JPS62230665A - Composition for manufacture of multi-layer wire distributionsubstrate ceramics and manufacture of same - Google Patents
Composition for manufacture of multi-layer wire distributionsubstrate ceramics and manufacture of sameInfo
- Publication number
- JPS62230665A JPS62230665A JP61071859A JP7185986A JPS62230665A JP S62230665 A JPS62230665 A JP S62230665A JP 61071859 A JP61071859 A JP 61071859A JP 7185986 A JP7185986 A JP 7185986A JP S62230665 A JPS62230665 A JP S62230665A
- Authority
- JP
- Japan
- Prior art keywords
- weight
- ceramic
- ceramics
- powder
- manufacture
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000919 ceramic Substances 0.000 title claims description 29
- 239000000203 mixture Substances 0.000 title claims description 15
- 238000004519 manufacturing process Methods 0.000 title claims description 10
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 34
- 239000000843 powder Substances 0.000 claims description 30
- 239000005388 borosilicate glass Substances 0.000 claims description 15
- 239000010949 copper Substances 0.000 claims description 13
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 12
- 229910052802 copper Inorganic materials 0.000 claims description 12
- 239000012298 atmosphere Substances 0.000 claims description 10
- 238000010304 firing Methods 0.000 claims description 10
- 239000004020 conductor Substances 0.000 claims description 9
- 229910021489 α-quartz Inorganic materials 0.000 claims description 8
- 239000000377 silicon dioxide Substances 0.000 claims description 6
- 238000000034 method Methods 0.000 claims description 5
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 claims description 5
- 229910052814 silicon oxide Inorganic materials 0.000 claims description 4
- 239000012671 ceramic insulating material Substances 0.000 claims description 3
- 229910052906 cristobalite Inorganic materials 0.000 claims description 3
- 229910052905 tridymite Inorganic materials 0.000 claims description 3
- 239000004065 semiconductor Substances 0.000 description 10
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 6
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 5
- 239000000758 substrate Substances 0.000 description 5
- 239000011521 glass Substances 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 238000010292 electrical insulation Methods 0.000 description 3
- 239000010931 gold Substances 0.000 description 3
- 238000002844 melting Methods 0.000 description 3
- 230000008018 melting Effects 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 239000011787 zinc oxide Substances 0.000 description 3
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- DOIRQSBPFJWKBE-UHFFFAOYSA-N dibutyl phthalate Chemical compound CCCCOC(=O)C1=CC=CC=C1C(=O)OCCCC DOIRQSBPFJWKBE-UHFFFAOYSA-N 0.000 description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 238000009413 insulation Methods 0.000 description 2
- 238000001465 metallisation Methods 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- 239000002023 wood Substances 0.000 description 2
- RUMACXVDVNRZJZ-UHFFFAOYSA-N 2-methylpropyl 2-methylprop-2-enoate Chemical compound CC(C)COC(=O)C(C)=C RUMACXVDVNRZJZ-UHFFFAOYSA-N 0.000 description 1
- 101100348017 Drosophila melanogaster Nazo gene Proteins 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 229910052810 boron oxide Inorganic materials 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- JKWMSGQKBLHBQQ-UHFFFAOYSA-N diboron trioxide Chemical compound O=BOB=O JKWMSGQKBLHBQQ-UHFFFAOYSA-N 0.000 description 1
- 238000007606 doctor blade method Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000010365 information processing Effects 0.000 description 1
- -1 methyl ethyl Chemical group 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000004014 plasticizer Substances 0.000 description 1
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 1
- 239000004926 polymethyl methacrylate Substances 0.000 description 1
- 229910052573 porcelain Inorganic materials 0.000 description 1
- 239000010970 precious metal Substances 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- ZFZQOKHLXAVJIF-UHFFFAOYSA-N zinc;boric acid;dihydroxy(dioxido)silane Chemical compound [Zn+2].OB(O)O.O[Si](O)([O-])[O-] ZFZQOKHLXAVJIF-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Compositions Of Oxide Ceramics (AREA)
- Production Of Multi-Layered Print Wiring Board (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は、半導体素子の実装、特にその高密度実装に用
いられる多層配線基板のセラミックス絶縁材料に関し、
その製造用組成物及びセラミックスの製造方法に関する
。Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a ceramic insulating material for a multilayer wiring board used for mounting semiconductor elements, particularly for high-density mounting thereof.
The present invention relates to a composition for producing the same and a method for producing ceramics.
(従来の技術)
従来、半導体素子の実装に用いられる多層配線基板とし
て、アルミナが卓越した絶縁性、熱伝導性、安定性及び
機械的強度を有することから、広く使用されているが、
近年、情報処理装置の高性能化に伴い、これを構成する
半導体素子も高集績化が急激に進み、そのためこれら半
導体素子を収納する半導体バラゲージや半導体素子を実
装する多層配線基板においても、その内部に形成された
配線パターンの信号伝搬速度を高速度化できるものが必
要となってきた。(Prior Art) Conventionally, alumina has been widely used as a multilayer wiring board used for mounting semiconductor devices because of its excellent insulation, thermal conductivity, stability, and mechanical strength.
In recent years, as the performance of information processing devices has improved, the semiconductor elements that make up these devices have also rapidly become more integrated, and as a result, semiconductor packages that house these semiconductor devices and multilayer wiring boards that mount semiconductor devices are also becoming increasingly expensive. There is a need for something that can increase the signal propagation speed of the formed wiring pattern.
この配線パターンの信号伝搬速度は、半導体装置ケージ
や多層配線基板等の半導体素子用実装基板を構成する材
料の誘電率によって決定されるもので、従来、電気絶縁
性に優れ、かつ機械的強度が大きいとされるアルミナ(
Al203)の場合、誘電率が9〜10と大きいため、
信号伝搬速度が極めて遅いという欠点を有していた。The signal propagation speed of this wiring pattern is determined by the dielectric constant of the material that makes up the semiconductor device cage, multilayer wiring board, and other semiconductor element mounting boards. Alumina, which is said to be large (
In the case of Al203), the dielectric constant is as large as 9 to 10, so
It had the disadvantage that the signal propagation speed was extremely slow.
このため、本発明者らは前に特願昭60−185041
号において、低誘電率を有し、電気絶縁性に優れかつ、
低温焼成が可能である、シリカ粉末と酸化亜鉛ほう珪酸
系ガラス粉末の混合物を焼成して得られるセラミックス
を提供した。For this reason, the present inventors previously applied for patent application No. 60-185041.
In this issue, it has a low dielectric constant, excellent electrical insulation, and
The present invention provides ceramics obtained by firing a mixture of silica powder and zinc oxide borosilicate glass powder, which can be fired at low temperatures.
またその後特願昭60−277592号において、その
改良発明として、前記混合物にアルミナを添加して得ら
れる、低誘電率で、電気絶縁性に優れ、低温焼成が可能
でかつ、機械的強度の優れたセラミックスを提供した。Later, in Japanese Patent Application No. 60-277592, as an improved invention, a material with a low dielectric constant, excellent electrical insulation, capable of low-temperature firing, and excellent mechanical strength was disclosed by adding alumina to the above mixture. provided ceramics.
そして、これら発明のセラミックスの有利性の1つとし
て、低温焼結性であるため、銅(cu>、金(Au)、
銀(Ag)等の電極用低抵抗導体が容易にメタライズさ
れる点がある。One of the advantages of the ceramics of these inventions is that they are sinterable at low temperatures, so copper (cu>, gold (Au),
Low resistance conductors for electrodes such as silver (Ag) are easily metalized.
(発明が解決しようとする問題点)
しかしながら、前記2つの発明では、還元雰囲気中で焼
成しようとすると、含有成分の酸化亜鉛ほう珪酸ガラス
中の亜鉛が還元され易く、その結果得られるセラミック
スの体積固有抵抗が小さくなり、磁器特性が劣化するこ
ととなる。(Problems to be Solved by the Invention) However, in the above two inventions, when firing is attempted in a reducing atmosphere, the zinc contained in the zinc oxide borosilicate glass is easily reduced, and as a result, the volume of the resulting ceramic is The specific resistance becomes small and the porcelain properties deteriorate.
一方、電極用低抵抗導体のメタライズにおいて、金、銀
のような貴金属でなく、安価な銅を採用しようとすると
、銅は酸化されやすいものであることから、焼成雰囲気
は還元雰囲気を採用しなければならない。On the other hand, when using cheap copper instead of precious metals such as gold and silver in metallizing low-resistance conductors for electrodes, a reducing firing atmosphere must be used because copper is easily oxidized. Must be.
したがってこれらの間には相反する製造条件があり、そ
れらを両立させることが難しい。Therefore, there are conflicting manufacturing conditions between these, and it is difficult to make them compatible.
(問題点を解決するための手段)
本発明者らは上記の問題に鑑み研究の結果、本発明を成
したもので、銅の還元雰囲気メタライズが可能で、低誘
電率でかつ電気絶縁性(磁器特性)に優れた多層配線基
板用セラミックスを提供するものである。(Means for Solving the Problems) The present inventors have completed the present invention as a result of research in view of the above problems, and it is possible to metalize copper in a reducing atmosphere, and it has a low dielectric constant and an electrically insulating property ( The present invention provides ceramics for multilayer wiring boards with excellent ceramic properties.
すなわち本発明は、(1)酸化珪素粉末が501量%以
下、ほう珪酸ガラス粉末が40〜60重量%及び酸化ア
ルミニウム粉末が60重量%以下とからなる多層配線基
板セラミックス製造用組成物及び(2)セラミックス絶
縁材料と導体としての少なくとも銅を含む導体とが交互
に積層されてなる多層配線基板セラミックスの製造法で
あって、α−石英、トリジマイト、クリストバライト又
は石英ガラスのうちの1種又は2種以上のシリカ粉末が
50重置火以下と、ほう珪酸ガラス粉末が40〜60重
量%及び酸化アルミニウム粉末が60重量%以下とから
なる混合物を、還元雰囲気中、850〜1000℃で焼
成することを特徴とする多層配線基板セラミックスを製
造する方法である。That is, the present invention provides (1) a composition for producing multilayer wiring board ceramics comprising 501% by weight or less of silicon oxide powder, 40 to 60% by weight of borosilicate glass powder, and 60% by weight or less of aluminum oxide powder, and (2) ) A method for manufacturing a multilayer wiring board ceramic in which a ceramic insulating material and a conductor containing at least copper as a conductor are alternately laminated, the method comprising one or two of α-quartz, tridymite, cristobalite, or quartz glass. A mixture consisting of 50 times or less of the above silica powder, 40 to 60% by weight of borosilicate glass powder, and 60% by weight or less of aluminum oxide powder is fired at 850 to 1000°C in a reducing atmosphere. This is a method of manufacturing a multilayer wiring board ceramic with characteristics.
本発明によれば、低誘電率のセラミックスに低抵抗の銅
導体からなる電極を配して、磁器特性が良く、配線基板
内部での信号伝搬遅延時間が極めて可い、低雑音で高周
波パルス追随性に優れた高密度半導体素子実装セラミッ
ク多層配線基板を製作することができるのである。According to the present invention, an electrode made of a low-resistance copper conductor is arranged on a ceramic with a low dielectric constant, and the ceramic characteristics are good, the signal propagation delay time inside the wiring board is extremely short, and high-frequency pulse tracking is achieved with low noise. This makes it possible to manufacture a ceramic multilayer wiring board with high density semiconductor element mounting that has excellent properties.
次に、本発明で用いられる各粉末成分について説明する
。Next, each powder component used in the present invention will be explained.
酸化珪素粉末については、その形層はα−石英、トリジ
マイト、クリストバライトあるいは石英ガラスの粉末が
使用できるが、この配合量が50重I%を越えると本発
明に係る焼結セラミックスの強度が劣化する欠点が生じ
る。Regarding the silicon oxide powder, α-quartz, tridymite, cristobalite, or quartz glass powder can be used as the shape layer, but if the blending amount exceeds 50% by weight, the strength of the sintered ceramic according to the present invention will deteriorate. A drawback arises.
ほう珪酸ガラスについては、その成分組成は主に810
2:65〜73重I%、B20.:26〜30重量%、
K2O:0.4〜1.2重量%、 L :xO:0.4
〜1.2重量%からなり、更に0.5重量%以下のAl
103、Z r O2、N azo 、 P bo 、
F exO3、CaOのうちの1種又は2種以上を含有
してもよい、この製造法は上記組成になる原料温き物を
十分に熔融し急冷してガラス化した後、微粉砕すること
によって行なわれる。Regarding borosilicate glass, its component composition is mainly 810
2: 65-73 weight I%, B20. :26-30% by weight,
K2O: 0.4 to 1.2% by weight, L:xO: 0.4
~1.2% by weight and further 0.5% by weight or less Al
103, Z r O2, Nazo, P bo,
It may contain one or more of FexO3 and CaO.This production method involves sufficiently melting the hot raw material having the above composition, rapidly cooling it to vitrify it, and then finely pulverizing it. It is done.
該ほう珪酸ガラス粉末の配合量は、40重i%より少な
いと、本発明に係るセラミックスの誘電率が好適な値よ
り高くなり、焼結温度も高くなってしまい銅のメタライ
ズに不適当となり、また60重量%を越えるとセラミッ
クスの強度が多層配線基板として不十分なものに低下し
てしまう。If the blending amount of the borosilicate glass powder is less than 40% by weight, the dielectric constant of the ceramic according to the present invention will be higher than a suitable value, and the sintering temperature will also be high, making it unsuitable for copper metallization. Moreover, if it exceeds 60% by weight, the strength of the ceramic will decrease to an insufficient level as a multilayer wiring board.
なおガラス粉末の添加量はそれが増加するにつれて、セ
ラミックス緻密焼結性が得られる温度は低下する。Note that as the amount of glass powder added increases, the temperature at which dense ceramic sinterability is obtained decreases.
酸化アルミニウムについては、60重量%を越えると、
本発明に係るセラミックスの誘電率が高くなって信号伝
搬速度がかなり遅くなり、また焼成温度も高くなり、銅
のメタライズに適当な温度を越えてしまう。Regarding aluminum oxide, if it exceeds 60% by weight,
The dielectric constant of the ceramic according to the present invention is high, so the signal propagation speed is considerably slowed, and the firing temperature is also high, exceeding a temperature suitable for copper metallization.
以上のことから、本発明に係るセラミックスの製造用組
成物は5i0250重量%以下、ほう珪酸ガラス40〜
60重量%、A I 20360 m 1%以下の範囲
からなるものとなる。なお、実験の結果、更に好ましい
ものは、5iOz35ffiJt%以下、ほう珪酸ガラ
ス40〜601ii%、AI□0310〜60重量%の
範囲からなるものであることを確認している。From the above, the composition for producing ceramics according to the present invention contains 5i0250% by weight or less, borosilicate glass 40~
60% by weight, A I 20360 m 1% or less. As a result of experiments, it has been confirmed that more preferable materials are 5iOz35ffiJt% or less, borosilicate glass 40 to 601ii%, and AI□0310 to 60% by weight.
本発明の粉末混合物を焼成して得られるセラミックスの
組成については、このセラミックス焼結体はガラス相と
結晶相とからなり、結晶相は主にα−石英結晶からなる
。なお、該α−石英結晶は焼結体全体の約2〜50重量
%を占めている。Regarding the composition of the ceramic obtained by firing the powder mixture of the present invention, this ceramic sintered body consists of a glass phase and a crystalline phase, and the crystalline phase mainly consists of α-quartz crystal. Note that the α-quartz crystal accounts for about 2 to 50% by weight of the entire sintered body.
したがって本発明においては、前記ほう珪酸ガラス粉末
と酸化珪素粉末及び/′又は酸(ヒアルミニラム粉末か
らなる混合物を850〜1000°Cの範囲で焼成し、
結晶相としてα−石英を含むようになされる。 このよ
うな範囲で得られる基板は、安価な銅導体を接合すべく
、還元雰囲気中でメタライズ焼成しても、得られるセラ
ミックスは高い電気絶縁性を保持し、かつ信号伝搬遅延
時間が短縮された低誘電率を有するものとなる。Therefore, in the present invention, a mixture consisting of the borosilicate glass powder, silicon oxide powder and/or acid (hyaluminum powder) is fired in the range of 850 to 1000°C,
It is made to contain α-quartz as a crystalline phase. Even when substrates obtained in this range are metallized and fired in a reducing atmosphere to bond inexpensive copper conductors, the resulting ceramics maintain high electrical insulation properties and shorten signal propagation delay time. It has a low dielectric constant.
さらに、結晶化などの熱処理工程を施すことなく、比較
的短時間での焼成が可能となる0例えば気密性を改良し
た厚膜ハイブリットIC用雰囲気ベルト炉、850〜1
000℃、30分前後で焼成できる。Furthermore, the atmosphere belt furnace for thick film hybrid ICs with improved airtightness, 850-1, enables firing in a relatively short time without performing heat treatment processes such as crystallization.
Can be fired at 000℃ for around 30 minutes.
(実施例)
シリカ粉末としては、平均粒径1〜5μ翔の珪石粉(α
−石英)を用いた。(Example) As the silica powder, silica powder (α
-quartz) was used.
ほう珪酸ガラス粉末としては、例えば主成分として酸化
ほう素28置火%と石英69重量%、(その他アルカリ
成分など3重量%)からなる温き物を十分に熔融し、急
冷してガラス化した後、粉砕して平均粒径1〜20μm
、好ましくは5μm以下としたものを使用した。 この
ようにして得られたガラス粉末に珪石(α−石英)粉末
とアルミナ粉末とを、それぞれ表1に示すように秤量し
、これにρ1えばトルエン、メチルエチルゲトン等の適
当な溶剤と、ポリイソブチルメタアクリレート、ポリメ
チルメタアクリレート等の易熱分解性の有機結合剤、及
びジブチルフタレート等の適宜可塑剤を加えて混きする
。混合終了後、ドクターブレード法により厚さ0.2m
mのグリーンシートに成形し、これを印刷配線に適当な
150IIl11×15011IIIに切断し、2枚用
意した。Borosilicate glass powder can be obtained by sufficiently melting a hot product consisting of 28% boron oxide as main components, 69% by weight of quartz (3% by weight of other alkaline components, etc.), and rapidly cooling it to vitrify it. After that, it is pulverized to an average particle size of 1 to 20 μm.
, preferably 5 μm or less. To the glass powder thus obtained, silica (α-quartz) powder and alumina powder were weighed as shown in Table 1, and a suitable solvent such as toluene, methyl ethyl getone, etc. A thermally decomposable organic binder such as isobutyl methacrylate or polymethyl methacrylate, and an appropriate plasticizer such as dibutyl phthalate are added and mixed. After mixing, the thickness is 0.2m using the doctor blade method.
This was formed into a green sheet with a size of 1.5 m, and this was cut into a size of 150 II l 11 x 15011 III suitable for printed wiring, and two sheets were prepared.
次に1枚のグリーンシート面にCuからなる導体ペース
トをスクリーン印刷する。そしてこれに、もう一枚のグ
リーンシートを重ね、前記導体ペーストを決着するごと
くして積層、熱圧着する。Next, a conductive paste made of Cu is screen printed on the surface of one green sheet. Then, another green sheet is placed on top of this, and the conductive paste is laminated and bonded by thermocompression.
これを、窒素雰囲気中500℃で仮焼成した後、還元雰
囲気中850〜1000℃で0.3〜1゜0時間本焼成
して、基板翼料(試料番号第1〜第4号)を得た。なお
、比較のためガラス粉末として、ほう珪酸ガラスに代え
て酸化亜鉛ほう珪酸ガラスを用いて得られた基板試料(
試料番号第5号)もf%製した。This was pre-baked at 500°C in a nitrogen atmosphere, and then main fired for 0.3-1°0 hours at 850-1000°C in a reducing atmosphere to obtain substrate wing materials (sample numbers 1 to 4). Ta. For comparison, a substrate sample obtained by using zinc oxide borosilicate glass instead of borosilicate glass as the glass powder (
Sample No. 5) was also prepared with f%.
このようにして得られた、基板試料の各種特性を第1表
に記載した。また、その機械強度と誘電率の状態を第1
図にグラフ化して示した。Various properties of the substrate samples thus obtained are listed in Table 1. In addition, the state of mechanical strength and dielectric constant is
This is shown graphically in the figure.
これらの結果をみても判るとおり、3H元雰囲気焼成を
採用した際において、本発明によれば得られるセラミッ
クスの木精固有抵抗は1014を越える非常に高い値を
保持するのに対し、酸fヒ亜鉛ほう珪酸ガラスを用いた
場きは木精固有抵抗が本発明−による場会の100分の
1以下に低下している。As can be seen from these results, when 3H atmosphere firing is employed, the wood grain resistivity of the ceramic obtained according to the present invention maintains a very high value of over 1014, whereas acid f When zinc borosilicate glass is used, the specific resistance of wood grain is reduced to 1/100 or less of that of the case according to the present invention.
(発明の効果)
上記のとおり、本発明によれば、得られる半導体素子実
装用配線基板は、本漬固有抵抗がIQ+4ΩcI11を
越えるものであって絶縁性が良好であり、またその誘電
率は7以下であって信号伝搬時間も速いものとなる。(Effects of the Invention) As described above, according to the present invention, the wiring board for mounting a semiconductor element obtained has a resistivity exceeds IQ+4ΩcI11, has good insulation properties, and has a dielectric constant of 7. or less, and the signal propagation time is also fast.
そして、特に本発明によれば、850〜1000℃の低
温で還元雰囲気焼成による銅導体メタライズが可能とな
るので、比較的低融点の銅配線導水が熔融されることな
く、セラミック基板に確実にメタライズされるものとな
り、ゴス1〜的に非常に有利である。In particular, according to the present invention, it is possible to metalize copper conductors by firing in a reducing atmosphere at a low temperature of 850 to 1000 degrees Celsius, so that copper conductive water with a relatively low melting point is not melted and the ceramic substrate can be reliably metalized. This is very advantageous for Goss.
第1図は、本発明実施例の組成と抗折強度、誘電率の関
係を示すグラフである。FIG. 1 is a graph showing the relationship between the composition, bending strength, and dielectric constant of Examples of the present invention.
Claims (2)
粉末が40〜60重量%及び酸化アルミニウム粉末が6
0重量%以下とからなる多層配線基板セラミックス製造
用組成物。(1) Silicon oxide powder is 50% by weight or less, borosilicate glass powder is 40-60% by weight, and aluminum oxide powder is 6% by weight.
A composition for producing multilayer wiring board ceramics comprising 0% by weight or less.
銅を含む導体とが交互に積層されてなる多層配線基板セ
ラミックスの製造法であって、α−石英、トリジマイト
、クリストバライト又は石英ガラスのうちの1種又は2
種以上のシリカ粉末が50重量%以下と、ほう珪酸ガラ
ス粉末が40〜60重量%及び酸化アルミニウム粉末が
60重量%以下とからなる混合物を、還元雰囲気中、8
50〜1000℃で焼成することを特徴とする多層配線
基板セラミックスを製造する方法。(2) A method for manufacturing a multilayer wiring board ceramic in which a ceramic insulating material and a conductor containing at least copper as a conductor are alternately laminated, the ceramic being one of α-quartz, tridymite, cristobalite, or quartz glass, or 2
A mixture consisting of 50% by weight or less of silica powder, 40 to 60% by weight of borosilicate glass powder, and 60% by weight or less of aluminum oxide powder was heated to 8% by weight in a reducing atmosphere.
A method for manufacturing multilayer wiring board ceramics, characterized by firing at 50 to 1000°C.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61071859A JPS62230665A (en) | 1986-03-29 | 1986-03-29 | Composition for manufacture of multi-layer wire distributionsubstrate ceramics and manufacture of same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61071859A JPS62230665A (en) | 1986-03-29 | 1986-03-29 | Composition for manufacture of multi-layer wire distributionsubstrate ceramics and manufacture of same |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS62230665A true JPS62230665A (en) | 1987-10-09 |
Family
ID=13472668
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61071859A Pending JPS62230665A (en) | 1986-03-29 | 1986-03-29 | Composition for manufacture of multi-layer wire distributionsubstrate ceramics and manufacture of same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62230665A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11171640A (en) * | 1997-12-09 | 1999-06-29 | Murata Mfg Co Ltd | Substrate composition sintered at low temperature |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60254697A (en) * | 1984-05-31 | 1985-12-16 | 富士通株式会社 | Method of producing multilayer ceramic circuit board |
-
1986
- 1986-03-29 JP JP61071859A patent/JPS62230665A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60254697A (en) * | 1984-05-31 | 1985-12-16 | 富士通株式会社 | Method of producing multilayer ceramic circuit board |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11171640A (en) * | 1997-12-09 | 1999-06-29 | Murata Mfg Co Ltd | Substrate composition sintered at low temperature |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3426926B2 (en) | Wiring board and its mounting structure | |
JPS6244879B2 (en) | ||
JP2598872B2 (en) | Glass ceramic multilayer substrate | |
JP3527038B2 (en) | Low-temperature fired ceramics, wiring board made of the ceramics | |
JP2695587B2 (en) | Glass ceramics composition | |
JP3346693B2 (en) | Glass-ceramic sintered body and wiring board using the same | |
JPS62230665A (en) | Composition for manufacture of multi-layer wire distributionsubstrate ceramics and manufacture of same | |
JPH0617250B2 (en) | Glass ceramic sintered body | |
JP3523590B2 (en) | Low temperature fired porcelain composition, low temperature fired porcelain, and wiring board using the same | |
JP3559407B2 (en) | Glass ceramic sintered body and multilayer wiring board using the same | |
JP2892163B2 (en) | Low temperature firing glass ceramic body | |
JP3323074B2 (en) | Wiring board, package for housing semiconductor element and its mounting structure | |
JP3125500B2 (en) | Ceramic substrate | |
JP3339999B2 (en) | Wiring board, semiconductor device storage package using the same, and mounting structure thereof | |
JP3450998B2 (en) | Wiring board and its mounting structure | |
JP2000264719A (en) | Porcelain composition, porcelain and circuit board using same | |
JP2002020162A (en) | Glass ceramic sintered body and wiring board using the same | |
JP3420450B2 (en) | Package for storing semiconductor elements | |
JP3450167B2 (en) | Package for storing semiconductor elements | |
JP3193275B2 (en) | Wiring board, semiconductor device storage package using the same, and mounting structure thereof | |
JP4044752B2 (en) | Low temperature fired porcelain composition and method for producing low temperature fired porcelain | |
JPS6131347A (en) | Ceramic composition | |
JP3314131B2 (en) | Wiring board | |
JPH06279097A (en) | Production of sintered glass ceramic and sintered glass ceramic | |
JP3439962B2 (en) | Package for storing semiconductor elements |