JPH0217929B2 - - Google Patents
Info
- Publication number
- JPH0217929B2 JPH0217929B2 JP28112685A JP28112685A JPH0217929B2 JP H0217929 B2 JPH0217929 B2 JP H0217929B2 JP 28112685 A JP28112685 A JP 28112685A JP 28112685 A JP28112685 A JP 28112685A JP H0217929 B2 JPH0217929 B2 JP H0217929B2
- Authority
- JP
- Japan
- Prior art keywords
- light
- wafer
- detection
- resist
- reflected
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000001514 detection method Methods 0.000 claims description 55
- 230000003287 optical effect Effects 0.000 claims description 19
- 238000006243 chemical reaction Methods 0.000 claims description 12
- 230000008859 change Effects 0.000 claims description 8
- 230000001678 irradiating effect Effects 0.000 claims description 6
- 235000012431 wafers Nutrition 0.000 description 59
- 238000009826 distribution Methods 0.000 description 15
- 238000000034 method Methods 0.000 description 9
- 230000000694 effects Effects 0.000 description 8
- 230000009467 reduction Effects 0.000 description 8
- 230000005484 gravity Effects 0.000 description 6
- 230000004907 flux Effects 0.000 description 5
- 238000003384 imaging method Methods 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- 238000010586 diagram Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 238000012935 Averaging Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
- 230000036962 time dependent Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F9/00—Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
- G03F9/70—Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically for microlithography
- G03F9/7003—Alignment type or strategy, e.g. leveling, global alignment
- G03F9/7023—Aligning or positioning in direction perpendicular to substrate surface
- G03F9/7026—Focusing
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Preparing Plates And Mask In Photomechanical Process (AREA)
- Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
- Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
- Optical Radar Systems And Details Thereof (AREA)
Description
【発明の詳細な説明】
[産業上の利用分野]
本発明は、物体表面の基準面からの隔りを検知
する面位置検知装置に関する。このような面位置
検知装置は、例えば半導体製造の分野において、
半導体ウエハ表面にレチクルパターンを繰返し縮
小投影露光するステツパと呼ばれる露光装置の自
動焦点制御装置用として上記ウエハ表面とレチク
ルパターン結像面とのずれを検知するために好適
に用いられる。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a surface position detection device that detects the distance of an object surface from a reference surface. Such a surface position detection device is used, for example, in the field of semiconductor manufacturing.
It is suitably used for an automatic focus control device of an exposure apparatus called a stepper which repeatedly performs reduction projection exposure of a reticle pattern onto the surface of a semiconductor wafer to detect a shift between the wafer surface and the reticle pattern imaging plane.
[従来の技術]
従来の縮小投影露光装置のウエハ面位置検出方
法としては、エアマイクロセンサを用いる方法
と、ウエハ面に斜め方向から光束を入射させ、そ
の反射光の位置ずれ量を検出する方法(光学方
式)とが知られている。[Prior Art] Conventional methods for detecting the position of a wafer surface in a reduction projection exposure apparatus include a method using an air microsensor, and a method in which a beam of light is incident on the wafer surface from an oblique direction and the amount of positional deviation of the reflected light is detected. (optical method) is known.
しかしながら、エアマイクロセンサによる方法
では、
パターン焼き付け部が直接に測長できない、
応答性が光学式に比べて遅い、
エアマイクロセンサのノズルとウエハ面の間
隔を50〜60μm程度に近接させなければ、高精
度の検出ができない。 However, with the air microsensor method, the length of the pattern printed area cannot be directly measured, the response is slower than the optical method, and the distance between the air microsensor nozzle and the wafer surface must be kept close to 50 to 60 μm. High precision detection is not possible.
などという問題があつた。There was such a problem.
一方、光学方式の場合は、パターン焼き付け部
が直接に測長でき、応答性も早いが、ウエハ上に
塗布されたレジストの存在によつてレジスト表面
で反射した光とウエハ表面で反射した光とが干渉
を起し、検出誤差を生じるため高精度の位置検出
が困難であるという問題があつた。 On the other hand, in the case of the optical method, the pattern printing part can directly measure the length and the response is fast, but due to the presence of the resist coated on the wafer, the light reflected from the resist surface and the light reflected from the wafer surface are different. There is a problem in that highly accurate position detection is difficult because interference occurs and detection errors occur.
また、光学方式の場合は、ウエハーからの反射
光を位置検出用受光素子で受光し、この受光素子
から、反射光の受光位置に応じた出力を検出し、
この出力に基づいてウエハーの位置を検出するの
であるが、温度や湿温の変化などに起因して受光
素子からの出力が変動し、検出誤差を生じるとい
う問題もあつた。 In addition, in the case of the optical method, the reflected light from the wafer is received by a position detection light receiving element, and the output from this light receiving element is detected according to the receiving position of the reflected light.
The position of the wafer is detected based on this output, but there is a problem in that the output from the light receiving element fluctuates due to changes in temperature, humidity, etc., resulting in detection errors.
[発明の目的]
本発明の目的は、上述の従来形における問題点
に鑑み、光学方式の面位置検出装置において、波
長の異なる複数の光束を入射することにより、被
検出面およびその近傍(フオトレジストを塗布し
た半導体ウエハであればレジスト表面およびウエ
ハ表面)で反射した検出光の干渉作用を平均化さ
せ、検出光の干渉作用による検出誤差を軽減する
とともに、所定の参照光(基準光)を用いて位置
検出用受光素子の検出出力を補正するという構想
に基づき、面位置検知精度を向上させることにあ
る。[Objective of the Invention] In view of the above-mentioned problems with the conventional type, an object of the present invention is to detect the surface to be detected and its vicinity (photograph) by inputting a plurality of light beams with different wavelengths in an optical surface position detection device. In the case of a semiconductor wafer coated with resist, the interference effect of the detection light reflected from the resist surface and the wafer surface is averaged, reducing detection errors due to the interference effect of the detection light, and the predetermined reference light (standard light) is The objective is to improve surface position detection accuracy based on the concept of correcting the detection output of the position detection light receiving element using the sensor.
[発明の概要]
上記目的を達成するために、本発明の面位置検
知装置は、レジストが塗布されたウエハー2の面
位置を検知する装置において、上記ウエハーに互
いに波長が異なる複数の光を照射する投光手段
4,5,6,7,8と、光電変換手段12と、上
記光電変換手段の受光面上の所定位置に基準光を
照射して上記光電変換手段から基準信号を出力さ
せる基準光照射手段20,21,22と、上記投
光手段による光照射により上記ウエハーで生じる
反射光を上記光電変換手段の受光面上に集光して
上記光電変換手段から上記所定位置に対する上記
反射光の集光位置に応じた位置信号を出力させる
集光光学系9,10,11,22,23とを有
し、上記ウエハーの面位置に応じて上記反射光の
集光位置が変化するよう上記投光手段と上記集光
光学系を配置し、上記光電変換手段からの上記基
準信号と上記位置信号とに基づいて上記ウエハー
の面位置を検知することを特徴としている。[Summary of the Invention] In order to achieve the above object, the surface position detection device of the present invention is a device for detecting the surface position of a wafer 2 coated with resist, in which the wafer is irradiated with a plurality of lights having different wavelengths. light projecting means 4, 5, 6, 7, 8, photoelectric conversion means 12, and a standard for outputting a reference signal from the photoelectric conversion means by irradiating reference light onto a predetermined position on the light receiving surface of the photoelectric conversion means; Light irradiation means 20, 21, 22 and the reflected light generated by the wafer due to light irradiation by the light projecting means are focused on the light receiving surface of the photoelectric conversion means, and the reflected light is transmitted from the photoelectric conversion means to the predetermined position. and a condensing optical system 9, 10, 11, 22, 23 that outputs a position signal according to the condensing position of the wafer. The present invention is characterized in that a light projecting means and the condensing optical system are arranged, and the surface position of the wafer is detected based on the reference signal and the position signal from the photoelectric conversion means.
[実施例の説明]
以下、図面を用いて本発明の実施例を説明す
る。[Description of Examples] Examples of the present invention will be described below with reference to the drawings.
第1図は、本発明の一実施例に係る縮小投影露
光装置用自動焦点制御装置の構成を示す。同図に
おいて、1は縮小投影レンズであり、その下方に
ウエハ2が位置している。ウエハ2は上下方向に
移動可能なステージ3に乗つている。自動焦点制
御装置の光学系は複数の光源4,5を有している
(第1図においては、簡単の為、複数光源として
2つの光源のみ描いてある)。光源としては、波
長の異なるレーザあるいはLED等を用いる。こ
の光源4および5より出た光束(検出光)は、ビ
ームスプリツタ(またはハーフミラーでもよい)
6により同一の光路を形成し、レンズ7を経た
後、ミラー8で反射されウエハ2上の反射点に結
像する。ここで、複数の光源4,5とビームスプ
リツタ6とレンズ7とミラー8とで、波長が異な
る複数の光をウエハー2に照射する投光手段を構
成している。 FIG. 1 shows the configuration of an automatic focus control device for a reduction projection exposure apparatus according to an embodiment of the present invention. In the figure, 1 is a reduction projection lens, and a wafer 2 is located below it. The wafer 2 is placed on a stage 3 that is vertically movable. The optical system of the automatic focus control device has a plurality of light sources 4 and 5 (for simplicity, only two light sources are depicted as a plurality of light sources in FIG. 1). As a light source, lasers or LEDs with different wavelengths are used. The light flux (detection light) emitted from these light sources 4 and 5 is sent to a beam splitter (or a half mirror may be used)
6 to form the same optical path, and after passing through a lens 7, it is reflected by a mirror 8 and an image is formed on a reflection point on the wafer 2. Here, the plurality of light sources 4 and 5, the beam splitter 6, the lens 7, and the mirror 8 constitute a light projecting means for irradiating the wafer 2 with a plurality of lights having different wavelengths.
この時、検出光のウエハ面への入射角を80゜以
上、すなわちウエハ面と入射光束とのなす角θを
10゜以下とし、また、検出光をウエハに対してS
偏光となる様にすると、レジスト表面からの反射
光強度が支配的となりウエハ基板よりの反射光の
影響を小さくする事ができる。 At this time, set the angle of incidence of the detection light on the wafer surface to 80° or more, that is, the angle θ between the wafer surface and the incident light beam.
10° or less, and the detection light is
When the light is polarized, the intensity of the light reflected from the resist surface becomes dominant, and the influence of the light reflected from the wafer substrate can be reduced.
ウエハ2で反射した光束はミラー9で反射さ
れ、レンズ10および偏光板11(または偏光ビ
ームスプリツタ)を通り、さらにビームスプリツ
タ(またはハーフミラー)22を通つた後、ポジ
シヨンセンサダイオード12(光電変換手段)に
入光、結像する。ここで、ミラー9とレンズ10
と偏光板11とビームスプリツタ22とストツパ
ー23とで、ウエハー2で生じる反射光をポジシ
ヨンセンサダイオード12上に集光する集光光学
系を構成している。 The light beam reflected by the wafer 2 is reflected by the mirror 9, passes through the lens 10 and the polarizing plate 11 (or polarizing beam splitter), and further passes through the beam splitter (or half mirror) 22, and then passes through the position sensor diode 12 ( The light enters the photoelectric conversion means) and forms an image. Here, mirror 9 and lens 10
The polarizing plate 11, the beam splitter 22, and the stopper 23 constitute a condensing optical system that condenses reflected light generated by the wafer 2 onto the position sensor diode 12.
偏光板11(または偏光ビームスプリツタ)
は、ウエハで反射した光束中のS偏光成分のみを
ポジシヨンセンサダイオード12に到達させるこ
とにより、検出光中のウエハ基板での反射成分を
さらに少なくするためのものである。 Polarizing plate 11 (or polarizing beam splitter)
This is to allow only the S-polarized component in the light beam reflected by the wafer to reach the position sensor diode 12, thereby further reducing the component reflected by the wafer substrate in the detection light.
この自動焦点制御装置においては、図示される
ように、投光手段4,5,6,7,8と集光光学
系9,10,11,22,23とポジシヨンセン
サダイオード12を設け、ウエハ面上の光束の反
射点と受光素子上の入射点を結像関係に保つこと
により、ウエハの上下方向の位置ずれを受光素子
上の光束の入光位置として検知し、投影レンズの
焦点位置の自動制御を行なうようにしている。 As shown in the figure, this automatic focus control device includes light projecting means 4, 5, 6, 7, 8, condensing optical systems 9, 10, 11, 22, 23, and a position sensor diode 12, and By maintaining an imaging relationship between the reflection point of the light beam on the surface and the incident point on the photodetector, vertical positional deviation of the wafer can be detected as the incident position of the light beam on the photodetector, and the focal position of the projection lens can be adjusted. I am trying to do automatic control.
光学方式の焦点位置検知装置における位置ずれ
検出誤差の原因として、ウエハの傾き、およびウ
エハ上に塗布された光透過物体であるレジストの
存在が考えられるが、前者のウエハの傾きにより
生じる検出誤差は、上述のように、ウエハ上の反
射点と受光素子上の光束の入射点とを結像関係に
保つことにより原理的に除くことができる。 Possible causes of positional deviation detection errors in optical focus position detection devices include the tilt of the wafer and the presence of a resist, which is a light-transmitting object, coated on the wafer, but the detection error caused by the former tilt of the wafer is , as described above, can be eliminated in principle by maintaining an imaging relationship between the reflection point on the wafer and the incident point of the light beam on the light receiving element.
一方、後者のレジストの存在は、レジスト表面
での反射光とウエハ表面での反射光との間に干渉
が生じることにより、受光素子上に結像した光束
の強度の重心のずれとなつて現われる。すなわ
ち、レジストの厚み、あるいは検出光として用い
る光の波長によつて検出される位置が異なること
を意味する。 On the other hand, the presence of the latter resist causes interference between the light reflected from the resist surface and the light reflected from the wafer surface, which appears as a shift in the center of gravity of the intensity of the light beam focused on the photodetector. . This means that the detected position differs depending on the thickness of the resist or the wavelength of the light used as the detection light.
従つて、より高精度の位置検出を可能とするた
めには、この検出光に対するレジストの干渉効果
を除くことがぜひとも必要となる。 Therefore, in order to enable more accurate position detection, it is absolutely necessary to eliminate the interference effect of the resist on this detection light.
次に、第2図および第3図を用いて検出光に対
するレジストの干渉効果による検出誤差の軽減に
ついて説明する。 Next, the reduction of detection errors due to the interference effect of the resist with respect to the detection light will be explained using FIGS. 2 and 3.
第2図は、レジスト14の塗布されたウエハ2
上に、一定のビーム径をもち、ビーム径内で一様
の強度をもつ光束13が結像した状態で入射し、
レジスト14の表面およびウエハ2の表面で反射
することにより、ビーム径内で異なつた強度の分
布を示す光束15を形成する状態を示した模式図
である。また、第3図は、このレジスト14およ
びウエハ2の表面で反射し形成された光束15が
光学系により受光素子上に結像された状態での強
度の分布を示すグラフである。 FIG. 2 shows a wafer 2 coated with a resist 14.
A light beam 13 having a constant beam diameter and uniform intensity within the beam diameter is incident on the beam in an imaged state,
2 is a schematic diagram showing a state in which a light beam 15 showing different intensity distributions within the beam diameter is formed by reflection on the surface of the resist 14 and the surface of the wafer 2. FIG. Further, FIG. 3 is a graph showing the intensity distribution of the light beam 15 reflected and formed by the resist 14 and the surfaces of the wafer 2, when the light beam 15 is imaged on the light receiving element by the optical system.
第2図において、一定のビーム径をもちビーム
径内で一様の強度の分布を示す光束13がレジス
ト14の塗布されたウエハ2上に斜め方向から入
射する。この時、光束13は、レジスト14の表
面で反射する成分と、レジスト14を透過してウ
エハ2の表面とレジスト14の表面との間で多重
反射を繰り返した後、再びレジスト14外に出て
行く成分とに分けられる。この様にレジスト14
表面で反射された成分とウエハ2表面で反射され
た成分とは合成され、第3図に示すようにビーム
径内で異なつた強度分布を示す光束15が形成さ
れることになる。この光束15は、第1図のミラ
ー9、レンズ10、偏光板11およびビームスプ
リツタ22を通つて受光素子12上に結像され
る。 In FIG. 2, a light beam 13 having a constant beam diameter and exhibiting a uniform intensity distribution within the beam diameter is incident on a wafer 2 coated with a resist 14 from an oblique direction. At this time, the light beam 13 repeats multiple reflections between the surface of the resist 14 and the surface of the wafer 2 after passing through the resist 14 and the surface of the resist 14, and then exits the resist 14 again. It is divided into components that go. Resist 14 like this
The components reflected on the surface of the wafer 2 and the components reflected on the surface of the wafer 2 are combined to form a light beam 15 having different intensity distributions within the beam diameter, as shown in FIG. This light beam 15 passes through the mirror 9, lens 10, polarizing plate 11, and beam splitter 22 shown in FIG. 1, and forms an image on the light receiving element 12.
第3図において、グラフはある波長λ1を検出
光として用いた場合の受光素子上の光強度分布を
示す。また、グラフおよびは各々異なつた波
長λ2,λ3を検出光として用いた場合の受光素子上
での光強度分布を示す。さらに、グラフは複数
の波長λ1〜λnを検出光として用いた場合の受光
素子上での光強度分布を示す。 In FIG. 3, the graph shows the light intensity distribution on the light receiving element when a certain wavelength λ 1 is used as detection light. Further, the graphs and graphs show the light intensity distribution on the light receiving element when different wavelengths λ 2 and λ 3 are used as detection light. Furthermore, the graph shows the light intensity distribution on the light receiving element when a plurality of wavelengths λ 1 to λn are used as detection light.
検出光として、単色(または準単色)の光源を
用いた場合の受光素子上での検出光の強度分布
は、グラフ,,に示される様に、レジスト
14の表面で反射した成分とウエハ2表面で反射
した成分の干渉のために複雑な強度分布を示す。
また、この強度の分布状態は検出光の波長および
レジスト14の厚みによつて異なる。また、受光
素子によつて検出光の強度分布の重心16,1
7,18が位置信号として出力されるわけである
が、検出光の波長またはレジスト14の厚みが変
わると干渉状態が変化し、重心16,17,18
の位置も変化し、検出誤差となつて現われる。 When a monochromatic (or quasi-monochromatic) light source is used as the detection light, the intensity distribution of the detection light on the light receiving element is as shown in the graph . shows a complex intensity distribution due to interference of reflected components.
Further, the distribution state of this intensity differs depending on the wavelength of the detection light and the thickness of the resist 14. In addition, the center of gravity 16,1 of the intensity distribution of the detected light is determined by the light receiving element.
7 and 18 are output as position signals, but if the wavelength of the detection light or the thickness of the resist 14 changes, the interference state changes, and the center of gravity 16, 17, 18
The position of will also change, which will appear as a detection error.
ところで、これは本発明者等が種々検討の末、
知見したことであるが、複数の単色(または準単
色)の光源を検出光として用いた場合の受光素子
上での検出光の強度分布は、グラフに示される
様に、多波長の光源を用いることによりレジスト
の存在に伴う干渉効果が平均化され、検出光の強
度分布の重心19もレジストの膜厚にかかわらず
安定した値を示す。それ故、このような多波長の
光源を用いて光学方式のウエハ表面位置を検出す
ればレジストの存在に伴う位置の検出誤差を除く
ことが可能となる。 By the way, this is what the inventors of the present invention have determined after various studies.
As shown in the graph, when multiple monochromatic (or semi-monochromatic) light sources are used as detection light, the intensity distribution of the detection light on the photodetector is as follows: As a result, the interference effect due to the presence of the resist is averaged out, and the center of gravity 19 of the intensity distribution of the detected light also exhibits a stable value regardless of the thickness of the resist. Therefore, by optically detecting the wafer surface position using such a multi-wavelength light source, it is possible to eliminate position detection errors caused by the presence of resist.
また、第1図に示した様に波長の異なる複数の
光源を用いるとともに、ウエハへの入射光がウエ
ハとなす角θを10゜以下にすること、および検出
光としてウエハに対するS偏光を用いることによ
り、ウエハ表面での反射光が減少し、本発明の効
果を、さらに大ならしめることができる。 Additionally, as shown in Figure 1, multiple light sources with different wavelengths should be used, the angle θ between the incident light and the wafer should be 10 degrees or less, and S-polarized light with respect to the wafer should be used as the detection light. As a result, reflected light on the wafer surface is reduced, and the effects of the present invention can be further enhanced.
さらに、受光素子にポジシヨンセンサデイテク
タを用いる場合の位置信号の検出誤差の要因とし
て、ポジシヨンセンサデイテクタにおける基準点
の時間変化(ドリフト)がある。基準光源20
は、このドリフトを検出するための参照光(基準
光)を発生するためのものである。 Furthermore, when a position sensor detector is used as a light-receiving element, a time change (drift) of a reference point in the position sensor detector is a factor that causes a detection error in a position signal. Reference light source 20
is for generating a reference light (reference light) for detecting this drift.
次に、第1図の装置におけるポジシヨンセンサ
ダイオード12のドリフト補正について説明す
る。 Next, the drift correction of the position sensor diode 12 in the apparatus shown in FIG. 1 will be explained.
同図の装置において、光学系の光軸およびポジ
シヨンセンサダイオード12の基準点は、基準光
源20および複数の光源4,5より得られるポジ
シヨンセンサダイオード12の位置信号がゼロと
なるように、本装置を組み立て調整する際に調整
しておくものとする。 In the device shown in the figure, the optical axis of the optical system and the reference point of the position sensor diode 12 are set such that the position signal of the position sensor diode 12 obtained from the reference light source 20 and the plurality of light sources 4 and 5 is zero. Adjustment shall be made when assembling and adjusting this device.
実際にウエハ2を投影レンズ1の焦点面に位置
合せする場合は、ウエハ2に対する検出光を検出
する前に、先ず、基準光源20を発光させる。す
ると、基準光源20より発せられた参照光は、レ
ンズ21を経てビームスプリツタ22により方向
を変えられた後、ポジシヨンセンサダイオード1
2の基準点上に結像する。その位置信号を検出す
ることにより、ポジシヨンセンサダイオード12
の基準点を示す電気信号(以下、基準点信号とい
う)の経時変化Δを計測することができる。ここ
で、基準光源20とレンズ21とビームスプリツ
タ22とで、ポジシヨンセンサダイオード12か
ら基準点信号を出力させる基準光照射手段を構成
している。 When actually aligning the wafer 2 with the focal plane of the projection lens 1, the reference light source 20 is first turned on to emit light before detecting the detection light for the wafer 2. Then, the reference light emitted from the reference light source 20 passes through the lens 21 and is redirected by the beam splitter 22, and then passes through the position sensor diode 1.
The image is formed on the second reference point. By detecting the position signal, the position sensor diode 12
It is possible to measure the temporal change Δ of an electrical signal indicating a reference point (hereinafter referred to as a reference point signal). Here, the reference light source 20, lens 21, and beam splitter 22 constitute a reference light irradiation means for outputting a reference point signal from the position sensor diode 12.
次に、ウエハ2に対する検出光の位置信号Sを
検出する。この時、基準点信号の経時変化Δと位
置信号Sを測定する時間間隔は、ポジシヨンセン
サダイオード12の基準点信号の経時変化が生じ
ない程の小なる時間内で行なうものとする。この
位置信号Sはポジシヨンセンサダイオード12の
基準点信号の径時変化Δを含むものであるので、
上記基準光源20を発光させた時の位置信号Δを
引いてやることにより、高精度の位置検出が可能
となる。すなわち(S−Δ)なる位置信号を用い
て、焦点位置検出装置の制御を行なつてやれば、
ポジシヨンセンサダイオード12の基準点の経時
変化による影響を含まない高精度の位置合せが可
能となる。 Next, a position signal S of the detection light relative to the wafer 2 is detected. At this time, the time interval at which the time-dependent change Δ of the reference point signal and the position signal S are measured is so small that the reference point signal of the position sensor diode 12 does not change over time. Since this position signal S includes the radial change Δ of the reference point signal of the position sensor diode 12,
By subtracting the position signal Δ when the reference light source 20 emits light, highly accurate position detection becomes possible. In other words, if the focal position detection device is controlled using the position signal (S-Δ),
Highly accurate positioning is possible without being affected by changes in the reference point of the position sensor diode 12 over time.
また、この時、検出側のレンズ系10の受光素
子側主点より、レンズ系10の焦点距離だけ受光
素子側にずらした位置にストツパ23を設けるこ
とにより、パターンのあるウエハ上のレジスト表
面より反射される反射光の高次の回折光成分をカ
ツトするものとする。このことにより、パターン
のあるウエハに対して位置検出を行う際にも、高
次の回折光成分による検出光の光重心の変化をう
けないで済む。すなわち、パターンのあるウエハ
に対しても高精度の位置検出が可能となる。 At this time, by providing a stopper 23 at a position shifted toward the light receiving element by the focal length of the lens system 10 from the principal point on the light receiving element side of the lens system 10 on the detection side, the resist surface on the patterned wafer can be It is assumed that high-order diffracted light components of the reflected light are cut out. As a result, even when performing position detection on a wafer with a pattern, the optical center of gravity of the detection light does not change due to higher-order diffracted light components. In other words, highly accurate position detection is possible even for wafers with patterns.
なお、上記干渉効果の平均化は、上記複数波長
の光を混合してウエハ上に同時に照射し、その反
射光を検出することによつても達成されるが、こ
れらの各光を、例えば時分割で照射する等によ
り、個々独立に検出し、得られた複数個の検出信
号を演算処理することにより行なつてもよい。特
に、後者の方式によると、調整誤差等による各光
ごとの照射光路のずれまでも含めて処理すること
ができる。これは、例えば予めレジストを塗布し
ない基準ウエハを用いて各光ごとに受光位置を測
定し、実際のウエハ表面位置測定に際しては演算
処理によりこれらの受光位置のずれ分を補正すれ
ばよい。 Note that the above-mentioned averaging of the interference effect can also be achieved by mixing the above-mentioned plural wavelengths of light and irradiating the same onto the wafer at the same time, and detecting the reflected light. The detection may be carried out by individually detecting the light beams by irradiating the light beams in divided portions, etc., and then performing arithmetic processing on the plurality of detection signals obtained. In particular, according to the latter method, it is possible to process even deviations in the irradiation optical path of each light due to adjustment errors and the like. This can be done by, for example, measuring the light receiving position for each light using a reference wafer to which no resist is applied in advance, and correcting the deviation of these light receiving positions by arithmetic processing when actually measuring the wafer surface position.
[発明の効果]
以上説明したように本発明によれば、波長の異
なる複数個の光を用いるようにしているため、レ
ジストを塗布したウエハ面の様に検出光束に対す
る反射面が複数面ある場合の検出光の干渉による
検出誤差が軽減し、かつこの検出光の位置を検出
するための受光素子のドリフトを、参照光を用い
て検出し補正するようにしたため、面位置を正確
にしかも再現性良くウエハ等の面位置を検出する
ことができる。[Effects of the Invention] As explained above, according to the present invention, multiple lights of different wavelengths are used, so when there are multiple reflective surfaces for the detection light beam, such as a wafer surface coated with resist, The detection error caused by the interference of the detected light is reduced, and the drift of the light receiving element used to detect the position of the detected light is detected and corrected using the reference light, making it possible to accurately and reproducibly determine the surface position. The surface position of a wafer, etc. can be detected well.
また、本発明の装置は、特に高精度の焦点検出
の要求される縮小投影露光装置の縮小投影レンズ
の焦点合せに有効である。この場合、高精度の焦
点検出が出来ため、高解像のパターンが形成可能
になり、より集積度の高い回路を作成できるとい
う効果がある。 Further, the apparatus of the present invention is particularly effective for focusing a reduction projection lens of a reduction projection exposure apparatus that requires highly accurate focus detection. In this case, since highly accurate focus detection is possible, a pattern with high resolution can be formed, and a circuit with a higher degree of integration can be created.
第1図は、本発明の一実施例に係る自動焦点制
御装置を示す構成図、第2図は、レジストを塗布
したウエハ上に低角度で光束を入射、結像させた
場合のレジスト表面およびウエハ表面での光束の
反射状態を示す断面図、第3図は、レジストを塗
布したウエハ上で反射された光束が受光素子上に
入光し結像した状態での検出光の強度の分布を示
すグラフである。
1……縮小投影レンズ、2……ウエハ、3……
ステージ、4,5,20……レーザ(または
LED)、6……ビームスプリツタ(またはハーフ
ミラー)、7,10,21……レンズ系、8,9
……ミラー、11,22……偏光板(または偏光
ビームスプリツタ)、12……ポジシヨンセンサ
ダイオード(または分割センサーダイオードもし
くはCCD)、13……光束(入射光束)、14…
…レジスト、15……光束(反射光束、16,1
7,18,19……強度分布の重心、23……ス
トツパ。
FIG. 1 is a configuration diagram showing an automatic focus control device according to an embodiment of the present invention, and FIG. 2 shows the resist surface and the image formed when a light beam is incident at a low angle on a wafer coated with resist. Figure 3, a cross-sectional view showing the state of reflection of the light beam on the wafer surface, shows the distribution of the intensity of the detected light when the light beam reflected on the wafer coated with resist enters the light receiving element and forms an image. This is a graph showing. 1... Reduction projection lens, 2... Wafer, 3...
Stage, 4, 5, 20...laser (or
LED), 6... Beam splitter (or half mirror), 7, 10, 21... Lens system, 8, 9
... Mirror, 11, 22 ... Polarizing plate (or polarizing beam splitter), 12 ... Position sensor diode (or split sensor diode or CCD), 13 ... Luminous flux (incident luminous flux), 14...
...Resist, 15... Luminous flux (Reflected luminous flux, 16, 1
7, 18, 19... center of gravity of intensity distribution, 23... stopper.
Claims (1)
知する装置において、上記ウエハーに互いに波長
が異なる複数の光を照射する投光手段と、光電変
換手段と、上記光電変換手段の受光面上の所定位
置に基準光を照射して上記光電変換手段から基準
信号を出力させる基準光照射手段と、上記投光手
段による光照射により上記ウエハーで生じる反射
光を上記光電変換手段の受光面上に集光して上記
光電変換手段から上記所定位置に対する上記反射
光の集光位置に応じた位置信号を出力させる集光
光学系とを有し、上記ウエハーの面位置に応じて
上記反射光の集光位置が変化するよう上記投光手
段と上記集光光学系を配置し、上記光電変換手段
からの上記基準信号と上記位置信号とに基づいて
上記ウエハーの面位置を検知することを特徴とす
る面位置検知装置。1. In an apparatus for detecting the surface position of a wafer coated with resist, a light projecting means for irradiating the wafer with a plurality of lights having different wavelengths, a photoelectric conversion means, and a predetermined position on the light receiving surface of the photoelectric conversion means. a reference light irradiation means for irradiating a reference light onto the wafer and outputting a reference signal from the photoelectric conversion means; a condensing optical system for outputting a position signal from the photoelectric conversion means according to a condensing position of the reflected light with respect to the predetermined position; The surface position detection is characterized in that the light projecting means and the light condensing optical system are arranged so as to change, and the surface position of the wafer is detected based on the reference signal from the photoelectric conversion means and the position signal. Device.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60281126A JPS62140420A (en) | 1985-12-16 | 1985-12-16 | Position detector of surface |
US07/657,950 US5162642A (en) | 1985-11-18 | 1991-02-21 | Device for detecting the position of a surface |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60281126A JPS62140420A (en) | 1985-12-16 | 1985-12-16 | Position detector of surface |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS62140420A JPS62140420A (en) | 1987-06-24 |
JPH0217929B2 true JPH0217929B2 (en) | 1990-04-24 |
Family
ID=17634724
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60281126A Granted JPS62140420A (en) | 1985-11-18 | 1985-12-16 | Position detector of surface |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62140420A (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NL9100410A (en) * | 1991-03-07 | 1992-10-01 | Asm Lithography Bv | IMAGE DEVICE EQUIPPED WITH A FOCUS ERROR AND / OR TILT DETECTION DEVICE. |
JP2016015371A (en) * | 2014-07-01 | 2016-01-28 | ウシオ電機株式会社 | Thickness measurement apparatus, thickness measurement method and exposure apparatus |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5760205A (en) * | 1980-09-30 | 1982-04-12 | Jeol Ltd | Exposure be electron beam |
JPS57139607A (en) * | 1981-02-23 | 1982-08-28 | Hitachi Ltd | Position measuring equipment |
-
1985
- 1985-12-16 JP JP60281126A patent/JPS62140420A/en active Granted
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5760205A (en) * | 1980-09-30 | 1982-04-12 | Jeol Ltd | Exposure be electron beam |
JPS57139607A (en) * | 1981-02-23 | 1982-08-28 | Hitachi Ltd | Position measuring equipment |
Also Published As
Publication number | Publication date |
---|---|
JPS62140420A (en) | 1987-06-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5162642A (en) | Device for detecting the position of a surface | |
JP6712349B2 (en) | Alignment system | |
US4356392A (en) | Optical imaging system provided with an opto-electronic detection system for determining a deviation between the image plane of the imaging system and a second plane on which an image is to be formed | |
US5144363A (en) | Apparatus for and method of projecting a mask pattern on a substrate | |
US4748333A (en) | Surface displacement sensor with opening angle control | |
JPH0348706A (en) | Position detecting method | |
JP2000081320A (en) | Face position detector and fabrication of device employing it | |
JPH1022213A (en) | Position detector and manufacture of device using it | |
JP2756331B2 (en) | Interval measuring device | |
JPH0743245B2 (en) | Alignment device | |
JP2003007601A (en) | Method of measuring interval between two objects, method of exposing semiconductor using the same, interval measuring instrument, and semiconductor exposure system | |
JPS62140418A (en) | Position detector of surface | |
JPS6336526A (en) | Wafer exposure equipment | |
JPH0217929B2 (en) | ||
JP2796347B2 (en) | Projection exposure method and apparatus | |
JP3265031B2 (en) | Surface shape detection method and projection exposure apparatus | |
JPH0997758A (en) | Aligning method | |
JP2698446B2 (en) | Interval measuring device | |
JPS62140419A (en) | Position detector of surface | |
JPS61223604A (en) | Gap measuring instrument | |
JPH07311009A (en) | Position detection device | |
JPH05182896A (en) | Object-position detection apparatus | |
JPH0412523A (en) | Position detector | |
JPH01180405A (en) | Inclination detecting method | |
JPH021503A (en) | Position detecting device |