JPS60250640A - Temperature measuring device by fluorescent light - Google Patents

Temperature measuring device by fluorescent light

Info

Publication number
JPS60250640A
JPS60250640A JP10637284A JP10637284A JPS60250640A JP S60250640 A JPS60250640 A JP S60250640A JP 10637284 A JP10637284 A JP 10637284A JP 10637284 A JP10637284 A JP 10637284A JP S60250640 A JPS60250640 A JP S60250640A
Authority
JP
Japan
Prior art keywords
light
sample
temperature
photoresist
laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10637284A
Other languages
Japanese (ja)
Inventor
Satoshi Takahashi
智 高橋
Noriaki Honma
本間 則秋
Shigeji Kimura
茂治 木村
Tadasuke Munakata
忠輔 棟方
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP10637284A priority Critical patent/JPS60250640A/en
Publication of JPS60250640A publication Critical patent/JPS60250640A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To measure temperature distribution in high resolution and sensitivity without contact by emitting a laser light to a photoresist coated thinly on an IC, and corresponding the variation in the fluorescent light intensity from the resist itself to the variation in the temperature. CONSTITUTION:A laser light 11 generated from a generator 1 is enlarged via 2 to a thick laser light, an optical path is bent by a mirror 3 for reflecting the laser wavelength, the light is focused by a lens 4 at a focal position to approx. mum degree to emit a sample 5. The fluorescent light 13 emitted from the sample and the laser reflected light are formed through the lens 4 to parallel light beam, separated by the mirror 3, the passed light is led through a fluorescent filter 7 and a condensing lens 8 to a detector 9, and analyzed by a signal processor 10. When a portion locally heated is presented on a photoresist on the substrate, the fluorescent light intensity decreases near the portion. With this configuration, since the photoresist is used, influence of impurity diffusion can be eliminated, and the position resolution of temperature distribution can be set to 1mum or lower by selecting the laser light. Since the photoresist stores the information corresponding to the received temperature, it can be analyzed later.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は試料表面の温度分布の計測に係り、特に半導体
集積回路製造過程において、ホトレジスト膜を塗布した
後の集積回路パターンの温度測定に好適な蛍光法による
非接触測定装置に関する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to the measurement of temperature distribution on the surface of a sample, and is particularly suitable for measuring the temperature of an integrated circuit pattern after coating a photoresist film in the process of manufacturing a semiconductor integrated circuit. This article relates to a non-contact measurement device using a fluorescence method.

〔発明の背景〕[Background of the invention]

従来の蛍光法による温度測定法は、測定物質に塗布する
ホトレジスト薄膜に蛍光物質を添加しておき、その蛍光
強度を温度に対応させるものであった(P、Kolde
r and J、A、Tyson ; Appl、Ph
ysi。
In the conventional temperature measurement method using the fluorescence method, a fluorescent substance is added to a photoresist thin film applied to the measurement substance, and the fluorescence intensity is made to correspond to the temperature (P, Kolde et al.
r and J, A, Tyson; Appl, Ph
ysi.

Lett、、 42 (1) 、117 (1983)
)。 しかしこの方法では、蛍光物質をホトレジスト材
に添加する必要があり、添加した蛍光物質の測定試料内
への拡散による半導体表面への悪影響などの問題があっ
た。
Lett, 42 (1), 117 (1983)
). However, in this method, it is necessary to add a fluorescent substance to the photoresist material, and there are problems such as an adverse effect on the semiconductor surface due to diffusion of the added fluorescent substance into the measurement sample.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、半導体回路パターンの温度分゛布を非
接触、高分解、高感度で検出する装置を提供することに
ある。
An object of the present invention is to provide a device that detects the temperature distribution of a semiconductor circuit pattern in a non-contact manner, with high resolution, and with high sensitivity.

〔発明の概要〕[Summary of the invention]

本発明は半導体のエツチングの際に普通に用いられてい
るホトレジストをそのまま利用する。すなわち、半導体
集積回路上に薄く塗布したホトレジストにレーザー光を
照射したときの、ホトレジストそのものからの蛍光強度
の変化を温度の変化に対応づける方法を用いた。
The present invention utilizes photoresists commonly used in semiconductor etching as is. That is, a method was used in which, when photoresist thinly applied on a semiconductor integrated circuit is irradiated with laser light, changes in fluorescence intensity from the photoresist itself are correlated with changes in temperature.

ホトレジストの一例としてAZ1350J(商品名=S
hippley社)を用いた場合について具体的に説明
する。Slウェハー上に一定の膜厚で塗布したホトレジ
ストAZ1350J(以下、試料と記する)に波長48
8.0nmのArレーザー光を照射すると、第1図のよ
うなスペクトルを持つ蛍光(測定値であるが、光学系や
受光系による補正は行なっていない)が゛ 生じる。こ
の蛍光強度は、試料の加熱によって減少することが見い
出された。第2図はその様子を示したもので、試料を常
温(25℃)から100℃程度まで加熱したときの各温
度での試料の蛍光強度を示したものである0図より温度
の上昇に伴い蛍光強度が減少することが認められる。こ
のことは、試料の温度変化を蛍光強度の変化としてとら
えることができることを意味している。ここで測定でき
る温度範囲は試料の耐熱性によって決定され、本例では
約100℃付近までとしている。
As an example of photoresist, AZ1350J (product name=S
A case in which the software (Hippley, Inc.) is used will be specifically explained. A photoresist AZ1350J (hereinafter referred to as sample) coated with a constant film thickness on a Sl wafer was coated with a wavelength of 48
When 8.0 nm Ar laser light is irradiated, fluorescence having a spectrum as shown in FIG. 1 (measured values, but no corrections were made by the optical system or light receiving system) is generated. It was found that this fluorescence intensity was reduced by heating the sample. Figure 2 shows this situation. Figure 0 shows the fluorescence intensity of the sample at each temperature when the sample was heated from room temperature (25℃) to about 100℃. It is observed that the fluorescence intensity decreases. This means that changes in sample temperature can be interpreted as changes in fluorescence intensity. The temperature range that can be measured here is determined by the heat resistance of the sample, and in this example is up to approximately 100°C.

試料の蛍光強度の温度変化は不可逆変化であり、この様
子を第3図に示す、第3図(a)は試料の温度の変化を
示し、時刻t、で温度T、の状態から加熱し時刻t、で
温度T、にする。次に冷却し時刻t3で温度T、と元に
戻したときを考える。
The temperature change in the fluorescence intensity of the sample is an irreversible change, and this situation is shown in Figure 3. Figure 3(a) shows the change in the temperature of the sample. The temperature is set to T at t. Next, consider the case where the temperature is returned to the original temperature T at time t3 after cooling.

このときの試料の蛍光強度の変化を同図(b)に示す。The change in fluorescence intensity of the sample at this time is shown in the same figure (b).

時刻t、のときに蛍光強度が工、であったものが、加熱
によって温度がT、になったときには第2図に従って、
蛍光強度がI2になったときには第2図に従うて、蛍光
強度がI2に減少する。
At time t, the fluorescence intensity was T, but when the temperature became T due to heating, according to Fig. 2,
When the fluorescence intensity reaches I2, the fluorescence intensity decreases to I2 according to FIG.

次に温度を下げ元にもどしたとき(時刻ta、温度T1
)、蛍光強度はIヵとなるがLSI、であり、受けた熱
情報を試料が保持することになる。
Next, when the temperature is lowered and returned to its original state (time ta, temperature T1
), the fluorescence intensity is I, but it is an LSI, and the sample retains the received thermal information.

この保持の割合を温度情報保持率と呼び、(I+−In
)/(it−Ii)で定義するとする。この温度情報保
持率の試料温度差(I2−TI)に対する変化を第4図
に示す、なお第4図での基準温度(T、)は常温(25
℃)である。この図で校正することにより、試料の受け
た熱情報を後で追従することが可能となる。
This retention rate is called the temperature information retention rate and is (I+-In
)/(it-Ii). Figure 4 shows the change in temperature information retention rate with respect to the sample temperature difference (I2-TI). In Figure 4, the reference temperature (T,) is room temperature (25
℃). By calibrating with this diagram, it becomes possible to track the thermal information received by the sample later.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明゛の一実施例を第5図により説明する0本
実施例はレーザー光照射系、試料保持系。
Hereinafter, one embodiment of the present invention will be explained with reference to FIG. 5. This embodiment includes a laser beam irradiation system and a sample holding system.

蛍光信号検出・処理系によって構成される。レーザー光
照射系では、レーザー光発生装置!で発せられるレーザ
ー光11を光束拡大器2を通しより太いレーザー光12
とし、レーザー波長を反射するダイクロイックミラー3
でレーザー光12の光路を90度曲げ、次に集光レンズ
4を用いて焦点位置でのレーザー光径をμm程度に絞り
試料5に照射する。
It consists of a fluorescence signal detection and processing system. The laser light irradiation system is a laser light generator! The laser beam 11 emitted by the
and a dichroic mirror 3 that reflects the laser wavelength.
The optical path of the laser beam 12 is bent by 90 degrees, and then the laser beam diameter at the focal position is focused to about μm using the condenser lens 4, and the sample 5 is irradiated with the laser beam.

試料保持系は、試料5を試料移動台6に固定する。試料
移動台6は三次元的に移動できるようにしたものであり
、レーザー光を最小に絞った位置に試料5を保持するよ
うにする。
The sample holding system fixes the sample 5 to the sample moving table 6. The sample moving stage 6 is designed to be able to move three-dimensionally, and is designed to hold the sample 5 at a position where the laser beam is minimized.

蛍光信号検出・処理系は、試料から発する蛍光13とレ
ーザー光の反射光を再び集光レンズ4で集め平行光線と
し、ダイクロイックミラー3で蛍光と反射レーザー光を
分離し、透過した蛍光フィルター7及び集光レンズ8に
より光検出器9に導き検出し、信号処理装置10で解析
できるようにしたものである。
The fluorescence signal detection/processing system collects the fluorescence 13 emitted from the sample and the reflected light of the laser beam again using a condensing lens 4 into parallel light, separates the fluorescence and the reflected laser light using a dichroic mirror 3, and filters the transmitted fluorescence through a fluorescence filter 7 and The light is guided to a photodetector 9 by a condensing lens 8 for detection, and can be analyzed by a signal processing device 10.

ここで試料5を試料移動台6を用いて光軸と垂直方向に
二次元的に動かすことにより、試料5の温度分布を簡単
に測定することができる0例えば第6図(a)のような
試料を考える。半導体集積回路の基板14にホトレジス
ト15を塗布した試料を考え、その中の点Bの回りに局
所的な加熱を受けた領域16があるとする0点A、B、
Cを通る線上の蛍光強度分布を第5図の装置を用いて測
定したときの様子を第6図(b)に示す0点Bの近傍で
蛍光強度が減少しており、温度が上昇したことを示して
いる。この蛍光強度の測定結果と第2図、第4図を用い
ることにより、領域16の受けた温度を知ることが可能
となる。
Here, by moving the sample 5 two-dimensionally in the direction perpendicular to the optical axis using the sample moving table 6, the temperature distribution of the sample 5 can be easily measured. Consider the sample. Consider a sample in which a photoresist 15 is coated on a substrate 14 of a semiconductor integrated circuit, and assume that there is a locally heated region 16 around point B. Points 0 A, B,
When the fluorescence intensity distribution on the line passing through C was measured using the apparatus shown in Figure 5, the fluorescence intensity decreased in the vicinity of 0 point B as shown in Figure 6(b), indicating that the temperature had increased. It shows. By using the measurement results of the fluorescence intensity and FIGS. 2 and 4, it is possible to know the temperature experienced by the region 16.

以上のように1本実施例によれば試料表面の温度分布の
測定を非接触で行うことができる0本実施例では試料5
を試料移動台6を用いて動かしているが、試料を固定し
、レーザー光照射系および蛍光信号検出・処理系を動か
しても同様である。
As described above, according to this embodiment, the temperature distribution on the sample surface can be measured without contact.
is moved using the sample moving stage 6, but the same effect can be obtained by fixing the sample and moving the laser light irradiation system and fluorescence signal detection/processing system.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、半導体のエツチング過程において一般
的に用いられているホトレジストを用いているため、半
導体への不純物拡散などの影響が少ない。また温度分布
の位置分解能は、使用するレーザー光を選択することに
より1μm以下にすることが容易であり、測定できる温
度範囲も常温から100℃程度までと幅広いという効果
をもつ。
According to the present invention, since a photoresist that is commonly used in the etching process of semiconductors is used, there is little influence of impurity diffusion into the semiconductor. Furthermore, the positional resolution of the temperature distribution can be easily reduced to 1 μm or less by selecting the laser beam to be used, and the measurable temperature range is wide from room temperature to about 100° C.

さらにホトレジストは受けた温度に相当する情報を記憶
することから、実時間で測定できない場合でも受けた温
度を後で解析することができるという新しい効果がある
Furthermore, since photoresist stores information corresponding to the temperature it receives, it has the novel effect of allowing the temperature to be analyzed later even if it cannot be measured in real time.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はホトレジストの蛍光スペクトルの一例、第2図
は蛍光強度の温度依存性を示す測定図、第3図はホトレ
ジストが受けた温度の情報保持特性を示す説明図、第4
図は温度情報保持特性の測定図、第5図は本発明の一実
施例になる温度測定装置の基本構成を示すブロック図、
第6図は本発明の一実施態様を示す模式図である。 1・・・レーザー光発生装置、2・・・光束拡大器、3
・・・ダイクロイックミラー、4・・・集光レンズ、5
・・・試料、6・・・試料移動台、7・・・フィルター
、8・・・集光レンズ、9・・・光検出器、10・・・
信号処理装置。 11.12・・・レーザー光、13・・・蛍光、14・
・・基板、15・・・ホトレジスト、16・・・加熱を
受けた領事 l の 液長 (馳っ 第 2 国 状$+温度(°す 第 39 時間 時間 第 4 日 吉X料逝度塵(°C) 第 6 国 含入#ロヒの句11
Figure 1 is an example of the fluorescence spectrum of photoresist, Figure 2 is a measurement diagram showing the temperature dependence of fluorescence intensity, Figure 3 is an explanatory diagram showing the information retention characteristics of the temperature applied to the photoresist, and Figure 4 is a diagram showing the temperature dependence of the fluorescence intensity.
The figure is a measurement diagram of temperature information retention characteristics, and FIG. 5 is a block diagram showing the basic configuration of a temperature measuring device according to an embodiment of the present invention.
FIG. 6 is a schematic diagram showing one embodiment of the present invention. 1... Laser light generator, 2... Luminous flux expander, 3
...Dichroic mirror, 4...Condensing lens, 5
... Sample, 6... Sample moving stage, 7... Filter, 8... Condensing lens, 9... Photodetector, 10...
Signal processing device. 11.12...Laser light, 13...Fluorescence, 14.
...Substrate, 15...Photoresist, 16...Heated liquid length C) 6th country inclusion #Rohi's phrase 11

Claims (1)

【特許請求の範囲】[Claims] 表面にホトレジスト膜を塗布された半導体試料を載置し
、かつ二次元方向に移動可能な試料台と、上記半導体試
料表面のホトレジスト膜から蛍光を誘起するための光ビ
ームを発生する光源と、この光ビームを上記半導体試料
表面の微小領域に集束する手段と、光ビーム照射によっ
て上記半導体試料表面上のホトレジスト膜から発生する
蛍光のみを透過させる手段と、この蛍光強度に対応する
電気信号を生じる検出手段とを備えてなることを特徴と
する蛍光による温度測定装置。
A sample stage on which a semiconductor sample whose surface is coated with a photoresist film is movable in two dimensions; a light source that generates a light beam for inducing fluorescence from the photoresist film on the surface of the semiconductor sample; means for focusing a light beam on a minute area on the surface of the semiconductor sample; means for transmitting only the fluorescence generated from the photoresist film on the surface of the semiconductor sample by irradiation with the light beam; and detection for generating an electrical signal corresponding to the intensity of the fluorescence. 1. A temperature measuring device using fluorescence, comprising: means.
JP10637284A 1984-05-28 1984-05-28 Temperature measuring device by fluorescent light Pending JPS60250640A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10637284A JPS60250640A (en) 1984-05-28 1984-05-28 Temperature measuring device by fluorescent light

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10637284A JPS60250640A (en) 1984-05-28 1984-05-28 Temperature measuring device by fluorescent light

Publications (1)

Publication Number Publication Date
JPS60250640A true JPS60250640A (en) 1985-12-11

Family

ID=14431887

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10637284A Pending JPS60250640A (en) 1984-05-28 1984-05-28 Temperature measuring device by fluorescent light

Country Status (1)

Country Link
JP (1) JPS60250640A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4759033A (en) * 1987-07-01 1988-07-19 Weyerhaeuser Company Temperature measurement of hot mineral product by induced fluorescence
JP2010513884A (en) * 2006-12-22 2010-04-30 ソニー ドイチュラント ゲゼルシャフト ミット ベシュレンクテル ハフツング High-resolution detection of temperature and temperature distribution for microscopic electronic devices and living organisms
US8767293B2 (en) 2007-05-15 2014-07-01 Sony Deutschland Gmbh Microscope measurement system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4759033A (en) * 1987-07-01 1988-07-19 Weyerhaeuser Company Temperature measurement of hot mineral product by induced fluorescence
JP2010513884A (en) * 2006-12-22 2010-04-30 ソニー ドイチュラント ゲゼルシャフト ミット ベシュレンクテル ハフツング High-resolution detection of temperature and temperature distribution for microscopic electronic devices and living organisms
US8434939B2 (en) 2006-12-22 2013-05-07 Sony Deutschland Gmbh Temperature and temperature distribution sensing with high resolution in microscopic electronic devices and biological objects
US8767293B2 (en) 2007-05-15 2014-07-01 Sony Deutschland Gmbh Microscope measurement system

Similar Documents

Publication Publication Date Title
TW200931208A (en) Alignment method and apparatus, lithographic apparatus, metrology apparatus and device manufacturing method
JP2001217190A (en) Position detection system for use in lithography equipment
TWI252381B (en) Lithographic apparatus and methods for use thereof
JPH1022213A (en) Position detector and manufacture of device using it
JPH09320921A (en) Measuring method of base line quantity and projection aligner
JP4392914B2 (en) Surface position detection apparatus, exposure apparatus, and device manufacturing method
JP3428705B2 (en) Position detecting device and method of manufacturing semiconductor device using the same
JPS60250640A (en) Temperature measuring device by fluorescent light
JPH07243814A (en) Measuring method of line width
JPS62140418A (en) Position detector of surface
JP2004356290A (en) Aligner and method for exposure
KR0178079B1 (en) Temperature measering method and device therefor
JPS6216526A (en) Projection exposure apparatus
JPH09199407A (en) Manufacture of projection aligner and semiconductor device
JPH0766111A (en) Aligner and aligning method
JP2002083760A (en) X-ray projection aligner, x-ray projection exposure method, and semiconductor device
JPH03111713A (en) Interference type apparatus for detecting tilt or height, reduction stepper and method therefor
JPH09120940A (en) Alignment and aligner
JPH0412523A (en) Position detector
JPS60180118A (en) Positioning apparatus with diffraction grating
JPH04290217A (en) Lighography
JPS61153502A (en) Height detecting device
JP3513304B2 (en) Position shift detection method and semiconductor device manufacturing method using the same
JP3420401B2 (en) Position detecting apparatus and method, semiconductor exposure apparatus, and method of manufacturing semiconductor device
JPH0217929B2 (en)