JPH08313244A - Method of measuring thickness of thin film - Google Patents

Method of measuring thickness of thin film

Info

Publication number
JPH08313244A
JPH08313244A JP12156895A JP12156895A JPH08313244A JP H08313244 A JPH08313244 A JP H08313244A JP 12156895 A JP12156895 A JP 12156895A JP 12156895 A JP12156895 A JP 12156895A JP H08313244 A JPH08313244 A JP H08313244A
Authority
JP
Japan
Prior art keywords
thin film
sample
measuring
film thickness
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12156895A
Other languages
Japanese (ja)
Other versions
JP3060889B2 (en
Inventor
Nobuaki Takazawa
信明 高澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP7121568A priority Critical patent/JP3060889B2/en
Publication of JPH08313244A publication Critical patent/JPH08313244A/en
Application granted granted Critical
Publication of JP3060889B2 publication Critical patent/JP3060889B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE: To provide a film-thickness measuring method in which the Auger electron image of a specific element in an exposed part is captured and in which the width in the exposed part of a thin film is measured with good efficiency by a method wherein a conductive coating is executed to the thin film, the surface of a sample is etched and the layer cross section of the thin film having a constant angle of inclination with reference to a horizontal plane is exposed. CONSTITUTION: Au is vapor-deposited 11 onto a sample 7 which is composed of a base material 13 and of a film 12, and the sample is set on a stage 8. The inside of an apparatus is set to a high vacuum, and the surface of the sample is etched by an Ar ion gun 4. The surface is removed into a conical shape, its circumference is surrounded by a wall at a cross-sectional exposure angle θ as an angle of inclination, and an exposure width W is formed with reference to a film thickness D. Then, a primary electron beam which is emitted from an electron gun 1 is converged via a converging lens 2 and an objective lens 3 so as to be incident to the sample 7. Secondary electrons which are scattered from the surface of the sample 7 are detected by a secondary-electron detector 5, and Auger electrons are detected by an Auger-electron detector 6. By using the exposure width W and the exposure angle θ which have been measured, the film thickness D is found by an expression of the film thickness D=Wtanθ.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、薄膜の膜厚の測定方法
に関し、特に数nmレベルのコーティング薄膜を切断する
ことなく傾斜断面を露出し直接測定する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for measuring the thickness of a thin film, and more particularly to a method for directly exposing and measuring an inclined cross section without cutting a coating thin film having a level of several nm.

【0002】[0002]

【従来の技術】表面を被覆された膜厚を測定する方法と
して、光学的方法として多重光束干渉法による膜厚測定
が一般的に採用されてきた。この方法では、干渉縞の観
測が鮮明さに大きく影響され、その干渉条件はミラーと
サンプル間の距離の設定および光自体の反射率の向上等
に制約され、その条件設定にかなりの労力を要してい
た。さらに、X線を使用して膜厚を測定する方法とし
て、X線の吸収を利用する方法、蛍光X線励起による方
法および全反射X線の干渉を利用する方法等があるが、
これらの方法では膜厚がnmオーダーに対して、その精度
において問題があり、十分に適用されるに至っていな
い。
2. Description of the Related Art As a method for measuring the thickness of a film coated on the surface, a method of measuring the thickness by a multi-beam interference method has been generally adopted as an optical method. In this method, the observation of the interference fringes is greatly affected by the sharpness, and the interference conditions are restricted by setting the distance between the mirror and the sample, improving the reflectance of the light itself, etc. Was. Further, as a method of measuring the film thickness using X-rays, there are a method of utilizing absorption of X-rays, a method of exciting fluorescent X-rays, a method of utilizing interference of total reflection X-rays, and the like.
These methods have problems in accuracy with respect to the film thickness on the order of nm, and have not been sufficiently applied.

【0003】最近では、以上のように従来困難であった
nmオーダーの膜厚に対して、精度上問題ない方法につい
て検討され、基板等にコーティングされた薄膜の厚さ測
定法およびその装置として種々考案されている。その中
でミクロトーム等を用いてコーティング薄膜を基板と共
に斜めに機械的に切断し、その切り口をSEM(走査型
電子顕微鏡)等を用いて断面観察し、膜厚を測定する方
法がある。しかし、この方法では薄膜が数nmレベルの場
合には切断面がダレてしまうので観察すべき膜が確認で
きず測定不可となる。
Recently, as described above, it has been difficult in the past.
For a film thickness of the order of nm, a method that does not cause a problem in accuracy has been studied, and various methods for measuring the thickness of a thin film coated on a substrate and the like have been devised. Among them, there is a method in which a coating thin film is mechanically cut diagonally together with a substrate by using a microtome or the like, and a cross section of the cut portion is observed by using an SEM (scanning electron microscope) or the like to measure the film thickness. However, with this method, when the thin film is on the level of several nm, the cut surface is sagged, and the film to be observed cannot be confirmed, making measurement impossible.

【0004】他の方法として、薄膜表面からイオンエッ
チングを行いつつオージェ電子分光法による深さ方向の
分析を行い、膜材料特有の元素をモニターし、この元素
が検出されなくなった時のイオンエッチング深さを検量
することによって膜厚を知る方法がある。しかしなが
ら、オージェ電子脱出深さが数nmであるため、オージェ
電子分光法の深さ方向分解能が数nm以上となり、この場
合も薄膜が数nmレベルの場合には測定は不可となる。
As another method, while performing ion etching from the surface of the thin film, analysis in the depth direction by Auger electron spectroscopy is performed to monitor the element specific to the film material, and the ion etching depth when this element is no longer detected. There is a method of knowing the film thickness by calibrating the thickness. However, since the Auger electron escape depth is several nm, the depth direction resolution of Auger electron spectroscopy is several nm or more, and in this case also, the measurement cannot be performed when the thin film has a level of several nm.

【0005】上記のごとく、数nmレベルの薄膜の厚さを
簡便にかつ高精度で測定可能とする測定方法の開発が望
まれていた。
As described above, it has been desired to develop a measuring method capable of simply and highly accurately measuring the thickness of a thin film of several nm level.

【0006】[0006]

【発明が解決しようとする課題】以上のような問題に鑑
み、本発明の目的は、基材が硬質もしくは軟質に関わら
ず、機械的切断法に代わる高エネルギー粒子によるドラ
イエッチング法を検討し、この処理により一定条件の膜
厚断面を露出させ、この露出部を測定することによって
膜厚を求める膜厚測定方法を提供する。
In view of the above problems, an object of the present invention is to investigate a dry etching method using high-energy particles as an alternative to the mechanical cutting method regardless of whether the substrate is hard or soft. By this process, a film thickness section under a certain condition is exposed, and a film thickness measuring method for determining the film thickness by measuring the exposed portion is provided.

【0007】また、本発明の他の目的は、前記露出部で
の特定元素のオージェ電子像を取り込むことによって、
効率よく膜層露出部の幅を測定可能とする膜厚測定方法
を提供する。さらに、本発明の別の目的は、サンプルが
電子照射を受けた場合の、試料電流値を測定し、その抵
抗値をモニターして、薄膜と基材の界面での抵抗値の勾
配の変化を認識することによって、ドライエッチング速
度からその時点までのエッチング量の積分値との対応を
検討し、これによって膜厚を求める膜厚方法を提供す
る。
Another object of the present invention is to capture an Auger electron image of a specific element in the exposed portion,
Provided is a film thickness measuring method capable of efficiently measuring the width of an exposed portion of a film layer. Further, another object of the present invention is to measure the sample current value when the sample is subjected to electron irradiation, monitor the resistance value thereof, and monitor the change of the resistance value gradient at the interface between the thin film and the substrate. By recognizing, the correspondence between the dry etching rate and the integrated value of the etching amount up to that point is examined, and a film thickness method for determining the film thickness by this is provided.

【0008】[0008]

【課題を解決するための手段】上記の目的は、薄膜の膜
厚測定方法において、サンプルの事前処理として薄膜上
に導電性被覆を施し、前記サンプルの表面をエッチング
することによって水平面に対して一定の傾斜角度を有す
る薄膜層断面を露出し、前記薄膜層断面の水平面に対す
る投影露出幅Wを測定し、かつ前記薄膜層断面の水平面
に対する傾斜角である露出角度θを求め、前記投影露出
幅Wおよび露出角度θを用いてD=Wtan θなる関係か
ら膜厚Dを求めることを特徴とする薄膜の膜厚測定方法
によって達成される。
[Means for Solving the Problems] In the method for measuring the thickness of a thin film, the above object is to perform a constant treatment on a horizontal plane by applying a conductive coating on the thin film as a pretreatment of the sample and etching the surface of the sample. Exposing a thin film layer cross section having an inclination angle of, measuring a projected exposure width W of the thin film layer cross section with respect to the horizontal plane, and obtaining an exposure angle θ which is an inclination angle of the thin film layer cross section with respect to the horizontal plane. And the exposure angle θ to obtain the film thickness D from the relationship of D = W tan θ.

【0009】また、上記の目的は、前記露出角度θを光
反射法等の光学手段によって求める薄膜の膜厚測定方法
によっても達成される。さらに、前記露出角度θを2次
電子放出量測定法によって求める薄膜の膜厚測定方法に
よっても達成される。また、上記の目的は、薄膜を設け
たサンプルの膜厚測定方法において、イオンエッチング
装置を有する走査型電子顕微鏡内にサンプルをセット
し、一定のエッチング速度でイオンエッチングを行いな
がら、電子ビームを照射し、サンプルに流れる電流値を
時々刻々測定し、前記電流値から求まるサンプルの抵抗
値をモニターし、前記抵抗値の減少割合がエッチング時
間に対して屈曲点を示す時点を認識し、その時点までの
エッチング量の積分値から薄膜の厚さを求めることを特
徴とする薄膜の膜厚測定方法によっても達成される。
The above object can also be achieved by a method for measuring the film thickness of a thin film, in which the exposure angle θ is obtained by an optical means such as a light reflection method. Further, it can be achieved by a method for measuring the film thickness of a thin film in which the exposure angle θ is obtained by the secondary electron emission amount measuring method. Further, the above-mentioned object is to set the sample in a scanning electron microscope having an ion etching device in the method of measuring the thickness of a sample provided with a thin film, and irradiate an electron beam while performing ion etching at a constant etching rate. Then, the current value flowing in the sample is measured moment by moment, the resistance value of the sample obtained from the current value is monitored, and the time point at which the rate of decrease in the resistance value indicates a bending point with respect to the etching time is recognized, until that time point. It can also be achieved by a method for measuring the thickness of a thin film, which is characterized in that the thickness of the thin film is obtained from the integrated value of the etching amount.

【0010】[0010]

【作用】本発明では、エッチング領域は四周が傾斜を有
する壁で囲まれた浅い擂鉢状となっており、その端部で
は1°以下の低角度で薄膜層断面が切り出され露出して
いる。この露出した薄膜層断面の水平方向投影幅Wと露
出角度θが測定されれば、膜厚DはD=Wtan θなる関
係から求めることができる。この露出幅Wは膜特有の元
素のオージェ電子像から求められ、また露出角度θは光
学的手段または2次電子放出量測定方法により求められ
る。この方法では、極めて低角度の薄膜切出し断面を利
用するため、数nmレベルの薄膜の膜厚を測定することが
可能となった。
In the present invention, the etching region is in the shape of a shallow mortar surrounded by slanted walls on four sides, and the thin film layer cross section is cut out and exposed at a low angle of 1 ° or less at the end thereof. If the horizontal projection width W and the exposure angle θ of the exposed thin film layer cross section are measured, the film thickness D can be obtained from the relationship of D = Wtan θ. The exposure width W is obtained from the Auger electron image of the element peculiar to the film, and the exposure angle θ is obtained by an optical means or a secondary electron emission amount measuring method. With this method, it is possible to measure the film thickness of a thin film at the level of several nm because the thin film cut-out cross section at an extremely low angle is used.

【0011】また、本発明は、電子ビームを照射するこ
とでサンプルと装置で一つの電気回路が形成される。こ
のとき、薄膜と基材では抵抗が異なるため、抵抗値の勾
配が変化する点、すなわち変化の割合の屈曲点が薄膜と
基材の界面となる。そこで、この時点までのエッチング
時間を測れば、このエッチング時間は膜厚に比例するた
め、合計のエッチング深さとして、膜厚に換算すること
ができる。この方法はオージェ電子とは違い脱出深さの
影響がないため数nmの膜厚でも測定可能となる。
Further, according to the present invention, one electric circuit is formed by the sample and the apparatus by irradiating with an electron beam. At this time, since the thin film and the base material have different resistances, the point where the gradient of the resistance value changes, that is, the bending point at the rate of change is the interface between the thin film and the base material. Therefore, if the etching time up to this point is measured, this etching time is proportional to the film thickness, and therefore the total etching depth can be converted into the film thickness. Unlike the Auger electron, this method does not affect the escape depth, so it is possible to measure even a film thickness of several nm.

【0012】以下、本発明について実施例の添付図面を
参照して詳述する。
The present invention will be described below in detail with reference to the accompanying drawings of the embodiments.

【0013】[0013]

【実施例】【Example】

実施例1 本発明の第一発明の超低角度断面切り出し法についての
実施例を説明する。図1は本実施例の装置例を示す図で
ある。電子銃1から照射された高エネルギーの1次電子
線は、収束レンズ2および対物レンズ3によって、極め
て細く絞られてステージ8にセットされたサンプル7に
入射する。この時、サンプル表面から2次電子として散
乱する電子は、2次電子検出器5によって検出される。
また、二次電子とは別の放出過程をとり、そのスペクト
ルは一般に複数の複雑なピークから成り立っているオー
ジェ電子はオージェ電子検出器6によって検出される。
以上の基本的構造の他に、イオン銃4、レーザー光源9
およびスクリーン10を備えたものである。
Example 1 An example of the ultra-low-angle section cutting method of the first invention of the present invention will be described. FIG. 1 is a diagram showing an example of the apparatus of this embodiment. The high-energy primary electron beam emitted from the electron gun 1 is extremely narrowed down by the converging lens 2 and the objective lens 3 and is incident on the sample 7 set on the stage 8. At this time, the electrons scattered as secondary electrons from the sample surface are detected by the secondary electron detector 5.
An Auger electron detector 6 detects an Auger electron whose emission process is different from that of the secondary electron and whose spectrum is generally composed of a plurality of complex peaks.
In addition to the above basic structure, an ion gun 4 and a laser light source 9
And a screen 10.

【0014】本実施例の超低角度断面切り出し法を工程
順に説明する。図4(a)のように基材13と膜12か
らなるサンプル7に、Au蒸着11を施しステージ8に
セットする。装置内を高真空にしたのちArイオン銃4
によりサンプル表面をエッチングする。図4(b)に
は、表面が擂鉢状に削られ四周が傾斜角である断面露出
角度θの壁に囲まれ、膜厚Dに対して露出幅Wとなる。
擂鉢状に削られた全幅Bはほぼ1mmである。
The ultra-low-angle cross-section cutting method of this embodiment will be described in the order of steps. As shown in FIG. 4A, the sample 7 including the base material 13 and the film 12 is subjected to Au vapor deposition 11 and set on the stage 8. Ar ion gun 4 after high vacuum in the equipment
The sample surface is etched by. In FIG. 4B, the surface is shaving like a mortar, and the four edges are surrounded by walls having a cross-sectional exposure angle θ having an inclination angle, and an exposure width W with respect to the film thickness D is obtained.
The overall width B carved into a mortar shape is approximately 1 mm.

【0015】前記エッチング域の端部は、SEM(低
倍)で真上からは図4(c)のようにほぼ同心円状とし
て観測される。膜厚層断面が露出しているので、SEM
像で部位を決めた後、膜特有元素のオージェ電子像(高
倍)を取り込む。この時、膜特有の元素はあらかじめ定
性分析により把握しておく。図4(d)に示す像により
膜断面露出幅Wを測る。この結果から膜厚Dは下記式で
与えられる。
The end portion of the etching region is observed by SEM (low magnification) as a substantially concentric circle shape from directly above as shown in FIG. 4 (c). Since the cross section of the film thickness layer is exposed, SEM
After determining the site with the image, an Auger electron image (high magnification) of the film-specific element is captured. At this time, the element peculiar to the film is grasped in advance by qualitative analysis. The film cross-section exposure width W is measured by the image shown in FIG. From this result, the film thickness D is given by the following equation.

【0016】D=Wtan θ (1) 次に、露出角度θの測定工程について説明する。図4
(e)に示す光学的方法としての光反射法を説明する。
レーザー光源14の方向にステージ8を向け露出断面に
レーザー光を当てる。このレーザー光は入射光と2θの
開きで、反射しスクリーンに戻る。この時の光源から戻
り点までの距離を測り、下記式によりθを算出する。
D = Wtan θ (1) Next, the process of measuring the exposure angle θ will be described. FIG.
The light reflection method as the optical method shown in (e) will be described.
The stage 8 is directed toward the laser light source 14 and the exposed cross section is irradiated with laser light. This laser light is reflected by the incident light with a difference of 2θ and returns to the screen. At this time, the distance 1 from the light source to the return point is measured, and θ is calculated by the following formula.

【0017】θ=1/2Tan-1/L) (2) さらに、他の測定方法として、2次電子量測定方法によ
って求めてもよい。この方法は、2次電子放出効率と傾
斜角度との関係より求める方法で、図3に示すように、
最初のステージ角度αからα+θに変化させた時の二次
電子放出効率δの変化から、θを求める方法である。
Θ = 1/2 Tan −1 ( l / L) (2) Further, as another measuring method, the secondary electron amount measuring method may be used. This method is a method of obtaining from the relationship between the secondary electron emission efficiency and the inclination angle, and as shown in FIG.
This is a method of obtaining θ from the change in the secondary electron emission efficiency δ when the initial stage angle α is changed to α + θ.

【0018】以上のような測定によって、式(1)に式
(2)で求めたθを代入して膜厚Dを算出する。なお、
本実施例のイオン銃は、好ましくはイオン源として通常
の例えば液体金属イオン源を使用する。また、Au蒸着
以外にPt、Cおよび光の時はAg等を使用してもよ
い。さらに、レーザーとしては好ましくは分布帰還型お
よび分布フラッグ反射器レーザ等の集積レーザがよい。
By the above-described measurement, the film thickness D is calculated by substituting θ obtained by the equation (2) into the equation (1). In addition,
The ion gun of this embodiment preferably uses a conventional, for example, liquid metal ion source as the ion source. In addition to Au vapor deposition, Pt, C, or Ag may be used for light. Further, the laser is preferably an integrated laser such as a distributed feedback type and distributed flag reflector laser.

【0019】実施例2 以下、第二発明の実施例を説明する。第二発明では、露
出角度θの測定を電気抵抗計測法によるものである。図
2に本実施例の測定例を示す。電子銃1とステージ8を
電気回路として結線した以外は実施例1の基本図と同様
である。高エネルギー電子束はできるだけ絞られ、サン
プル7を照射する。また、エッチングするイオン銃4か
らは高エネルギーイオンが照射する。まず、薄膜サンプ
ル7をそのままステージ8にセットし装置内を高真空に
する。このサンプルと装置間は電子銃1より電子ビーム
を照射した場合、チャージアップしなければサンプル、
装置筒内をはさんで、ひとつの電気回路となり、電流I
と電圧Vが測定される。この時、サンプルから放出され
る2次電子電流は回路を流れる試料電流I(1次電子電
流)に比べて、非常に小さく無視しうる。
Embodiment 2 An embodiment of the second invention will be described below. In the second invention, the exposure angle θ is measured by an electric resistance measuring method. FIG. 2 shows a measurement example of this embodiment. It is the same as the basic diagram of the first embodiment except that the electron gun 1 and the stage 8 are connected as an electric circuit. The high energy electron flux is narrowed down as much as possible, and the sample 7 is irradiated. Further, high energy ions are emitted from the ion gun 4 to be etched. First, the thin film sample 7 is set on the stage 8 as it is, and the inside of the apparatus is set to a high vacuum. Between the sample and the device, when the electron beam is emitted from the electron gun 1, the sample is charged without charge up,
The electric current I
And the voltage V is measured. At this time, the secondary electron current emitted from the sample is much smaller than the sample current I (primary electron current) flowing through the circuit and can be ignored.

【0020】上記の電流Iより抵抗Rを求め、このRを
モニターしながらイオンエッチングを継続して行ない、
エッチング時間と抵抗値との関係をプロットする。図5
(b)は抵抗値のモニター時を示し、基材13と膜12
を通して、一次電子電流が測定され、図5(a)に示す
ように、エッチング時間Cまでは膜厚の減少と共に、抵
抗値Rがエッチング時間に比例して減少し、その後膜と
基材の界面に達すると一定の抵抗値を示す。
The resistance R is obtained from the above current I, and ion etching is continued while monitoring this R.
The relationship between the etching time and the resistance value is plotted. Figure 5
(B) shows the time when the resistance value is monitored, and the substrate 13 and the film 12 are shown.
The primary electron current is measured through the film, and as shown in FIG. 5A, the resistance value R decreases in proportion to the etching time until the etching time C, and thereafter the resistance value R decreases in proportion to the etching time. When it reaches, it shows a constant resistance value.

【0021】すなわち、膜と基材の界面で抵抗値減少勾
配が変化するので、この時点までのエッチング時間を厚
さに換算する。本法は従来法であるAES(オージェ電
子分光)深さ測定でも同様に換算厚さを求めているが、
オージェ電子とは違い脱出深さの影響を除くことがで
き、深さ分解能は向上する。
That is, since the resistance value decreasing gradient changes at the interface between the film and the substrate, the etching time up to this point is converted into the thickness. This method also obtains the converted thickness in the same way in the conventional AES (Auger electron spectroscopy) depth measurement,
Unlike Auger electrons, the effect of escape depth can be eliminated, and depth resolution is improved.

【0022】[0022]

【発明の効果】請求項1〜3に係る発明は、イオンエッ
チング領域端部であるエッチングで形成される擂鉢状形
状を用いることで、極めて低角度での薄膜断面切り出し
が可能となる。また、光学系の併用により、極めて低傾
斜面の傾斜角度を求めることが可能となる。さらに、請
求項4に係る発明はオージェ電子分析機構が不要なた
め、装置自体がSEM程度の簡易なものとなる。
The invention according to claims 1 to 3 makes it possible to cut out a thin film cross section at an extremely low angle by using a mortar-like shape formed by etching which is the end of the ion etching region. Further, by using the optical system together, it becomes possible to obtain the inclination angle of the extremely low inclined surface. Furthermore, since the invention according to claim 4 does not require the Auger electron analysis mechanism, the apparatus itself is as simple as SEM.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例1に係る測定装置の概要を示す
図である。
FIG. 1 is a diagram showing an outline of a measuring apparatus according to a first embodiment of the present invention.

【図2】本発明の実施例2に係る測定装置の概要を示す
図である。
FIG. 2 is a diagram showing an outline of a measuring apparatus according to a second embodiment of the present invention.

【図3】本発明の実施例1に係る2次電子放出量測定法
の概要を示す図である。
FIG. 3 is a diagram showing an outline of a secondary electron emission amount measuring method according to Example 1 of the present invention.

【図4】本発明の実施例1に係る測定例を示し、(a)
Au蒸着、(b)擂鉢状形状、(c)エッチング部位、
(d)膜厚層断面の幅、(e)露出角度の測定を示す図
である。
FIG. 4 shows a measurement example according to Example 1 of the present invention, (a)
Au deposition, (b) mortar-like shape, (c) etching site,
It is a figure which shows (d) width of a film thickness layer cross section, and (e) measurement of an exposure angle.

【図5】本発明の実施例2に係る測定例を示し、(a)
抵抗値の変化、(b)1次電子電流の測定を示す図であ
る。
FIG. 5 shows a measurement example according to Example 2 of the present invention, (a)
It is a figure which shows the change of resistance value and (b) measurement of a primary electron current.

【符号の説明】[Explanation of symbols]

1…電子銃 2…収束レンズ 3…対物レンズ 4…イオン銃 5…2次電子検出器 6…オージェ電子検出器 7…サンプル 8…ステージ 9…レーザ光源 10…スクリーン 11…Au 12…膜 13…基材 14…光・レーザ光源 1 ... Electron gun 2 ... Converging lens 3 ... Objective lens 4 ... Ion gun 5 ... Secondary electron detector 6 ... Auger electron detector 7 ... Sample 8 ... Stage 9 ... Laser light source 10 ... Screen 11 ... Au 12 ... Film 13 ... Substrate 14 ... Light / laser light source

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 薄膜の膜厚測定方法において、サンプル
の事前処理として薄膜上に導電性被覆を施し、該サンプ
ルの表面をエッチングすることによって水平面に対して
一定の傾斜角度を有する薄膜層断面を露出し、該薄膜層
断面の水平面に対する投影露出幅Wを測定し、かつ該薄
膜層断面の水平面に対する傾斜角である露出角度θを求
め、該投影露出幅Wおよび露出角度θを用いてD=Wta
n θなる関係から膜厚Dを求めることを特徴とする薄膜
の膜厚測定方法。
1. A thin film thickness measuring method, wherein a thin film layer cross-section having a constant inclination angle with respect to a horizontal plane is formed by applying a conductive coating on the thin film as a pretreatment of the sample and etching the surface of the sample. Exposed, the projected exposure width W of the cross section of the thin film layer with respect to the horizontal plane is measured, and the exposure angle θ, which is the inclination angle of the cross section of the thin film layer with respect to the horizontal plane, is obtained, and D = Wta
A method for measuring the film thickness of a thin film, characterized in that the film thickness D is obtained from the relationship of n θ.
【請求項2】 前記露出角度θを光反射法等の光学手段
によって求める請求項1記載の薄膜の膜厚測定方法。
2. The method for measuring the film thickness of a thin film according to claim 1, wherein the exposure angle θ is obtained by an optical means such as a light reflection method.
【請求項3】 前記露出角度θを2次電子放出量測定法
によって求める請求項1記載の薄膜の膜厚測定方法。
3. The method for measuring the film thickness of a thin film according to claim 1, wherein the exposure angle θ is obtained by a secondary electron emission amount measuring method.
【請求項4】 薄膜を設けたサンプルの膜厚測定方法に
おいて、イオンエッチング装置を有する走査型電子顕微
鏡内にサンプルをセットし、一定のエッチング速度でイ
オンエッチングを行いながら、電子ビームを照射し、サ
ンプルに流れる電流値を時々刻々測定し、該電流値から
求まるサンプルの抵抗値をモニターし、該抵抗値の減少
割合がエッチング時間に対して屈曲点を示す時点を認識
し、その時点までのエッチング量の積分値から薄膜の厚
さを求めることを特徴とする薄膜の膜厚測定方法。
4. A method for measuring a film thickness of a sample provided with a thin film, wherein the sample is set in a scanning electron microscope having an ion etching apparatus, and an electron beam is irradiated while performing ion etching at a constant etching rate, The current value flowing in the sample is measured moment by moment, the resistance value of the sample obtained from the current value is monitored, and the time point at which the rate of decrease of the resistance value indicates a bending point with respect to the etching time is recognized, and etching up to that time point is performed. A method for measuring the thickness of a thin film, characterized in that the thickness of the thin film is obtained from the integrated value of the quantity.
JP7121568A 1995-05-19 1995-05-19 Thin film thickness measurement method Expired - Fee Related JP3060889B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7121568A JP3060889B2 (en) 1995-05-19 1995-05-19 Thin film thickness measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7121568A JP3060889B2 (en) 1995-05-19 1995-05-19 Thin film thickness measurement method

Publications (2)

Publication Number Publication Date
JPH08313244A true JPH08313244A (en) 1996-11-29
JP3060889B2 JP3060889B2 (en) 2000-07-10

Family

ID=14814461

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7121568A Expired - Fee Related JP3060889B2 (en) 1995-05-19 1995-05-19 Thin film thickness measurement method

Country Status (1)

Country Link
JP (1) JP3060889B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6809534B2 (en) 2000-05-30 2004-10-26 Fab Solutions, Inc. Semiconductor device test method and semiconductor device tester
US6842663B2 (en) 2001-03-01 2005-01-11 Fab Solutions, Inc. Production managing system of semiconductor device
US6850079B2 (en) 2002-01-17 2005-02-01 Fab Solutions, Inc. Film thickness measuring apparatus and a method for measuring a thickness of a film
US6897440B1 (en) 1998-11-30 2005-05-24 Fab Solutions, Inc. Contact hole standard test device
US6943043B2 (en) 2001-03-02 2005-09-13 Fab Solutions, Inc. Surface contamination analyzer for semiconductor wafers, method used therein and process for fabricating semiconductor device
US6946857B2 (en) 1999-11-05 2005-09-20 Fab Solutions, Inc. Semiconductor device tester
WO2006069469A1 (en) * 2004-12-27 2006-07-06 Sae Magnetics (H.K.) Ltd. Method of nano thin film thickness measurement by auger electron spectrscopy
JP2011137793A (en) * 2009-12-31 2011-07-14 Korea Inst Of Science & Technology Metal layer thickness measuring method on flexible substrate
JP2014219536A (en) * 2013-05-08 2014-11-20 日立化成株式会社 Optical waveguide

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7232994B2 (en) 1998-11-30 2007-06-19 Fab Solutions, Inc. Contact hole standard test device, method of forming the same, method of testing contact hole, method and apparatus for measuring a thickness of a film, and method of testing a wafer
US6897440B1 (en) 1998-11-30 2005-05-24 Fab Solutions, Inc. Contact hole standard test device
US6982418B2 (en) 1998-11-30 2006-01-03 Fab Solutions, Inc. Contact hole standard test device, method of forming the same, method of testing contact hole, method and apparatus for measuring a thickness of a film, and method of testing a wafer
US6940296B2 (en) 1998-11-30 2005-09-06 Fab Solutions, Inc. Contact hole standard test device, method of forming the same, method of testing contact hole, method and apparatus for measuring a thickness of a film, and method of testing a wafer
US6967327B2 (en) 1998-11-30 2005-11-22 Fab Solutions, Inc. Contact hole standard test device, method of forming the same, method testing contact hole, method and apparatus for measuring a thickness of a film, and method of testing a wafer
US6946857B2 (en) 1999-11-05 2005-09-20 Fab Solutions, Inc. Semiconductor device tester
US7385195B2 (en) 1999-11-05 2008-06-10 Topcon Corporation Semiconductor device tester
US6975125B2 (en) 1999-11-05 2005-12-13 Fab Solutions, Inc. Semiconductor device tester
US7420379B2 (en) 2000-05-30 2008-09-02 Topcon Corporation Semiconductor device test method and semiconductor device tester
US7550982B2 (en) 2000-05-30 2009-06-23 Topcon Corporation Semiconductor device test method for comparing a first area with a second area
US6914444B2 (en) 2000-05-30 2005-07-05 Fab Solutions, Inc. Semiconductor device test method and semiconductor device tester
US6900645B2 (en) 2000-05-30 2005-05-31 Fab Solutions, Inc. Semiconductor device test method and semiconductor device tester
US7049834B2 (en) 2000-05-30 2006-05-23 Fab Solutions, Inc Semiconductor device test method and semiconductor device tester
US6809534B2 (en) 2000-05-30 2004-10-26 Fab Solutions, Inc. Semiconductor device test method and semiconductor device tester
US7321805B2 (en) 2001-03-01 2008-01-22 Fab Solutions, Inc. Production managing system of semiconductor device
US6842663B2 (en) 2001-03-01 2005-01-11 Fab Solutions, Inc. Production managing system of semiconductor device
US6943043B2 (en) 2001-03-02 2005-09-13 Fab Solutions, Inc. Surface contamination analyzer for semiconductor wafers, method used therein and process for fabricating semiconductor device
US7795593B2 (en) 2001-03-02 2010-09-14 Topcon Corporation Surface contamination analyzer for semiconductor wafers
US7700380B2 (en) 2001-03-02 2010-04-20 Topcon Corporation Surface contamination analyzer for semiconductor wafers, method used therein and process for fabricating semiconductor device
US7002361B2 (en) 2002-01-17 2006-02-21 Fab Solutions, Inc. Film thickness measuring apparatus and a method for measuring a thickness of a film
US6850079B2 (en) 2002-01-17 2005-02-01 Fab Solutions, Inc. Film thickness measuring apparatus and a method for measuring a thickness of a film
WO2006069469A1 (en) * 2004-12-27 2006-07-06 Sae Magnetics (H.K.) Ltd. Method of nano thin film thickness measurement by auger electron spectrscopy
JP2011137793A (en) * 2009-12-31 2011-07-14 Korea Inst Of Science & Technology Metal layer thickness measuring method on flexible substrate
JP2014219536A (en) * 2013-05-08 2014-11-20 日立化成株式会社 Optical waveguide

Also Published As

Publication number Publication date
JP3060889B2 (en) 2000-07-10

Similar Documents

Publication Publication Date Title
JP4801903B2 (en) Method and apparatus for endpoint detection in etching using an electron beam
JP3001596B2 (en) Focused ion beam processing apparatus and processing method
US20030080292A1 (en) System and method for depth profiling
US6788760B1 (en) Methods and apparatus for characterizing thin films
US8530836B2 (en) Electron-beam dimension measuring apparatus and electron-beam dimension measuring method
US5594246A (en) Method and apparatus for x-ray analyses
JPH08313244A (en) Method of measuring thickness of thin film
TWI223060B (en) System and method for depth profiling and characterization of thin films
JP2002310959A (en) Electron beam analyzer
KR20070051252A (en) Nondestructive characterization of thin films using measured basis spectra and/or based on acquired spectrum
US6434217B1 (en) System and method for analyzing layers using x-ray transmission
US6489612B1 (en) Method of measuring film thickness
JP3266814B2 (en) Micro part analyzer
US7189968B2 (en) Sample measurement method and measurement sample base material
JP3297736B2 (en) Method and apparatus for analyzing element distribution in the depth direction using precision section processing by focused ion beam
JP2001343340A (en) Photoelectron spectrophotometric device and measuring method
JP2996210B2 (en) Sample absorption current spectroscopy
JP3028078B2 (en) Sample for transmission electron microscope and method for producing the same
JP2004286638A (en) Analysis method
JPH053011A (en) Electronic microscope device
JP2735192B2 (en) Energy beam processing method and apparatus
JP2003004667A (en) Method of manufacturing membrane sample for scanning transmission electron microscope and observation method for membrane sample method for membrane sample
Nunn Application of Monte Carlo modelling in the measurement of photomask linewidths at the National Physical Laboratory
JP3591231B2 (en) Auger electron spectroscopy
JPH1151630A (en) Method for measuring film thickness of very small part

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20090428

LAPS Cancellation because of no payment of annual fees