JPS62235720A - Solid electrolytic capacitor - Google Patents
Solid electrolytic capacitorInfo
- Publication number
- JPS62235720A JPS62235720A JP7970886A JP7970886A JPS62235720A JP S62235720 A JPS62235720 A JP S62235720A JP 7970886 A JP7970886 A JP 7970886A JP 7970886 A JP7970886 A JP 7970886A JP S62235720 A JPS62235720 A JP S62235720A
- Authority
- JP
- Japan
- Prior art keywords
- capacitors
- solid electrolytic
- electrolytic capacitor
- electrolyte
- separator
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000003990 capacitor Substances 0.000 title claims description 26
- 239000007787 solid Substances 0.000 title claims description 8
- NLZUEZXRPGMBCV-UHFFFAOYSA-N Butylhydroxytoluene Chemical class CC1=CC(C(C)(C)C)=C(O)C(C(C)(C)C)=C1 NLZUEZXRPGMBCV-UHFFFAOYSA-N 0.000 claims description 10
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 9
- 229910052782 aluminium Inorganic materials 0.000 description 9
- NUJOXMJBOLGQSY-UHFFFAOYSA-N manganese dioxide Chemical compound O=[Mn]=O NUJOXMJBOLGQSY-UHFFFAOYSA-N 0.000 description 8
- 239000003792 electrolyte Substances 0.000 description 7
- 239000007784 solid electrolyte Substances 0.000 description 6
- 239000004065 semiconductor Substances 0.000 description 4
- 239000003985 ceramic capacitor Substances 0.000 description 3
- 238000005470 impregnation Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 2
- 239000011888 foil Substances 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 239000011244 liquid electrolyte Substances 0.000 description 2
- MIVBAHRSNUNMPP-UHFFFAOYSA-N manganese(2+);dinitrate Chemical compound [Mn+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O MIVBAHRSNUNMPP-UHFFFAOYSA-N 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 239000010445 mica Substances 0.000 description 2
- 229910052618 mica group Inorganic materials 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 239000002985 plastic film Substances 0.000 description 2
- 229920006255 plastic film Polymers 0.000 description 2
- 229910052715 tantalum Inorganic materials 0.000 description 2
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 2
- 238000005979 thermal decomposition reaction Methods 0.000 description 2
- 239000010407 anodic oxide Substances 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 238000010000 carbonizing Methods 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- PCCVSPMFGIFTHU-UHFFFAOYSA-N tetracyanoquinodimethane Chemical compound N#CC(C#N)=C1C=CC(=C(C#N)C#N)C=C1 PCCVSPMFGIFTHU-UHFFFAOYSA-N 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Landscapes
- Oscillators With Electromechanical Resonators (AREA)
- Glass Compositions (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
産業上の利用分野
本発明は改良された固体電解コンデンサに関するもので
ある。DETAILED DESCRIPTION OF THE INVENTION Field of the Invention This invention relates to an improved solid electrolytic capacitor.
従来の技術
近年、電気機器回路のディジタル化にともなって、そ仁
に使用されるコンデンサも高周波領域でのインピーダン
スが低く、小型大容量のものへの要求が高まっている。BACKGROUND OF THE INVENTION In recent years, with the digitization of electrical equipment circuits, there has been an increasing demand for capacitors used in circuits that have low impedance in the high frequency range and are small and large in capacity.
従来、高周波領域用のコンデンサとしては、プラスチッ
クフィルムコンデン27.7
す、マイカコンデンサ、積層セラミックコンデンサが用
いられているが、フィルムコンデンサおよびマイカコン
デンサでは形状が大きくなってし捷うために大容量化が
むずかしく、寸だ積層セラミノクコイデンサでは、小型
大容量になればなるほど、温度特性が悪くなり、価格が
非常に高くなるという欠点がある。一方、大容量タイプ
のコンデンサとして知られるものに、アルミニウム乾式
電解コンデンサあるいはアルミニウムまたはタンタル固
体電解コンデンサなどがある。これらのコンデンサは誘
電体となる陽極酸化皮膜を非常に薄くできるために大容
量が実現できるのであるが、その反面、酸化皮膜の損傷
がおきゃすいために、酸化皮膜と陰極の間に猪傷を修復
するための電解質を設ける必要である。アルミニウム乾
式電解コンデンサでは、エツチングをほどこした陽、陰
極アルミニウム箔を紙のセパレータを介して巻き取り、
液状の電解質をセパレータに含浸して用いる。このため
、電解質の液漏れ、蒸発等の理由により経時的に静電容
量の減少や損失(tanδ)の増大が起3 ページ
ると同時に、電解質のイオン伝導性により高周波特性お
よび低温特性が著しく劣る等の欠点を有している。又、
アルミニウム、タンタル固体電解コンデンサでは、上記
アルミニウム乾式電解コンデンサの欠点を改良するため
に固体電解質として二酸化マンガンが用いられている。Conventionally, plastic film capacitors, mica capacitors, and multilayer ceramic capacitors have been used as capacitors for high frequency ranges, but film capacitors and mica capacitors have larger shapes and can be shuffled, so larger capacitances have been used. However, laminated ceramic capacitors have the disadvantage that the smaller and larger the capacity, the worse the temperature characteristics and the higher the price. On the other hand, known high-capacity type capacitors include aluminum dry electrolytic capacitors and aluminum or tantalum solid electrolytic capacitors. These capacitors can achieve large capacitance because the anodic oxide film that serves as the dielectric can be made very thin, but on the other hand, the oxide film is easily damaged, so there is a risk of boar scratches between the oxide film and the cathode. It is necessary to provide electrolytes for repair. In aluminum dry electrolytic capacitors, etched positive and negative electrode aluminum foils are wound through a paper separator.
A separator is impregnated with liquid electrolyte. For this reason, capacitance decreases and loss (tan δ) increases over time due to electrolyte leakage, evaporation, etc. At the same time, high frequency characteristics and low temperature characteristics deteriorate significantly due to the ionic conductivity of the electrolyte. It has the following drawbacks. or,
In aluminum and tantalum solid electrolytic capacitors, manganese dioxide is used as the solid electrolyte in order to improve the drawbacks of the above-mentioned aluminum dry electrolytic capacitors.
この固体電解質は硝酸マンガン水溶液に陽極素子を浸漬
し、350℃前後の温度で熱分解して得られている。こ
のコンデンサの場合、電解質が固体のため、高温におけ
る電解質の流出、低温域での凝固から生ずる性能の低下
などの欠点がなく、液状電解質を用いたコンデンサに比
して良好な周波数特性および温度特性を示すが、硝酸マ
ンガンの熱分解による酸化皮膜の損傷及び二酸化マンガ
ンの比抵抗が高いことなどの理由から、高周波領域のイ
ンピーダンスあるいは損失は積層セラミックコンデンサ
あるいけプラスチックフィルムコンデンサと比較して1
けた以上高い値となっている。This solid electrolyte is obtained by immersing an anode element in a manganese nitrate aqueous solution and thermally decomposing it at a temperature of around 350°C. In the case of this capacitor, since the electrolyte is solid, there are no drawbacks such as electrolyte leakage at high temperatures or performance degradation caused by solidification at low temperatures, and it has better frequency and temperature characteristics than capacitors using liquid electrolytes. However, due to damage to the oxide film due to thermal decomposition of manganese nitrate and the high resistivity of manganese dioxide, the impedance or loss in the high frequency range is 1% compared to multilayer ceramic capacitors and plastic film capacitors.
The value is more than an order of magnitude higher.
前記の問題点を解決するために固体電解質として導電性
が高く、陽柚酸化性のすぐれた有機半導体(7,7,8
,8−テトラシアノキノジメタン錯体:以下TCNQ錯
体と記す)を用いることが提案されている。この有機半
導体は有機溶媒に溶解したり加熱による融解などの手段
を用いて酸化皮膜に含浸塗布することが可能であり、M
nO2を含浸する際に生ずる熱分解による酸化皮膜の損
傷を防ぐことができる。TCNQCN上導電性が高く、
陽極酸化性のすぐれたもので、高周波特性が良好で大容
量のコンデンサが可能となる。たとえば、丹羽信−氏に
より、N−n−プロピルあるいはN−1so−プロピル
インキノリンとTCNQからなる有機半導体を固体電解
質として用いる発明が出願されている(特開昭58−1
7609号公報)。In order to solve the above problems, organic semiconductors (7, 7, 8
, 8-tetracyanoquinodimethane complex (hereinafter referred to as TCNQ complex) has been proposed. This organic semiconductor can be impregnated and coated on an oxide film by dissolving it in an organic solvent or melting it by heating.
Damage to the oxide film due to thermal decomposition that occurs during impregnation with nO2 can be prevented. TCNQCN has high conductivity,
It has excellent anodic oxidation properties, has good high-frequency characteristics, and can be used to produce large-capacity capacitors. For example, Mr. Shin Niwa has filed an application for an invention using an organic semiconductor consisting of N-n-propyl or N-1so-propyl inquinoline and TCNQ as a solid electrolyte (Japanese Patent Laid-Open No. 58-1
Publication No. 7609).
前記発明によると捲回型アルミニウム電解コンデンサへ
のTCNQ塩の含浸がTCNQ塩を加熱溶融することに
より行われ、これによりTCNQ塩と酸化皮膜との強固
な結合が達成され、TCNQ塩の高電導性の寄与にも助
けられて、周波数特性および温度特性が著L7<改良さ
れたアルミニウムコンデンサが製造されてとしている。According to the invention, the TCNQ salt is impregnated into the wound aluminum electrolytic capacitor by heating and melting the TCNQ salt, thereby achieving a strong bond between the TCNQ salt and the oxide film, thereby increasing the high conductivity of the TCNQ salt. With the help of this contribution, aluminum capacitors with significantly improved frequency characteristics and temperature characteristics have been manufactured.
このような5 ページ
TCNQ塩にもとづく有機半導体を固体電解質として用
いることは、すでに同一出願人になる発明(特開昭58
−1760C1号公報)に示されているように、TCN
Q塩が二酸化マンガンに比して高い電導性と高い陽極酸
化能力(修復作用)を有するため二酸化マンガンを用い
た固体電解コンデンサに比して周波数特性と温度特性共
に優れた性能を可能にする。The use of such an organic semiconductor based on TCNQ salt as a solid electrolyte has already been disclosed in an invention filed by the same applicant (Japanese Patent Laid-Open No.
-1760C1 Publication), TCN
Since Q salt has higher conductivity and higher anodic oxidation ability (restoration effect) than manganese dioxide, it enables superior performance in both frequency characteristics and temperature characteristics compared to solid electrolytic capacitors using manganese dioxide.
オだ一般に電解質が含浸されていない状態の捲回素子は
、陽陰極の間にマニラ紙のようなセパレータを使用して
いる。固体電解質としてTCNQ塩を用いる場合、特開
昭 58−123715号公報によるとあらかじめセパ
レータを炭化処理すること匁<、高周波特性や高温にお
ける信頼性の面で末だ充分とは云えない。本発明は上記
問題点を解消するもので、簡単な構成でコンデンサの高
周波特性及び高温における信頼性の改善を図ることを目
6 ページ
的とするものである。In general, wound elements that are not impregnated with electrolyte use a separator such as manila paper between the anode and cathode. When using TCNQ salt as a solid electrolyte, according to Japanese Patent Application Laid-Open No. 58-123715, carbonizing the separator in advance is not sufficient in terms of high frequency characteristics and reliability at high temperatures. The present invention aims to solve the above-mentioned problems and aims to improve the high-frequency characteristics and high-temperature reliability of a capacitor with a simple structure.
問題点を解決するための手段
本発明は上記目的を達成するだめになされたもので、そ
の技術的手段は、陽極皮膜を有する第1の電極と、前記
第1の電極と対向して設けられた第2の電極と、前記第
1と第2の電極の間に介在する少なくとも1本の絶縁糸
と、前記第1及び第2の電極間の空間にTCNQ塩を含
浸し捲回してなることを特徴とする固体電解コンデンサ
を提供するものである。Means for Solving the Problems The present invention has been made to achieve the above object, and its technical means include: a first electrode having an anodic coating; and a first electrode provided opposite to the first electrode. a second electrode, at least one insulating thread interposed between the first and second electrodes, and a space between the first and second electrodes impregnated with TCNQ salt and wound. The present invention provides a solid electrolytic capacitor characterized by:
作用
本発明は、捲回素子のセパレータとしてマニラ紙のよう
なもののかわりに細い絶縁糸を用いることにより、工程
数を少なくしてコストの低減を図ることができるほか、
簡単な構造でIKHz以上の高周波におけるtanδが
改善でき、さらに高温放置における容量の変化(△C)
も改善できた。本発明の絶縁糸の太さは、電解質の毛細
管現象を利用した含浸性を良くするために、できる限り
細かい方が望ましい。また絶縁糸は周辺又は中央に少な
7 ベージ
くとも1本設ければ良く、とれにより陽陰極間の箔が接
触してノヨートするのを防止することができる。Function: By using a thin insulating thread instead of something like manila paper as a separator for a wound element, the present invention can reduce the number of steps and reduce costs.
With a simple structure, tan δ can be improved at high frequencies of IKHz or higher, and the capacitance change (△C) when left at high temperatures can be improved.
was also improved. The thickness of the insulating thread of the present invention is desirably as fine as possible in order to improve the impregnating property of the electrolyte using capillary action. Further, it is sufficient to provide at least one insulating thread at the periphery or center, and it is possible to prevent the foil between the anode and the cathode from coming into contact with each other due to fraying.
実施例 以下に本発明の実施例を詳細に説明する。Example Examples of the present invention will be described in detail below.
固体電解質として、N−インアミルイソキノリウム(T
CNQ)2を用いた。捲回素子としては16V、100
μF規格のものを使用し、含浸は260°Cにて溶融含
浸を行い、外装はアルミカンケースとエポキシ樹脂にて
行った。As a solid electrolyte, N-in-amyl isoquinolium (T
CNQ)2 was used. 16V, 100 as a wound element
A μF standard was used, and the impregnation was carried out by melt impregnation at 260°C, and the exterior was made of an aluminum can case and epoxy resin.
捲回素子としては通常のマニラ紙をセパレータとして用
いて炭化処理をしたものと、太さが02順程度のもめ事
ん糸をセパレータのかわりに上下周辺部分に2本介在し
たもので実験を行った。以下に特性の比較を示す。As winding elements, experiments were conducted using ordinary manila paper as a separator and carbonized one, and one in which two pieces of thread with a thickness of about 02 were interposed in the upper and lower peripheral parts instead of the separator. . A comparison of characteristics is shown below.
「以下余白−J
上記表より明らかなように、セパレータとしてもめん糸
を使用した本実施例は、高温放置後の容量変化が少なく
、信頼性の改善が図られた。"Margin below - J As is clear from the table above, in this example, in which the thread was also used as a separator, there was little change in capacity after being left at high temperatures, and reliability was improved.
発明の効果
以上要するに本発明は、陽陰極間のセパレータとして絶
縁糸を用いたものであり、製造工程数の削減によるコス
トの低下と、簡単な構成でコンデンサの高周波特性の改
善と信頼性の改善が図れた。Effects of the Invention In short, the present invention uses insulating thread as a separator between the anode and cathode, which reduces costs by reducing the number of manufacturing steps, and improves the high frequency characteristics and reliability of capacitors with a simple configuration. was achieved.
Claims (1)
して設けられた第2の電極と、前記第1と第2の電極の
間に介在する少なくとも1本の絶縁糸と、前記第1及び
第2の電極間の空間にTCNQ塩を含浸し捲回してなる
ことを特徴とする固体電解コンデンサ。a first electrode having an anodic film; a second electrode provided opposite to the first electrode; at least one insulating thread interposed between the first and second electrodes; A solid electrolytic capacitor characterized in that the space between first and second electrodes is impregnated with TCNQ salt and wound.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7970886A JPS62235720A (en) | 1986-04-07 | 1986-04-07 | Solid electrolytic capacitor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7970886A JPS62235720A (en) | 1986-04-07 | 1986-04-07 | Solid electrolytic capacitor |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS62235720A true JPS62235720A (en) | 1987-10-15 |
Family
ID=13697703
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7970886A Pending JPS62235720A (en) | 1986-04-07 | 1986-04-07 | Solid electrolytic capacitor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62235720A (en) |
-
1986
- 1986-04-07 JP JP7970886A patent/JPS62235720A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH11186110A (en) | Electrolytic capacitor and manufacture thereof | |
JPH0553051B2 (en) | ||
JPS62235720A (en) | Solid electrolytic capacitor | |
JP2003309041A (en) | Solid electrolytic capacitor | |
JPS63126212A (en) | Solid electrolytic capacitor | |
KR102141023B1 (en) | Electrolyte for solid electrolytic capacitor | |
JP3123772B2 (en) | Organic semiconductor solid electrolytic capacitors | |
JP2730345B2 (en) | Manufacturing method of capacitor | |
JPS61204925A (en) | Electric double-layer capacitor | |
JP2924310B2 (en) | Manufacturing method of capacitor | |
JP2814585B2 (en) | Solid electrolytic capacitor and method of manufacturing the same | |
JP4678094B2 (en) | Solid electrolytic capacitor and manufacturing method thereof | |
JP3548034B2 (en) | Electrolytic capacitor and method of manufacturing the same | |
JPH0337854B2 (en) | ||
JPH0666237B2 (en) | Solid electrolytic capacitor | |
JP2833774B2 (en) | Solid electrolytic capacitor and method of manufacturing the same | |
JPH0393214A (en) | Manufacture of solid-state electrolytic capacitor | |
JPH0260047B2 (en) | ||
JPH0550125B2 (en) | ||
JPS63126210A (en) | Manufacture of solid electrolytic capacitor | |
JPH0374029B2 (en) | ||
JPS62144312A (en) | Solid electrolytic capacitor | |
JPH0274018A (en) | Manufacture of solid electrolytic condenser | |
JPS6065520A (en) | Solid electrolytic condenser | |
JPS6294913A (en) | Manufacture of toroidal electrolytic capacitor |