JPS6223126A - Dose determining method - Google Patents

Dose determining method

Info

Publication number
JPS6223126A
JPS6223126A JP16334785A JP16334785A JPS6223126A JP S6223126 A JPS6223126 A JP S6223126A JP 16334785 A JP16334785 A JP 16334785A JP 16334785 A JP16334785 A JP 16334785A JP S6223126 A JPS6223126 A JP S6223126A
Authority
JP
Japan
Prior art keywords
reflected
dose
photoresist film
luminous energy
reflected beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16334785A
Other languages
Japanese (ja)
Inventor
Kinji Tsunenari
欣嗣 恒成
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP16334785A priority Critical patent/JPS6223126A/en
Publication of JPS6223126A publication Critical patent/JPS6223126A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To rapidly and accurately determine the dose from the change in the reflected luminous energy by a method wherein the luminous energy in the reflected beam is determined against the constant luminous energy for an incident beam. CONSTITUTION:Measurements are performed before and after the implantation of ions by determining the energy present in a reflected beam 16. An incident beam 15 projected by a projector 13 positioned obliquely over a semiconductor wafer 10 lands on the specimen and the reflected beam 16 is determined by the receptor 14. The incident beam 15 travels through a photoresist film 12 and then is reflected by a metal film 11 to travel for the second time through the photoresist film 12 into a reflected beam 16. The color of the photoresist film 12 is different after ion implantation, which causes the luminous energy present in the reflected beam 16 to change accordingly. The change in the luminous energy roughly represents the dose of the ions implanted into the specimen.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、イオン注入された半導体ウェーハのドーズ量
を測定する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for measuring the dose of an ion-implanted semiconductor wafer.

〔従来の技術〕[Conventional technology]

従来、半導体ウェーハのイオン注入によるドーズ量を測
定する方法としては、半導体ウェーハにイオンを注入す
る前と注入後に、シート抵抗を測定してドーズ量を求め
ていた。
Conventionally, as a method for measuring the dose of ions implanted into a semiconductor wafer, the dose was determined by measuring sheet resistance before and after implanting ions into the semiconductor wafer.

しかし、この方法、はイオン注入後に熱アニールを行な
ってから測定するため、アニール条件によってシート抵
抗が変化し、充分な再現性のある測定ができなかった。
However, since this method performs thermal annealing after ion implantation and then performs measurements, the sheet resistance changes depending on the annealing conditions, making it impossible to measure with sufficient reproducibility.

またアニールに長時間を要するので、イオン注入後直ち
にドーズ量を知り、イオン注入をこのドーズ量の状況に
よって管理しようとする目的には役立たなかった。
Furthermore, since annealing takes a long time, it is not useful to know the dose immediately after ion implantation and to control ion implantation based on the status of this dose.

そこで、上記の欠点を除去する方法として、透明材(一
般にはガラス)からなるウエーノ・状基板の表面にホト
レジスト膜を形成した試料に、イオン注入する方法が提
案されている。この方法は、イオン注入されたホトレジ
スト膜はドーズ量によって変色の程度が異なシ、透過率
もそれに応じて変化することを利用している。第2図に
示すように、試料は、透明な基板1の上にホトレジスト
膜2を形成し、上面から光入射ビーム3を照射し、透過
ビーム4の光量を測定する。光入射ビーム3の光量は一
定とし、イオン注入の前後における透過ビーム4の光量
変化をドーズ量の目安とする。
Therefore, as a method for eliminating the above-mentioned drawbacks, a method has been proposed in which ions are implanted into a sample in which a photoresist film is formed on the surface of a wafer-shaped substrate made of a transparent material (generally glass). This method utilizes the fact that the degree of discoloration of the ion-implanted photoresist film varies depending on the dose, and the transmittance also changes accordingly. As shown in FIG. 2, for the sample, a photoresist film 2 is formed on a transparent substrate 1, an incident light beam 3 is irradiated from the top surface, and the amount of transmitted beam 4 is measured. The light intensity of the incident light beam 3 is constant, and the change in the light intensity of the transmitted beam 4 before and after ion implantation is used as a measure of the dose amount.

上記の方法は、熱アニールの必要がなく測定。The above method allows measurements without the need for thermal annealing.

時間が著しく短縮されるが、次の欠点をもっている。Although the time is significantly reduced, it has the following disadvantages.

1、 ガラスのような透明な材質の基板は機械的に弱い
。これは、試料を半導体ウェーハと同一の厚みとしなけ
ればならず、数100μmの程度に薄くするからである
1. Substrates made of transparent materials such as glass are mechanically weak. This is because the sample must have the same thickness as the semiconductor wafer, and is made as thin as several 100 μm.

2、透明な材質の基板は一般に、電気的絶縁体であるた
め、イオン注入中に基板表面(ホトレジストを含む)に
電荷が蓄積し、電位をもつため、イオンビームの注入条
件が影響される。したがってイオンビーム電流が大きい
と、大きな誤差を生ずる。
2. Since a substrate made of a transparent material is generally an electrical insulator, charge is accumulated on the substrate surface (including photoresist) during ion implantation and has a potential, which affects the ion beam implantation conditions. Therefore, if the ion beam current is large, a large error will occur.

本発明の目的は、ホトレジストgの変色法の利点を充分
にいかし、さらに透明な基板を用いる方法の欠点を改善
した新規なドーズ量測定方法を提供することにある。
An object of the present invention is to provide a new method for measuring a dose amount, which fully takes advantage of the color change method of photoresist G and also improves the drawbacks of the method using a transparent substrate.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の測定方法は、光を全反射する金属性の表面を有
し、該表面上にホトレジスト膜を形成させたウェーハ状
の試料にイオン注入を行ない、注入の前後に一定の光量
の入射ビームに対する反射ビームの光量を測定し、反射
光量の変化からドーズ量を求めるものである。
In the measurement method of the present invention, ions are implanted into a wafer-shaped sample having a metallic surface that totally reflects light and a photoresist film is formed on the surface. The amount of light reflected by the reflected beam is measured, and the dose amount is determined from the change in the amount of reflected light.

〔作用〕[Effect]

試料に入射ビームをあてると、光ビームはホトレジスト
膜を透過してから試料の金属性表面で反射し、再びホト
レジスト膜を透過して試料外にでる。ホトレジスト膜を
2回透過するときに、イオン注入後の反射ビームの光量
はホトレジスト膜の変色によって減少する。したがって
入射ビームの光量を一定として、イオン注入前後の反射
ビームの光量の差からイオン注入のドーズ量の目安とす
ることができる。
When an incident beam is applied to a sample, the light beam passes through the photoresist film, is reflected from the metal surface of the sample, and passes through the photoresist film again to exit the sample. When passing through the photoresist film twice, the light intensity of the reflected beam after ion implantation is reduced due to discoloration of the photoresist film. Therefore, while the light intensity of the incident beam is kept constant, the ion implantation dose can be determined from the difference in the light intensity of the reflected beam before and after ion implantation.

数値的データとして直接的に把掴できるのは、抵抗法で
ある。本発明の方法は、充分なアニール条件で慎重に行
なった抵抗法の数値を基準として較正することによって
数値的にもドーズ量を求めることができる。
The resistance method can be used to directly obtain numerical data. The method of the present invention can also numerically determine the dose by calibrating the values of the resistance method carefully performed under sufficient annealing conditions.

〔実施例〕〔Example〕

図面を参照して、本発明の一実施例につき説明する。第
1図では試料として半導体ウェーハ10の表面に金属膜
11を充分な厚みを有するように蒸着して付着する。そ
してさらにホトレジストを塗布し、ホトレジスト膜12
を設ケル。
An embodiment of the present invention will be described with reference to the drawings. In FIG. 1, a metal film 11 is deposited to a sufficient thickness on the surface of a semiconductor wafer 10 as a sample. Then, photoresist is further applied, and the photoresist film 12
Set up a cell.

測定は、イオン注入の前後に、図示のように斜め上方に
配置した投光器13から入射ビーム15を試料にあて、
反射ビーム16を受光器14で測定することで行なう。
For measurement, before and after ion implantation, an incident beam 15 is applied to the sample from a projector 13 placed obliquely above as shown in the figure.
This is done by measuring the reflected beam 16 with the light receiver 14.

入射ビーム15はホトレジスト膜12に入射されてから
金属illで反射して、再びホトレジスト膜12を透過
して、反射ビーム16トナル。イオン注入によりホトレ
ジスト膜11が変色するので反射ビーム16の光量がイ
オン注入の前後で異なる。この変動量をイオン注入のド
ーズ量の目安になる。
The incident beam 15 enters the photoresist film 12, is reflected by the metal illumination, and is transmitted through the photoresist film 12 again to form a reflected beam 16. Since the photoresist film 11 changes color due to ion implantation, the light intensity of the reflected beam 16 differs before and after the ion implantation. This amount of variation is used as a guideline for the dose of ion implantation.

なお、試料としては、ウェーハ状の金属基板を用いその
表面を鏡面としてから、その鏡面上にホトレジスト膜を
塗布して付着したものを同様に用いることができる。
As a sample, a wafer-shaped metal substrate whose surface is made into a mirror surface, and a photoresist film coated and attached on the mirror surface can be similarly used.

〔発明の効果〕〔Effect of the invention〕

以上、説明したように、本発明は抵抗測定法と比較する
と、迅速確実にドーズ量を測定できる。さらに、光透過
性の試料を用いる測定法では、試料が絶縁性のため、イ
オン注入による電荷が蓄積し、それによる電位でイオン
注入状況が変化したが、本発明の試料は金属膜を有し、
電荷蓄積による電位変化がないので、信頼性の高い測定
が可能である。また、半導体ウェーハ。
As described above, the present invention can measure the dose more quickly and reliably than the resistance measurement method. Furthermore, in the measurement method using a light-transmitting sample, since the sample is insulating, charge due to ion implantation accumulates, and the resulting potential changes the ion implantation situation, but the sample of the present invention has a metal film. ,
Since there is no potential change due to charge accumulation, highly reliable measurements are possible. Also, semiconductor wafers.

または金属基板を使うので試料の機械的強度が高く、測
定中に取扱いによシ破壊することが少ない。
Alternatively, since a metal substrate is used, the mechanical strength of the sample is high, and it is less likely to break due to handling during measurement.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例、第2図は従来例を示す図で
ある。 10・・・半導体ウェーハ、11・・・金属膜、12・
・・ホトレジスト膜、13・・・投光器、14・・・受
光器、15 、16・・・光ビーム。
FIG. 1 shows an embodiment of the present invention, and FIG. 2 shows a conventional example. 10... Semiconductor wafer, 11... Metal film, 12.
...Photoresist film, 13... Emitter, 14... Light receiver, 15, 16... Light beam.

Claims (1)

【特許請求の範囲】[Claims] 光を全反射する金属性の表面を有し、該表面上にホトレ
ジスト膜を形成させたウェーハ状の試料にイオン注入を
行ない、注入の前後に一定の光量の入射ビームに対する
反射ビームの光量を測定し、反射光量の変化からドーズ
量を求めることを特徴とするイオン注入ドーズ量の測定
方法。
Ions are implanted into a wafer-shaped sample that has a metallic surface that totally reflects light and a photoresist film is formed on the surface, and the amount of reflected beam is measured before and after implantation relative to a constant amount of incident beam. A method for measuring an ion implantation dose, characterized in that the dose is determined from a change in the amount of reflected light.
JP16334785A 1985-07-23 1985-07-23 Dose determining method Pending JPS6223126A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16334785A JPS6223126A (en) 1985-07-23 1985-07-23 Dose determining method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16334785A JPS6223126A (en) 1985-07-23 1985-07-23 Dose determining method

Publications (1)

Publication Number Publication Date
JPS6223126A true JPS6223126A (en) 1987-01-31

Family

ID=15772153

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16334785A Pending JPS6223126A (en) 1985-07-23 1985-07-23 Dose determining method

Country Status (1)

Country Link
JP (1) JPS6223126A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0947881A2 (en) * 1998-03-30 1999-10-06 Siemens Aktiengesellschaft Control of critical dimensions
JP2010016042A (en) * 2008-07-01 2010-01-21 Panasonic Corp Elemental analysis method, and manufacturing method of semiconductor device
JP2016096301A (en) * 2014-11-17 2016-05-26 富士通セミコンダクター株式会社 Method of manufacturing semiconductor device, and ion implantation device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0947881A2 (en) * 1998-03-30 1999-10-06 Siemens Aktiengesellschaft Control of critical dimensions
EP0947881A3 (en) * 1998-03-30 2001-07-11 Siemens Aktiengesellschaft Control of critical dimensions
JP2010016042A (en) * 2008-07-01 2010-01-21 Panasonic Corp Elemental analysis method, and manufacturing method of semiconductor device
JP2016096301A (en) * 2014-11-17 2016-05-26 富士通セミコンダクター株式会社 Method of manufacturing semiconductor device, and ion implantation device

Similar Documents

Publication Publication Date Title
KR100334301B1 (en) Heating apparatus and a test method of the heating apparatus
EP0397388A3 (en) Method and apparatus for measuring thickness of thin films
JP2907971B2 (en) Method for forming or testing semiconductor device pattern
US6900894B2 (en) Apparatus and method for measuring dose and energy of ion implantation by employing reflective optics
US5677090A (en) Method of making X-ray mask having reduced stress
EP0217463B1 (en) Method of determining an exposure dose of a photosensitive lacquer layer
JPS6223126A (en) Dose determining method
JPS60249327A (en) Method of detecting resist pattern
US7265343B2 (en) Apparatus and method for calibration of an optoelectronic sensor and for mensuration of features on a substrate
Watson et al. The reliability of internal standards for calibrating electron microscopes
JPH08313244A (en) Method of measuring thickness of thin film
JP2000055841A (en) X-ray analysis method
JP2904146B2 (en) Method for measuring impurities using secondary ion mass spectrometry
JPS5752807A (en) Device for measuring film thickness
RU2011988C1 (en) Method for determining light sensitivity characteristics of photographic glass ceramic
JPH0521566A (en) Measuring method for ion implantation amount in semiconductor crystal
SU1318978A1 (en) Method of determining optimum exposure of photopolymerizing material
Takami et al. Thickness measurement method for thin photoresist film on transparent material
JPH0233947A (en) Apparatus and method for measuring ion implanted amount using infrared light scattering
RU1806419C (en) Method of determining completion of process on ion etching of films
JPS60250640A (en) Temperature measuring device by fluorescent light
SU1370489A1 (en) Method of producing standard specimens for checking content of helium in structural materials of thermonuclear reactor
JPS6388737A (en) Electron beam emitting device
JPH01293518A (en) Aligner having device for detecting variation of height of substrate
JPS61207911A (en) Sample for calibrating x-ray type magnetic film measuring instrument