JPH053011A - Electronic microscope device - Google Patents

Electronic microscope device

Info

Publication number
JPH053011A
JPH053011A JP3150367A JP15036791A JPH053011A JP H053011 A JPH053011 A JP H053011A JP 3150367 A JP3150367 A JP 3150367A JP 15036791 A JP15036791 A JP 15036791A JP H053011 A JPH053011 A JP H053011A
Authority
JP
Japan
Prior art keywords
electron
gun
specimen
electron beam
electrons
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3150367A
Other languages
Japanese (ja)
Inventor
Yoshio Nagafuji
佳夫 長藤
Ikuhisa Suzuki
郁央 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP3150367A priority Critical patent/JPH053011A/en
Publication of JPH053011A publication Critical patent/JPH053011A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To observe an insulator specimen without accumulation of harmful electrons, by radiating cation beams onto the same position as the electron beam irradiation position on the specimen. CONSTITUTION:Through control made by a calculator 6 via an electron-gun X-Y axis scan circuit 4 and a control circuit 5, a convergence electron beam 1 from an electron gun 2 is made to radiated the surface of a specimen 12 along predetermined scanning lines. The secondary electron 13 generated at this time are detected by a detector 3. The intensity variations of the secondary electron 13 are processed in the calculator 6 to form a secondary electron image of the specimen 12 on a display section 7. At this time, cation beams 8 are made to radiated and re-scan a straight electron scan trajectory via an ion-gun X-Y axis scan circuit while the amount radiated is controlled via an ion-gun control circuit 11 to such an extent as would timely neutralize a negative charge accumulated on the specimen through radiation of the convergence electron beam 1. Since the secondary electrons 14 produced upon radiation of the cation beams 8 cause a decrease in the resolution, the calculator 6 is made inoperative, at the time of cation beam radiation, by the secondary electron detector 3.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は測定試料への電子線照射
により発生する二次電子を検出することにより測定試料
の表面状態を観察する電子顕微鏡装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electron microscope apparatus for observing the surface condition of a measurement sample by detecting secondary electrons generated by irradiation of the measurement sample with an electron beam.

【0002】[0002]

【従来の技術】二次電子検出装置を備えた電子顕微鏡装
置には、走査電子顕微鏡及び透過電子顕微鏡などがあ
る。ここでは、走査電子顕微鏡の例をとって説明する。
走査電子顕微鏡では、電子銃から発する細く絞った集束
電子線(直径〜10Å)をXY軸方向に走査しながら測
定試料に照射し、この時、発生する二次電子の強度を二
次電子検出装置により検出し、XY軸方向に対するその
強度変化をコンピュータにより処理し、CRT上で合成
して測定試料の拡大像を得るものである。
2. Description of the Related Art Electron microscope devices equipped with a secondary electron detector include scanning electron microscopes and transmission electron microscopes. Here, an example of a scanning electron microscope will be described.
In a scanning electron microscope, a focused electron beam (diameter: 10Å) emitted from an electron gun is irradiated onto a measurement sample while scanning in the XY axis directions. At this time, the intensity of secondary electrons generated is detected by a secondary electron detector. The intensity change in the X and Y axis directions is processed by a computer and combined on a CRT to obtain an enlarged image of the measurement sample.

【0003】ここで言及する二次電子発生にあっては、
価電子帯または真空準位より高いエネルギーに励起され
た電子の固体中を通って真空中に放出されたものが主体
である。二次電子の励起エネルギーE(装置の電子加速
電圧に比例する)が大きくなると、式(1)から、二次
電子の強度Qk(E)は減少することが導ける。
In the secondary electron generation referred to here,
Mainly, the electrons that have been excited into the vacuum through the solid state of electrons excited to a higher energy than the valence band or the vacuum level. When the excitation energy E of the secondary electrons (proportional to the electron acceleration voltage of the device) increases, it can be derived from the formula (1) that the intensity Q k (E) of the secondary electrons decreases.

【0004】[0004]

【数1】 [Equation 1]

【0005】また、集束電子線の入射量に対する二次電
子の発生量の比率(二次電子発生効率)δは、集束電子
線の入射角θに対して式(2)で表される。
The ratio (secondary electron generation efficiency) δ of the secondary electron generation amount to the focused electron beam incident amount is expressed by the equation (2) with respect to the focused electron beam incident angle θ.

【0006】[0006]

【数2】 [Equation 2]

【0007】δはEPo=600eV〜1keVで最大値
(δ≒1.5〜2)をとり、EPoが増加するにつれて、
δは徐々に減少することが知られている。ここでδ<1
となるEPo(≒1.5〜2keV)以上のエネルギー領
域では試料に負電荷(電子)が蓄積することがわかる。
導電体試料の場合、この蓄積される電子は試料を通じて
試料ホルダーから接地へと逃げるが、絶縁体試料の場
合、試料内に蓄積される。
Δ has a maximum value (δ≈1.5 to 2) at E Po = 600 eV to 1 keV, and as E Po increases,
It is known that δ gradually decreases. Where δ <1
It can be seen that negative charges (electrons) are accumulated in the sample in the energy range of E Po (≈1.5 to 2 keV) or more.
In the case of a conductor sample, these accumulated electrons escape from the sample holder to ground through the sample, but in the case of an insulator sample they accumulate in the sample.

【0008】一方、顕微鏡の分解能dと光の波長λとの
間に式(3)なる関係が成立する。
On the other hand, the relationship represented by the equation (3) is established between the resolution d of the microscope and the wavelength λ of light.

【0009】[0009]

【数3】 [Equation 3]

【0010】また、電子顕微鏡において電圧PVで加速
された電子の波長は式(4)で表されることが知られて
いる。
Further, it is known that the wavelength of electrons accelerated by the voltage PV in an electron microscope is represented by the equation (4).

【0011】[0011]

【数4】 [Equation 4]

【0012】これより、通常分解能dを向上させるため
に走査電子顕微鏡の加速電圧として20〜50kVを用
いることが多い。
Therefore, in order to improve the ordinary resolution d, an acceleration voltage of 20 to 50 kV is often used for the scanning electron microscope.

【0013】このように、通常の走査電子顕微鏡を用い
て絶縁体試料を分析する際は、集束電子線の照射により
測定試料に蓄積される負電荷のために、入射電子線が曲
げられるか若しくは試料に到達せず、一次電子線そのも
のの進路の妨害が生じ測定が困難であった。そのため絶
縁体試料の測定の場合、電子の蓄積を防ぐべく接地を設
けるために測定試料表面に白金、金、カーボン等の導電
体を被覆するなどの前処理が必要であった。
As described above, when an insulator sample is analyzed by using a normal scanning electron microscope, the incident electron beam is bent due to the negative charge accumulated in the measurement sample due to the irradiation of the focused electron beam, or Since it did not reach the sample, the path of the primary electron beam itself was obstructed and measurement was difficult. Therefore, in the case of measuring an insulator sample, pretreatment such as coating the surface of the sample with a conductor such as platinum, gold, or carbon was necessary to provide a ground to prevent accumulation of electrons.

【0014】[0014]

【発明が解決しようとする課題】本発明は、有害な電子
の蓄積を伴うことなく絶縁体試料の観察を行える電子顕
微鏡を提供するものである。
SUMMARY OF THE INVENTION The present invention provides an electron microscope capable of observing an insulator sample without accumulating harmful electrons.

【0015】[0015]

【課題を解決するための手段】本発明の電子顕微鏡装置
の特徴は、陽イオンビームを発するイオン銃と、試料に
おける電子線照射位置と同位置に陽イオンビームを照射
する手段を備えたことにある。
A feature of the electron microscope apparatus of the present invention is that it is provided with an ion gun for emitting a positive ion beam and a means for irradiating the sample with a positive ion beam at the same position as the electron beam irradiation position. is there.

【0016】[0016]

【作用】陽イオンを試料に照射した際の試料に流れる電
流Iは近似的に式(5)で与えられる。尚、斯る陽イオ
ンとしてはAr+やGa+が適当である。
The current I flowing through the sample when the sample is irradiated with cations is approximately given by equation (5). Ar + and Ga + are suitable as such cations.

【0017】[0017]

【数5】 [Equation 5]

【0018】一般に、式(5)の第二項(IPi -−δ
i +))は第一項(IPe−1))に比べて小さく無視で
きる。即ち、Iは(IPe−1))に近似され、正の一
次イオンを照射した際は、二次電子発生効率δeは1に
比べて小さく、I>0となり絶縁体試料の場合、電流I
は試料を流れず正電荷の蓄積が生じる。
Generally, the second term (I Pi −δ) of the equation (5) is
i + )) is smaller than the first term (I Pe -1)) and can be ignored. That is, I is approximated to (I Pe −1)), and when the positive primary ions are irradiated, the secondary electron generation efficiency δ e is smaller than 1 and I> 0, so that the insulator sample If the current I
Does not flow through the sample and a positive charge is accumulated.

【0019】従って、電子線により電子が蓄積した絶縁
体試料に、適量の陽イオンビームを照射すると、この時
発生する正電荷により蓄積電子は中和される。
Therefore, when the insulator sample in which electrons are accumulated by the electron beam is irradiated with an appropriate amount of positive ion beam, the accumulated electrons are neutralized by the positive charge generated at this time.

【0020】[0020]

【実施例】図1に本発明実施例としての走査電子顕微鏡
装置の構造を示す。本実施例においては、細く絞られた
集束電子線1を発する電子銃2、二次電子検出装置3、
電子銃XY軸走査回路4、電子銃制御回路5、コンピュ
ータ6及び表示部7から構成される通常の走査電子顕微
鏡装置に、陽イオンビーム8を発するイオン銃9とその
照射を制御するイオン銃XY軸走査回路10及びイオン
銃制御回路11が付加されている。
1 shows the structure of a scanning electron microscope apparatus as an embodiment of the present invention. In this embodiment, an electron gun 2 that emits a focused electron beam 1 that is narrowed down, a secondary electron detection device 3,
An electron gun XY axis scanning circuit 4, an electron gun control circuit 5, a computer 6 and a display unit 7 are used in a normal scanning electron microscope apparatus, and an ion gun 9 for emitting a positive ion beam 8 and an ion gun XY for controlling irradiation thereof are provided. An axis scanning circuit 10 and an ion gun control circuit 11 are added.

【0021】先ず、従来の如く、電子銃XY軸走査回路
4及び電子銃制御回路5を通してコンピュータ6による
制御の基に、電子銃2から発された集束電子線1は、測
定試料12の表面を予定の走査線上に沿って照射され、
その際に発生する二次電子13が二次電子検出装置3に
より検出される。この二次電子13の強度変化の情報
が、コンピュータ6により処理され、表示部7に測定試
料12の二次電子像が得られる。
First, as in the prior art, the focused electron beam 1 emitted from the electron gun 2 under the control of the computer 6 through the electron gun XY axis scanning circuit 4 and the electron gun control circuit 5 causes the surface of the sample 12 to be measured. It is irradiated along the scheduled scan line,
Secondary electrons 13 generated at that time are detected by the secondary electron detection device 3. The information on the change in the intensity of the secondary electrons 13 is processed by the computer 6, and the secondary electron image of the measurement sample 12 is obtained on the display unit 7.

【0022】この時、測定試料12が絶縁体の場合に
は、集束電子線1の照射により電子が測定試料12に蓄
積される傾向にあり、この蓄積を抑制するために、集束
電子線1の照射は短時間ずつ行われ、かつ、この短時間
内に蓄積した電子は、陽イオンビーム8の照射により直
ちに中和される。即ち、イオン銃XY軸走査回路10及
びイオン銃制御回路11を通して集束電子線1と同様に
コンピュータ6により制御されたイオン銃9から陽イオ
ンビーム8が測定試料12に照射される。より具体的に
は、この陽イオンビーム8の照射は、集束電子線1が走
査した位置と同位値になるように、直前の電子線走査軌
跡上をイオン銃XY軸走査回路10を通して再走査する
ことにより行われ、その照射量は、集束電子線1の照射
により測定試料12に蓄積した負電荷を随時中和する程
度にイオン銃制御回路11を通して制御される。この
時、陽イオンビーム8の照射により発生する二次電子1
4は、走査電子顕微鏡測定の解像度低下を引き起こすた
め、二次電子検出装置3は陽イオンビーム8の照射時に
作動しないようにコンピュータ6により制御される。
At this time, when the measurement sample 12 is an insulator, electrons tend to be accumulated in the measurement sample 12 by irradiation with the focused electron beam 1. In order to suppress this accumulation, Irradiation is performed for each short time, and the electrons accumulated within this short time are immediately neutralized by irradiation with the positive ion beam 8. That is, the measurement sample 12 is irradiated with the positive ion beam 8 from the ion gun 9 controlled by the computer 6 similarly to the focused electron beam 1 through the ion gun XY axis scanning circuit 10 and the ion gun control circuit 11. More specifically, the irradiation of the positive ion beam 8 is rescanned through the ion gun XY axis scanning circuit 10 on the immediately preceding electron beam scanning locus so that the focused electron beam 1 has the same value as the scanned position. The irradiation amount is controlled through the ion gun control circuit 11 to such an extent that the negative charges accumulated in the measurement sample 12 by the irradiation of the focused electron beam 1 are neutralized at any time. At this time, the secondary electrons 1 generated by the irradiation of the positive ion beam 8
4 causes a reduction in the resolution of the scanning electron microscope measurement, and therefore the secondary electron detection device 3 is controlled by the computer 6 so as not to operate when the positive ion beam 8 is irradiated.

【0023】図2にコンピュータ6によりそれぞれの制
御回路を通して制御された電子銃2、イオン銃9及び二
次電子検出装置3の一走査線における作動タイミング・
チャートの一例を示す。この例では、集束電子線1と陽
イオンビーム8の測定試料12への走査と照射が交互に
繰り返され、集束電子線1が照射している間だけ二次電
子検出装置3が作動するように制御されている。
FIG. 2 shows the operation timing of one scanning line of the electron gun 2, the ion gun 9 and the secondary electron detection device 3 controlled by the computer 6 through the respective control circuits.
An example of a chart is shown. In this example, scanning and irradiation of the focused electron beam 1 and the positive ion beam 8 on the measurement sample 12 are alternately repeated so that the secondary electron detection device 3 operates only while the focused electron beam 1 is irradiated. Controlled.

【0024】測定試料12に電子が過剰に蓄積して、測
定に大きく影響を及ぼさないためには、集束電子線1の
単位照射期間Tは、1〜100msec程度が適当であ
る。即ち、集束電子線1がこれより長い時間照射される
と、この時の走査領域全域における電子の総蓄積量が大
きくなり、その影響により集束電子線1そのものが曲げ
られ、測定試料12における予定の走査線上に照射され
ず、正確な測定の妨げになるためである。また、陽イオ
ンビーム8の照射は、測定試料12に蓄積した負電荷量
に対応して、コンピュータ6により適切な照射強度及び
照射時間が調節される。一走査線上の測定を終えると、
通常の走査電子顕微鏡測定と同様に次の走査線上で測定
が繰り返される。
The unit irradiation period T of the focused electron beam 1 is appropriately about 1 to 100 msec in order to prevent the electrons from excessively accumulating on the measurement sample 12 and exerting a great influence on the measurement. That is, when the focused electron beam 1 is irradiated for a longer time than this, the total amount of accumulated electrons in the entire scanning region at this time becomes large, and the focused electron beam 1 itself is bent due to the influence of the focused electron beam 1 and the measured sample 12 has a predetermined amount. This is because the scanning line is not irradiated, which hinders accurate measurement. Further, the irradiation of the positive ion beam 8 is adjusted by the computer 6 in accordance with the amount of negative charges accumulated in the measurement sample 12 so that the irradiation intensity and the irradiation time are appropriate. After finishing the measurement on one scan line,
The measurement is repeated on the next scanning line as in the normal scanning electron microscope measurement.

【0025】このように、集束電子線1が電子蓄積の影
響を受けることなく測定試料12へ走査、照射され、そ
の時に発生する二次電子13だけが、二次電子検出装置
3により選択的に検出される。この結果、XY軸方向に
おける二次電子13の強度変化が、コンピュータ6によ
り走査と同期させて画像処理され、表示部7に測定試料
12の精度良い拡大像としての二次電子像が得られる。
In this way, the focused electron beam 1 scans and irradiates the measurement sample 12 without being affected by electron accumulation, and only the secondary electrons 13 generated at that time are selectively emitted by the secondary electron detection device 3. To be detected. As a result, the intensity change of the secondary electrons 13 in the XY axis directions is image-processed by the computer 6 in synchronism with scanning, and a secondary electron image as a magnified image of the measurement sample 12 is obtained on the display unit 7 with high accuracy.

【0026】本実施例においては、陽イオンビーム8を
制御するイオン銃XY軸走査回路10及びイオン銃制御
回路11を、集束電子線1のものと別個に設けたが、コ
ンピュータ6の制御ソフトを若干変更することにより、
電子銃XY軸走査回路4及び電子銃制御回路5自身にて
陽イオンビーム8の制御をも行っても良い。
In this embodiment, the ion gun XY axis scanning circuit 10 and the ion gun control circuit 11 for controlling the positive ion beam 8 are provided separately from those for the focused electron beam 1, but the control software of the computer 6 is used. By making some changes,
The positive ion beam 8 may also be controlled by the electron gun XY axis scanning circuit 4 and the electron gun control circuit 5 itself.

【0027】[0027]

【発明の効果】本発明によれば、有害な電子の蓄積を伴
うことなく絶縁体試料の観察を行え、従って、導電体蒸
着等の測定試料の前処理を要せずに測定が可能になる。
According to the present invention, the insulator sample can be observed without accumulating harmful electrons, and therefore the measurement can be performed without pretreatment of the measurement sample such as vapor deposition of a conductor. ..

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明実施例電子顕微鏡装置を示すブロック図
である。
FIG. 1 is a block diagram showing an electron microscope apparatus according to an embodiment of the present invention.

【図2】本実施例装置の制御動作を示すタイミング・チ
ャートである。
FIG. 2 is a timing chart showing the control operation of the apparatus of this embodiment.

【符号の説明】[Explanation of symbols]

1 集束電子線 2 電子銃 3 二次電子検出装置 4 電子銃XY軸走査回路 5 電子銃制御回路 6 コンピュータ 7 表示部 8 陽イオンビーム 9 イオン銃 10 イオン銃XY軸走査回路 11 イオン銃銃制御回路 12 測定試料 13 集束電子線1の照射により発生する二次電子 14 陽イオンビーム8の照射により発生する二次電子 1 Focused Electron Beam 2 Electron Gun 3 Secondary Electron Detector 4 Electron Gun XY Axis Scanning Circuit 5 Electron Gun Control Circuit 6 Computer 7 Display 8 Positive Ion Beam 9 Ion Gun 10 Ion Gun XY Axis Scanning Circuit 11 Ion Gun Gun Control Circuit 12 Measurement sample 13 Secondary electron generated by irradiation of focused electron beam 1 Secondary electron generated by irradiation of positive ion beam 8

Claims (1)

【特許請求の範囲】 【請求項1】 測定試料に電子線を照射する電子銃と、
前記電子線の照射により発生する二次電子を検出する二
次電子検出装置を備えた電子顕微鏡装置において、陽イ
オンビームを発するイオン銃と、前記測定試料における
前記電子線照射位置と同位置に前記陽イオンビームを照
射する手段と、前記電子線照射により前記測定試料に蓄
積された電子を中和する程度に前記陽イオンビームの照
射量を制御する手段とを備えたことを特徴とする電子顕
微鏡装置。
Claims: 1. An electron gun for irradiating a measurement sample with an electron beam,
In an electron microscope device equipped with a secondary electron detection device for detecting secondary electrons generated by irradiation of the electron beam, an ion gun emitting a positive ion beam, and the electron beam irradiation position in the measurement sample at the same position as the electron beam irradiation position. An electron microscope comprising: a means for irradiating a positive ion beam; and a means for controlling the irradiation amount of the positive ion beam to the extent that the electrons accumulated in the measurement sample are neutralized by the electron beam irradiation. apparatus.
JP3150367A 1991-06-21 1991-06-21 Electronic microscope device Pending JPH053011A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3150367A JPH053011A (en) 1991-06-21 1991-06-21 Electronic microscope device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3150367A JPH053011A (en) 1991-06-21 1991-06-21 Electronic microscope device

Publications (1)

Publication Number Publication Date
JPH053011A true JPH053011A (en) 1993-01-08

Family

ID=15495447

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3150367A Pending JPH053011A (en) 1991-06-21 1991-06-21 Electronic microscope device

Country Status (1)

Country Link
JP (1) JPH053011A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH024027A (en) * 1988-06-20 1990-01-09 Matsushita Electric Ind Co Ltd Menu control device
JP2012104836A (en) * 1999-01-08 2012-05-31 Applied Materials Inc Voltage contrast method and apparatus for semiconductor inspection using low voltage particle beam

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH024027A (en) * 1988-06-20 1990-01-09 Matsushita Electric Ind Co Ltd Menu control device
JP2012104836A (en) * 1999-01-08 2012-05-31 Applied Materials Inc Voltage contrast method and apparatus for semiconductor inspection using low voltage particle beam

Similar Documents

Publication Publication Date Title
EP0953203B1 (en) Electron beam dose control for scanning electron microscopy and critical dimension measurement instruments
US4874947A (en) Focused ion beam imaging and process control
US8604430B2 (en) Method and an apparatus of an inspection system using an electron beam
US5939720A (en) Scanning electron microscope
JP4093662B2 (en) Scanning electron microscope
US6365897B1 (en) Electron beam type inspection device and method of making same
US7847250B2 (en) Substrate inspection apparatus, substrate inspection method and method of manufacturing semiconductor device
KR20140119079A (en) Scanning electron microscope
WO2001033603A1 (en) Electron beam apparatus
US8530836B2 (en) Electron-beam dimension measuring apparatus and electron-beam dimension measuring method
JPH08313244A (en) Method of measuring thickness of thin film
JPH053011A (en) Electronic microscope device
JP2004227879A (en) Pattern inspection method and pattern inspection device
JP4658783B2 (en) Sample image forming method
JP4274247B2 (en) Circuit pattern inspection method and inspection apparatus
JP2000173528A (en) Scanning electron microscope
JPH07296759A (en) Observing method of semiconductor element, and scanning electron microscope used therefor
JP2002365248A (en) Method for analyzing sample
JP2007078537A (en) Electron beam dimension measuring device and electron beam dimension measuring method
JP2002352759A (en) Electron beam device provided with field emission type electron gun
JP2007263774A (en) Scanning electron microscope and measurement method using same
JP2023134357A (en) Charged particle beam device and method of controlling charged particle beam device
JP2001312987A (en) Electron beam filament and surface analyzer using the same
JPH0536770A (en) Apparatus and method for observation and lengthmeasurement of lsi pattern, etc., with electron beam
JPH07153411A (en) Electron beam observing method and device therefor