor device, and more particularly to a structure for preventing a drop in breakdown voltage at a junction isolation portion of a high breakdown voltage integrated circuit.

〔従来の技術〕[Conventional technology]

従来、この種の高耐圧集積回路としては、第2図に示す
ものがある。これは、−導電型の半導体基板IK逆逆電
電型エピタキシャル層2が形成され、エピタキシャル層
2に一導電型の接合分離用拡散層3が形成されて素子領
域の分離を行っている。ここで高電圧配線6が接合分離
用拡散層3上を酸化膜5を介して通ることKより、空乏
層4が表面近傍で内側(接合分離用拡散層側)K曲り接
合分離部の耐圧低下が生じる。この接合分離部の耐圧低
下を防ぐため、エピタキシャル層2の濃度を下げるか、
あるいは酸化膜5の厚さを大きくする構造がとられてい
る。
Conventionally, as this type of high voltage integrated circuit, there is one shown in FIG. In this structure, a reverse conductivity type epitaxial layer 2 is formed on a semiconductor substrate IK of a negative conductivity type, and a junction isolation diffusion layer 3 of one conductivity type is formed in the epitaxial layer 2 to isolate element regions. Here, since the high voltage wiring 6 passes over the junction isolation diffusion layer 3 via the oxide film 5, the depletion layer 4 is near the surface and inside (on the junction isolation diffusion layer side) the withstand voltage of the K-curved junction isolation part decreases. occurs. In order to prevent the breakdown voltage of this junction isolation part from decreasing, the concentration of the epitaxial layer 2 may be lowered or
Alternatively, a structure is adopted in which the thickness of the oxide film 5 is increased.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上述した従来の半導体装置は、エビ層の鋳度を低下させ
た構造とすると、空乏層の広が抄が大きくなるため、エ
ビ厚を増大させねけならないため、コストアップおよび
接合分離用拡散層の熱処理時間が大となるなどの欠点が
ある。また、酸化膜厚を増大させた構造とすると、他の
低電圧集積回路での製造条件と異った製造条件となり、
製造上の管理の複雑さが増すという欠点がある。
In the above-mentioned conventional semiconductor device, if the structure is such that the thickness of the layer is reduced, the expansion of the depletion layer becomes large and the layer thickness must be increased, resulting in increased cost and the need for a diffusion layer for junction isolation. There are disadvantages such as a long heat treatment time. In addition, if the structure has an increased oxide film thickness, the manufacturing conditions will be different from those for other low-voltage integrated circuits.
The disadvantage is that it increases the complexity of manufacturing controls.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は高圧配線の通る接合分離用の拡散層のものであ
る。
The present invention relates to a diffusion layer for junction isolation through which high-voltage wiring passes.

本発明の半導体装置は、高電圧配線が横切る接合分離用
拡散層の周囲に該拡散層と同一導電型の拡散層を少くと
も1個設けたことを特徴とする。
The semiconductor device of the present invention is characterized in that at least one diffusion layer of the same conductivity type as the junction isolation diffusion layer is provided around the junction isolation diffusion layer crossed by the high voltage wiring.

〔実施例〕〔Example〕

次に、本発明について図面を参照して説明する。 Next, the present invention will be explained with reference to the drawings.

第1図は本発明の一実施例の縦断面図である。FIG. 1 is a longitudinal sectional view of an embodiment of the present invention.

−導電型半導体基板に逆導電型のエピタキシャル層2が
形成され、エピタキシャル層2に、−導電型の接合分離
用拡散層3が形成されて素子領域の分離を行っている。
An epitaxial layer 2 of an opposite conductivity type is formed on a -conductivity type semiconductor substrate, and a -conductivity type junction isolation diffusion layer 3 is formed in the epitaxial layer 2 to isolate element regions.

ここで接合分離用の拡散層3の回りに逆導電型拡散層7
.8が設けられており、この層は例えば一般的に用いら
れる、基板1がP型でエピタキシャル層2がN型、接合
分離層がP型の集積回路によく用いられるNPN)−)
ンジスタのベース拡散を用いて形成すればよい。なお、
接合分離用拡散層3と拡散層7.8との距離は、絶縁膜
5上の高電圧配線6の電界の影響により空乏層4が表面
で内側に曲けられるが、その空乏層の内部に拡散層7が
入る様にする。又拡散層8は拡散層7から延びる空乏層
が、同様に曲げられる内部に入る様にすればよい。
Here, a reverse conductivity type diffusion layer 7 is provided around the diffusion layer 3 for junction isolation.
.. 8 is provided, and this layer is, for example, NPN, which is commonly used in integrated circuits in which the substrate 1 is P type, the epitaxial layer 2 is N type, and the junction isolation layer is P type.
It may be formed using transistor base diffusion. In addition,
The distance between the junction isolation diffusion layer 3 and the diffusion layer 7.8 is determined by the fact that the depletion layer 4 is bent inward at the surface due to the influence of the electric field of the high voltage wiring 6 on the insulating film 5; Make sure that the diffusion layer 7 is included. Further, the diffusion layer 8 may be configured such that the depletion layer extending from the diffusion layer 7 enters the inside which is similarly bent.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は、接合分離用拡散層の周囲
に、この拡散層と同一導電型の拡散層を設けることによ
り、製造工程を増すことなく、高電圧配線による接合分
離用拡散層の耐圧の低下を低減させる効果がある。
As explained above, the present invention provides a diffusion layer of the same conductivity type as the junction isolation diffusion layer around the junction isolation diffusion layer, thereby eliminating the need for increasing the number of manufacturing steps. This has the effect of reducing the drop in breakdown voltage.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の断面図、第2図は従来の半
導体装置の断面図である。 1・・・・・・半導体基板、2・・・・・・エピタキシ
ャル層、3・・・・・・接合分離用拡散層、4・・・・
・・空乏層、5・・・・・・酸化膜、6・・・・・・高
電圧配線、7,8・・・・・・拡散層。
FIG. 1 is a sectional view of an embodiment of the present invention, and FIG. 2 is a sectional view of a conventional semiconductor device. DESCRIPTION OF SYMBOLS 1...Semiconductor substrate, 2...Epitaxial layer, 3...Diffusion layer for junction isolation, 4...
... Depletion layer, 5 ... Oxide film, 6 ... High voltage wiring, 7, 8 ... Diffusion layer.

Claims (1)

【特許請求の範囲】[Claims] 高電圧配線が横切る接合分離用拡散層の周囲に該拡散層
と同一導電型の拡散層を少くとも1個設けたことを特徴
とする半導体装置。
A semiconductor device characterized in that at least one diffusion layer of the same conductivity type as the diffusion layer is provided around a junction isolation diffusion layer crossed by a high voltage wiring.
JP8050786A 1986-04-07 1986-04-07 Semiconductor device Pending JPS62235748A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8050786A JPS62235748A (en) 1986-04-07 1986-04-07 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8050786A JPS62235748A (en) 1986-04-07 1986-04-07 Semiconductor device

Publications (1)

Publication Number Publication Date
JPS62235748A true JPS62235748A (en) 1987-10-15

Family

ID=13720227

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8050786A Pending JPS62235748A (en) 1986-04-07 1986-04-07 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS62235748A (en)

Similar Documents

Publication Publication Date Title
US6407429B1 (en) Semiconductor device having silicon on insulator and fabricating method therefor
KR930702784A (en) Semiconductor integrated circuit device and manufacturing method thereof
KR980006525A (en) Semiconductor Device Semiconductor Integrated Device and Manufacturing Method of Semiconductor Device
JPS62235748A (en) Semiconductor device
JPH0244759A (en) Semiconductor integrated circuit device
JPS6060753A (en) Semiconductor device
JPH0247849A (en) Semiconductor device
JPH01185971A (en) Insulated gate semiconductor device
JPH04127574A (en) Vertical type insulated-gate field-effect transistor
JPS63316453A (en) Semiconductor device
JPH05315604A (en) Manufacture of semiconductor device
JPH02151065A (en) Mos integrated circuit
JPH01175754A (en) Semiconductor device having cross wiring
JPH02206126A (en) Bipolar-type semiconductor integrated circuit device
JPS6018931A (en) Semiconductor device and usage thereof
JPS6185863A (en) Semiconductor integrated circuit device
JPH09181336A (en) Semiconductor device
JPH04239178A (en) Integrated circuit
JPS62130554A (en) Semiconductor device
JPH06151786A (en) Master slice mode integrated circuit device
JPS5931860B2 (en) semiconductor equipment
JPH0251259B2 (en)
KR930009113A (en) BICMOS semiconductor device and manufacturing method thereof
JPS5835363B2 (en) Manufacturing method for semiconductor devices
JPS60106176A (en) Junction type field-effect transistor