JPS62229933A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS62229933A
JPS62229933A JP7124386A JP7124386A JPS62229933A JP S62229933 A JPS62229933 A JP S62229933A JP 7124386 A JP7124386 A JP 7124386A JP 7124386 A JP7124386 A JP 7124386A JP S62229933 A JPS62229933 A JP S62229933A
Authority
JP
Japan
Prior art keywords
ion beam
semiconductor substrate
region
thin film
impurity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7124386A
Other languages
Japanese (ja)
Inventor
Shoji Yadori
章二 宿利
Yasuo Wada
恭雄 和田
Takaaki Hagiwara
萩原 隆旦
Kazuhiro Komori
小森 和宏
Masao Tamura
田村 誠男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP7124386A priority Critical patent/JPS62229933A/en
Publication of JPS62229933A publication Critical patent/JPS62229933A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To form a fine impurity introduced region in a semiconductor substrate without deteriorating the finness of a converged ion beam by a method wherein the converged ion beam which is not vertical to the substrate surface is applied to a thin film with a stepped part formed on the semiconductor substrate. CONSTITUTION:A thin film 2 is formed on a semiconductor substrate 1 so as to have the side plane 2' of its stepped part vertical to the surface of the semiconductor substrate 1. Then a converged ion beam 3 which have an incident angle theta of an acute angle against the surface of the semiconductor substrate 1 is applied and scanned parallel to the substrate surface to the direction of an arrow so as to cross the side plane 2' to form an impurity introduced region 4. If the projected range of an ion is denoted by Rp, the depth X of the formed impurity introduced region 4 and the penetration distance DELTA of the region 4 under the thin film 2 are expressed by X = Rp.cos theta and thetaL = Rp.sin theta. Therefore, by scanning the ion beam parallel to the semiconductor substrate surface while being applied with the acute incident angle against the substrate, impurity can be introduced into a three-dimensional minute region under the thin film.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、半導体装置の製造方法に係り、特に、マスク
を用いない集束イオンビームによるイオン打込みに採用
して好適な半導体装置の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for manufacturing a semiconductor device, and more particularly, to a method for manufacturing a semiconductor device suitable for use in ion implantation using a focused ion beam without using a mask. .

〔従来の技術〕[Conventional technology]

従来、イオン打込み法によって半導体基板内へ不純物層
を形成する場合には、レジスト、シリコン酸化膜(Si
n、)あるいは加工後のゲート材料をマスクとして、1
〜数口のビーム径の不純物イオンビームを照射し、所望
領域のみに不純物層を形成していた。ところが、近年、
″日本応用物理学会誌(Japanese Journ
al of AppliedP hysics)”、第
22巻、第5号、1983、PL287に報告されてい
るように、微細に集束した不純物のイオンビームを用い
て、半導体基板内へイオン打込みを行い、ビーム径程度
の大きさを有する微細な不純物導入領域を形成する技術
が開発されつつある。これは、例えば、ボロン(B)や
ヒ素(A s )あるいはシリコン(Si)、ベリリウ
ム(Ba)などのイオンを高輝度で引き出すことが可能
な液体金属イオン源の開発が進められたことによって、
それらのイオンを容易に0.1−以下に集束することが
可能となってきたためである。
Conventionally, when forming an impurity layer in a semiconductor substrate by ion implantation, resist, silicon oxide film (Si
) or using the processed gate material as a mask, 1
An impurity ion beam with a beam diameter of ~ several beams was irradiated to form an impurity layer only in the desired region. However, in recent years,
``Japanese Journal of Applied Physics
As reported in "Al of Applied Physics)", Volume 22, No. 5, 1983, PL287, ions are implanted into a semiconductor substrate using a finely focused impurity ion beam, and the diameter of the beam is approximately Techniques are being developed to form fine impurity-introduced regions with a size of With the development of liquid metal ion sources that can be extracted by brightness,
This is because it has become possible to easily focus these ions to 0.1 or less.

上記の集束イオンビームを用いるならば、0.1−以下
の微細な領域に不純物を導入することが可能であるが、
しかし半導体素子の製造に適用する場合には、全製造工
程を経過するうちに、微細な領域に打込まれた不純物原
子が、その後の高温熱処理工程中に横方向に拡散し、そ
の微細性が損なわれてしまうという問題を生じる。この
不純物の横方向拡散を抑制するひとつの手段は、集束イ
オンビームによるイオン打込みを全製造工程の中ででき
るだけ後の方で行うことである。しかし、その場合は、
半導体基板上にすでに形成されたSun、膜、ポリシリ
コン(Poly Si)膜、リンガラス(p s a)
等の薄膜あるいはそれらの積層膜を通してイオンを打込
まねばならず、そのため高加速電圧の集束イオンビーム
が必要とされるばかりか、上記の薄膜中を通過する際に
イオンは膜の構成原子と衝突して散乱され、実効的にビ
ーム径は拡がることになる。この薄膜中でのイオンビー
ムの拡がりは、通常、膜厚程度にも及ぶことが知られて
おり、集束イオンビームの微細性が損なわれる。
If the above-mentioned focused ion beam is used, it is possible to introduce impurities into a fine region of 0.1- or less,
However, when applied to the manufacturing of semiconductor devices, impurity atoms implanted in fine regions are diffused laterally during the subsequent high-temperature heat treatment process during the entire manufacturing process, and the fineness is degraded. This causes the problem of damage. One way to suppress this lateral diffusion of impurities is to perform ion implantation using a focused ion beam as late as possible in the entire manufacturing process. But in that case,
Sun, film, polysilicon (PolySi) film, phosphorus glass (PSA) already formed on the semiconductor substrate
Ions must be implanted through a thin film such as or a laminated film thereof, which not only requires a focused ion beam with a high acceleration voltage, but also allows the ions to collide with the constituent atoms of the film as they pass through the thin film. The beam is scattered, effectively expanding the beam diameter. It is known that the spread of the ion beam in this thin film usually extends to the extent of the film thickness, which impairs the fineness of the focused ion beam.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明者らは先に、集束イオンビームによって形成した
ゲート端下部の微細な不純物導入領域を有するFA (
Floatinl(Gate AvalancheI 
njection) M OSメモリを提案した(特開
昭60−53083)。ところが上述した原因によって
、集束イオンビームによる導入不純物が横方向へ拡がり
、その結果、FAMO8のしきい値電圧が異常に高くな
り、FAMOSメモリの書き込み電圧を高くさせてしま
うという問題を生じていた。
The present inventors previously developed an FA (
Floatinl(Gate AvalancheI
(Japanese Patent Application Laid-Open No. 60-53083). However, due to the above-mentioned causes, the impurities introduced by the focused ion beam spread laterally, resulting in an abnormally high threshold voltage of the FAMO 8, causing a problem in which the write voltage of the FAMOS memory becomes high.

本発明の目的は、従来技術での上記した問題を解決し、
集束イオンビームの微細性を損なうことなく半導体基板
内に微細な不純物導入領域を形成することのできる半導
体装置の製造方法を提供することにある。
The purpose of the present invention is to solve the above-mentioned problems in the prior art,
An object of the present invention is to provide a method for manufacturing a semiconductor device that can form a fine impurity-introduced region in a semiconductor substrate without impairing the fineness of a focused ion beam.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的は、(イ)半導体基板上に段差を有する複数の
薄膜を形成する工程と、(ロ)半導体基板表面に照射す
るイオンビームを基板表面に対して非垂直とし、かつ、
上記各薄膜の段差部を順次横切る方向に平行に走査する
工程とを含む製造方法とすることにより、達成される。
The above objectives are (a) forming a plurality of thin films having steps on a semiconductor substrate; (b) making the ion beam irradiated onto the semiconductor substrate surface non-perpendicular to the substrate surface; and
This is achieved by using a manufacturing method that includes a step of scanning in parallel in a direction that successively crosses the stepped portions of each of the thin films.

〔作用〕[Effect]

本発明の作用を第1図に示す断面図により説明する。半
導体基板、例えばシリコン基板、1上に薄膜2をその段
差部の側面2′が半導体基板1面に対して垂直となるよ
うに形成した後、集束イオンビーム3を半導体基板1面
に対して鋭角の入射角0で照射しながら側面2′横切る
ように、すなわち図示では矢印でビームの走査方向と示
す方向に、平行に走査して不純物導入領域4を形成する
The operation of the present invention will be explained with reference to the sectional view shown in FIG. After forming a thin film 2 on a semiconductor substrate, for example a silicon substrate 1, such that the side surface 2' of the stepped portion is perpendicular to the surface of the semiconductor substrate 1, a focused ion beam 3 is directed at an acute angle to the surface of the semiconductor substrate 1. While irradiating the beam at an incident angle of 0, the impurity-introduced region 4 is formed by scanning parallel to the side surface 2', that is, in the direction indicated by the arrow as the scanning direction of the beam in the figure.

形成される不純物導入領域4の深さ又と、薄膜2の下部
への浸入距離ΔLと、上記入射角0との間には次の関係
がある。
The following relationship exists between the depth of the formed impurity introduction region 4, the penetration distance ΔL into the lower part of the thin film 2, and the above-mentioned incident angle 0.

x= RP−cos O・=−(1) ΔL = Rp−sinθ       ・・・・・・
(2)ここで、RPはイオンビームの加速エネルギーで
決まるイオン平均浸入距離、いわゆる投影飛程と呼ばれ
る量である。例えば、加速電圧100 keVのボロン
(B)イオンビームを入射角0=45度でシリコン基板
へ打込む場合には、Rp #0 、34であるから、 
X#0.2IIIm、ΔL:0.2t1mとすることが
でき、薄膜2の段差部の直下に微細な不純物導入領域を
形成し得る。
x = RP-cos O・=-(1) ΔL = Rp-sinθ ・・・・・・
(2) Here, RP is the average ion penetration distance determined by the acceleration energy of the ion beam, a quantity called the so-called projected range. For example, when a boron (B) ion beam with an accelerating voltage of 100 keV is implanted into a silicon substrate at an incident angle of 0=45 degrees, Rp #0, 34.
X#0.2IIIm, ΔL:0.2t1m, and a fine impurity-introduced region can be formed directly under the stepped portion of the thin film 2.

このように、本発明によれば、イオンビームを半導体基
板面に対して鋭角の入射角で照射しながら平行に走査す
ることによって、薄膜下部の3次元的な微小領域に不純
物を導入することが可能となり、各種の半導体デバイス
の製造工程に適用して、その技術的効果は非常に大きい
ものがある。
As described above, according to the present invention, impurities can be introduced into a three-dimensional micro region at the bottom of a thin film by scanning the ion beam parallel to the semiconductor substrate surface while irradiating it at an acute angle of incidence. It has become possible to apply it to the manufacturing process of various semiconductor devices, and its technical effects are very large.

〔発明の実施例〕[Embodiments of the invention]

以下1本発明の詳細な説明する。 Hereinafter, one aspect of the present invention will be explained in detail.

実施例 1 本実施例では1本発明を不揮発性メモリ素子の一種であ
るフローティング・ゲート形のMO8flX界効果トラ
ンジスタ(以下、FAMO8FETと略称する。FAは
Floatinggate Avalancheinj
ectionの略)に適用した例を第2図を用いて説明
する。本発明者等は、先に、FAMO8FETのチャネ
ル部へ集束イオンビームを用いて部分的に不純物を導入
することにより、データ消去時のしきい電圧を変化させ
ることなく、データ書き込み電圧を大幅に低下すること
のできるFAMO3FETおよびその製造方法を提案し
た(特願昭58−160360号、特開昭60−530
83号参照)。第2図は、上記FAMO5FETの製造
に本発明を応用する際の製造工程を説明するための断面
図であり、順を追って各工程ごとに示しである。
Example 1 In this example, the present invention was applied to a floating gate type MO8flX field effect transistor (hereinafter abbreviated as FAMO8FET), which is a type of nonvolatile memory element.
An example of application to the invention will be explained with reference to FIG. 2. The present inventors first partially introduced impurities into the channel part of the FAMO8FET using a focused ion beam, thereby significantly lowering the data writing voltage without changing the threshold voltage during data erasing. proposed a FAMO3FET capable of
(See No. 83). FIG. 2 is a cross-sectional view for explaining the manufacturing process when the present invention is applied to manufacturing the FAMO5FET, and each process is shown in order.

第2図(a)は、p形(100)面、10Ω’(mのシ
リコン基板1に、1000℃、20分間の乾燥酸素中で
の酸化(ドライ酸化)により厚さ20na+の熱酸化膜
5を成長させ、さらに化学気相成長法(以下CVD法と
略記する。CVDはChemicalV apor D
 apositionの略)により窒化シリコン膜6を
厚さ30Ωmに成長させ、ホトエッチ法によりMOSF
ETが形成されるべき部分以外の窒化シリコン膜6を除
去し、窒化シリコン膜6が除去された部分のシリコン基
板1上に、通常のイオン打込み法により、Bイオンを加
速電圧70 keV、打込みf 3 X 10”cm−
”という条件で打込んだ後、1000℃、2時間のウェ
ット酸化を行い、フィールド酸化膜7およびその下部に
上記イオン打込みにより形成されるチャネルストッパ層
8を形成した状態を示している。
FIG. 2(a) shows a thermal oxide film 5 with a thickness of 20 na+ formed by oxidizing (dry oxidation) in dry oxygen at 1000° C. for 20 minutes on a p-type (100) plane, 10 Ω' (m) silicon substrate 1. is grown, and further abbreviated as CVD method (hereinafter abbreviated as CVD method).
A silicon nitride film 6 is grown to a thickness of 30 Ωm using a photo-etching method.
The silicon nitride film 6 other than the part where the ET is to be formed is removed, and B ions are implanted at an acceleration voltage of 70 keV and f on the silicon substrate 1 in the part where the silicon nitride film 6 is removed by a normal ion implantation method. 3 x 10”cm-
After implantation under the following conditions, wet oxidation was performed at 1000° C. for 2 hours, and a field oxide film 7 and a channel stopper layer 8 formed by the above ion implantation were formed under the field oxide film 7.

次に、第2図(b)に示すように、窒化シリコン1gl
6および熱酸化膜5をエツチング除去し、tooo℃、
25分間のドライ酸化により厚さ30nn+のゲート酸
化lll9を成長させ、その上に、減圧CVD法により
成長させてオキシ塩化リン(poca3)を拡散源とし
てリン(P)をドープした後、ホトエッチ法により加工
した。p!J抵抗5oΩ/口、厚さ0.2.の第1のポ
リシリコン(以下、poly 5i)WXloを形成し
、さらに、コノ第1 (7)poly 5ilFJi。
Next, as shown in FIG. 2(b), 1g of silicon nitride
6 and the thermal oxide film 5 are removed by etching,
A gate oxide lll9 with a thickness of 30 nn+ was grown by dry oxidation for 25 minutes, and then grown by low pressure CVD and doped with phosphorus (P) using phosphorus oxychloride (poca3) as a diffusion source, and then by photoetching. processed. p! J resistance 5oΩ/mouth, thickness 0.2. A first polysilicon (hereinafter referred to as poly 5i) WXlo is formed, and further a first polysilicon (7) poly 5ilFJi is formed.

を1100℃、20分間のドライ酸化により酸化して、
浮遊ゲート酸化膜11を成長させ、その上に、減圧CV
D法により成長させてPoc113を拡散源としてPを
ドープした層抵抗40Ω/口、厚さ0.3−の第2のp
oly Si 11112を形成する。
was oxidized by dry oxidation at 1100°C for 20 minutes,
A floating gate oxide film 11 is grown, and a low pressure CV
A second p layer grown by the D method and doped with P using Poc113 as a diffusion source, with a resistance of 40 Ω/hole and a thickness of 0.3-
olySi 11112 is formed.

その後、第2図(c)に示すように、第2のpoly 
Si IFJ12、浮遊ゲート酸化[11、および第1
のρolysi膜10を反膜性0パッタエッチによる1
回のりソグラフィ加工によって加工し、浮遊ゲート13
および制御ゲート14を形成した後、上記制御ゲート1
4、浮遊ゲート酸化膜11、および浮遊ゲート13から
成る積層膜をマスクとして、加速電圧70 keVのヒ
素(A s )イオンビーム15をシリコン基板1に垂
直に照射して打込み量3 X 10” cm−”で打込
み、窒素雰囲気中で950℃、30分間のアニールを行
い、ソース16およびドレイン17を形成する。
After that, as shown in FIG. 2(c), the second poly
Si IFJ12, floating gate oxidation [11, and first
The ρolysi film 10 is etched by anti-film putter etching.
The floating gate 13 is processed by turning lithography processing.
After forming the control gate 14 and the control gate 14,
4. Using the laminated film consisting of the floating gate oxide film 11 and the floating gate 13 as a mask, the silicon substrate 1 is vertically irradiated with an arsenic (A s ) ion beam 15 with an acceleration voltage of 70 keV, with an implantation amount of 3 x 10" cm. The source 16 and the drain 17 are formed by implantation at 950° C. for 30 minutes in a nitrogen atmosphere.

次に、第2図(d)に示すように、加速電圧50keV
、ビーム径0.2amの集束Bイオンビーム3をシリコ
ン基板1に対して入射角30度、がっ、ソース16から
ドレイン17へ向かうチャネル方向に対して平行に走査
して、5XIO”co+−”の打込み量で打込み、窒素
雰囲気中で1050℃、10秒間の短時間ランプアニー
ルを行い、微細な不純物導入領域4を形成する6 その後、第2図(e)に示すように1層間絶縁膜18の
形成、コンタクト穴明け、アルミニウム電極19の形成
により、MOSFETを完成させた。
Next, as shown in FIG. 2(d), the acceleration voltage is 50 keV.
A focused B ion beam 3 with a beam diameter of 0.2 am is scanned at an incident angle of 30 degrees with respect to the silicon substrate 1 parallel to the channel direction from the source 16 to the drain 17 to generate 5XIO "co+-". Implantation is performed at an implantation amount of 1, and short-time lamp annealing is performed at 1050° C. for 10 seconds in a nitrogen atmosphere to form a fine impurity-introduced region 4.6 After that, as shown in FIG. The MOSFET was completed by forming contact holes, and forming aluminum electrodes 19.

上記工程で完成したFAMO8FETの性能を。The performance of FAMO8FET completed through the above process.

本実施例による非垂直入射、がっ、平行走査での集束B
イオンビーム打込みで形成される微細な不純物導入領域
4のないFAMO8FETと比較したところ、データ消
去時のしきい電圧の上昇率が最大5%であったのに対し
、データ書込み電圧は50%以下に低下しており、本実
施例の製造方法によってFAMO8FETのデータ書込
み特性を向上できることがわかった。
Focusing B in non-perpendicular incidence, parallel scanning according to this embodiment
When compared with a FAMO8FET without the fine impurity implanted region 4 formed by ion beam implantation, the rate of increase in threshold voltage during data erasing was 5% at maximum, while the data write voltage was less than 50%. It was found that the data write characteristics of the FAMO8FET can be improved by the manufacturing method of this example.

実施例 2 本実施例では、本発明の製造方法をLDD (Ligh
tly Doped Drain)構造MO5FETの
製造に適用した例を第3図を用いて説明する。第3図(
a)〜(e)は本実施例の製造工程途中のMO8FET
断面図で、以下、各工程ごとに順を追って説明する。
Example 2 In this example, the manufacturing method of the present invention is applied to LDD (Light
An example in which this method is applied to the manufacture of a MO5FET having a doped drain structure will be described with reference to FIG. Figure 3 (
a) to (e) are MO8FETs in the middle of the manufacturing process of this example
Each step will be explained in order below using cross-sectional views.

第3図(a)は、p形(100)面、10Ω”Onのシ
リコン基板1に、MOSFETが形成されるべき部分以
外の領域に、フィールド酸化膜7およびその下部にチャ
ネルストッパ層8を形成した後、1000℃、20分間
のドライ酸化により厚さ20nmのゲート酸化膜9を成
長させ、減圧CVD法によりpoly Siを成長させ
、poca、を拡散源としてPをドープした後、ホトエ
ッチ法により加工した、層抵抗50Ω/口、厚さ0.2
−のゲート13の形成まで行った状態を示している。
In FIG. 3(a), a field oxide film 7 and a channel stopper layer 8 are formed under the field oxide film 7 on a p-type (100) plane, 10Ω"On silicon substrate 1 in a region other than the area where the MOSFET is to be formed. After that, a gate oxide film 9 with a thickness of 20 nm is grown by dry oxidation at 1000° C. for 20 minutes, polySi is grown by low pressure CVD, and after doping with P using poca as a diffusion source, it is processed by photoetching. layer resistance 50Ω/mouth, thickness 0.2
The state in which the gate 13 of - is formed is shown.

次に、第3図(b)に示すように、加速電圧60keV
のAsイオンビーム15をシリコン基板1に垂直に照射
して、打込み量3X10’″’Ql−”で打込み。
Next, as shown in FIG. 3(b), the acceleration voltage is 60 keV.
The silicon substrate 1 was irradiated with the As ion beam 15 perpendicularly to the implantation amount of 3×10''Ql-''.

ソース16およびドレイン17の領域を形成する。Source 16 and drain 17 regions are formed.

次に、第3図(Q)に示すように、加速電圧30keV
のPイオンビーム20を、シリコン基板1に対して入射
角30度で照射し、かつ、チャネル方向に対して平行に
走査して、打込み量IXIO14am−”で打込み、ド
レイン17の近傍のゲート13下部に微細な不純物導入
領域4を形成する。
Next, as shown in FIG. 3 (Q), the acceleration voltage is 30 keV.
A P ion beam 20 of A fine impurity-introduced region 4 is formed.

さらに、第3図(d)に示すように、第3図(c)の場
合と同様の打込み条件で、シリコン基板に対して上記の
場合とは逆方向に傾けたPイオンビーム21を平行走査
することにより、ソース16側にも微細な不純物導入領
域4を形成する。
Furthermore, as shown in FIG. 3(d), under the same implantation conditions as in FIG. 3(c), the P ion beam 21 tilted in the opposite direction to the above case is scanned parallel to the silicon substrate. By doing so, a fine impurity introduced region 4 is also formed on the source 16 side.

最後に、第3図(θ)に示すように、絶縁膜18の形成
、コンタクト穴明け、アルミニウム電極19の形成によ
りMOSFETを完成する。
Finally, as shown in FIG. 3 (θ), the MOSFET is completed by forming an insulating film 18, drilling contact holes, and forming an aluminum electrode 19.

以上に述べた本実施例方法により、第3図(e)に示し
たようなLDD構造MO8FETの微細な不純物導入領
域4.ゲート13、ソース16およびドレイン17を一
度のりソグラフィ加工(ゲート13の加工)によって、
各々、自己整合的に、かつ、高精度で製造することがで
きた。その結果、従来の反応性スパッタエッチで形成し
た酸化膜のサイドウオールをマスクとしたイオン打込み
によって微細な不純物導入領域4を形成する製造方法に
おける以下の問題点、すなわち、サイドウオールの加工
寸法のばらつきに起因するMOSFETのゲイン定数の
ばらつきが±15%程度にも及んでいたのに対し、本実
施例方法によれば、ゲイン定数、ドレイン耐圧等のばら
つきを±5%以下に制御できることがわかった。
By the method of this embodiment described above, the fine impurity doped region 4 of the LDD structure MO8FET as shown in FIG. 3(e). The gate 13, the source 16, and the drain 17 are processed once by lithographic processing (processing of the gate 13).
Each could be manufactured in a self-aligned manner and with high precision. As a result, the following problems with the conventional manufacturing method of forming the fine impurity-introduced region 4 by ion implantation using the sidewall of the oxide film formed by reactive sputter etching as a mask, namely, the variation in the processing dimensions of the sidewall. The variation in the gain constant of MOSFET caused by this amounted to about ±15%, but it was found that according to the method of this example, the variation in the gain constant, drain breakdown voltage, etc. could be controlled to less than ±5%. .

これは1本発明の製造方法によって、LDD構造MO5
FETが信頼性よく製造できることを示しており、本発
明の有効性が確かめられた。
This is achieved by using the manufacturing method of the present invention, LDD structure MO5
This shows that the FET can be manufactured reliably, and the effectiveness of the present invention is confirmed.

なお、本実施例におけるPイオンビーム20および21
の代りに、ビーム径1#mの集束Pイオンビームを用い
ても同様の効果が得られた。
Note that the P ion beams 20 and 21 in this example
Similar effects were obtained by using a focused P ion beam with a beam diameter of 1 #m instead.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、半導体基板上に形成された段差部を有
する薄膜に、基板表面に対して非垂直のイオンビームを
照射することによって、薄膜の端部の半導体基板内に微
細な不純物導入領域を形成する方法であるので、従来の
イオン打込みでは困難であった。薄膜下部の微小領域へ
不純物濃度。
According to the present invention, a thin film having a step formed on a semiconductor substrate is irradiated with an ion beam that is non-perpendicular to the substrate surface, thereby forming a fine impurity-introduced region in the semiconductor substrate at the edge of the thin film. This method is difficult to form using conventional ion implantation. Impurity concentration in the micro region at the bottom of the thin film.

接合深さ等を高精度に制御して不純物を導入することが
可能となり、この結果、FAMoSトランジスタに適用
してそのしきい値電圧を小さくシ。
It becomes possible to introduce impurities by controlling the junction depth etc. with high precision, and as a result, it can be applied to FAMoS transistors to reduce their threshold voltage.

FAMOSメモリの書き込み電圧を大幅に低下できる。The write voltage of FAMOS memory can be significantly reduced.

さらに、本発明をLDD構造MOSトランジスタの製造
法に適用して、従来の反応性スパッタエッチで形成した
酸化膜のサイドウオールをマスクとするイオン打込みに
よって微細な不純物導入領域を形成する製造法と比較し
て、従来方法ではサイドウオールの加工寸法のばらつき
に起因するMOSトランジスタのゲイン定数のばらつき
が±15%にも及んだのに対し1本発明によれば、ゲイ
ン定数、ドレイン耐圧等のばらつきを±5%以下に制御
できることが確認された。したがって、従来方法に比較
して、MO8ICの高性能化、高信頼性化を実現するこ
とができる。
Furthermore, the present invention was applied to a manufacturing method of an LDD structure MOS transistor, and a comparison was made with a manufacturing method in which a fine impurity doped region is formed by ion implantation using a side wall of an oxide film formed by reactive sputter etching as a mask. Therefore, in the conventional method, the variation in the gain constant of the MOS transistor due to the variation in the processing dimensions of the sidewall was as much as ±15%, whereas according to the present invention, the variation in the gain constant, drain breakdown voltage, etc. It was confirmed that the difference could be controlled to within ±5%. Therefore, compared to the conventional method, it is possible to realize higher performance and higher reliability of MO8IC.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の作用説明用の断面図、第2図(a)、
(b)、(c)、(d)、(e)は本発明の一実施例の
各工程途中の断面図、第3図(a)、(b)、(Q)、
(d)、(e)は本発明の他の実施例の各工程途中の断
面図である。 く符号の説明〉
Fig. 1 is a sectional view for explaining the operation of the present invention, Fig. 2(a),
(b), (c), (d), and (e) are cross-sectional views in the middle of each process of an embodiment of the present invention;
(d) and (e) are cross-sectional views in the middle of each step of another embodiment of the present invention. Explanation of symbols>

Claims (1)

【特許請求の範囲】 1、半導体基板上に段差を有する複数の薄膜を形成する
工程と、上記半導体基板表面に照射するイオンビームを
基板表面に対して非垂直とし、かつ、上記各薄膜の段差
部を順次横切る方向に平行に走査する工程とを含むこと
を特徴とする半導体装置の製造方法。 2、前記イオンビームが集束イオンビームであることを
特徴とする特許請求の範囲第1項記載の半導体装置の製
造方法。
[Claims] 1. A step of forming a plurality of thin films having steps on a semiconductor substrate, and irradiating the surface of the semiconductor substrate with an ion beam non-perpendicular to the substrate surface; 1. A method of manufacturing a semiconductor device, comprising the step of scanning in parallel in a direction that successively traverses a section. 2. The method of manufacturing a semiconductor device according to claim 1, wherein the ion beam is a focused ion beam.
JP7124386A 1986-03-31 1986-03-31 Manufacture of semiconductor device Pending JPS62229933A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7124386A JPS62229933A (en) 1986-03-31 1986-03-31 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7124386A JPS62229933A (en) 1986-03-31 1986-03-31 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS62229933A true JPS62229933A (en) 1987-10-08

Family

ID=13455062

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7124386A Pending JPS62229933A (en) 1986-03-31 1986-03-31 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS62229933A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01212471A (en) * 1988-02-19 1989-08-25 Mitsubishi Electric Corp Mos type transistor and manufacture thereof
JPH01212470A (en) * 1988-02-19 1989-08-25 Mitsubishi Electric Corp Mos transistor and manufacture thereof
JPH02250331A (en) * 1989-03-24 1990-10-08 Hitachi Ltd Semiconductor device and its manufacture

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01212471A (en) * 1988-02-19 1989-08-25 Mitsubishi Electric Corp Mos type transistor and manufacture thereof
JPH01212470A (en) * 1988-02-19 1989-08-25 Mitsubishi Electric Corp Mos transistor and manufacture thereof
JPH02250331A (en) * 1989-03-24 1990-10-08 Hitachi Ltd Semiconductor device and its manufacture

Similar Documents

Publication Publication Date Title
US5960291A (en) Asymmetric channel transistor and method for making same
JPS63124468A (en) Manufacture of metal-oxide-semiconductor (mos) integrated circuit
JPH0316123A (en) Ion implantation and semiconductor device thereby manufactured
JPS62229933A (en) Manufacture of semiconductor device
JPH06163572A (en) Manufacture of mos field effect transistor
JP2881267B2 (en) Semiconductor device and manufacturing method thereof
KR100707169B1 (en) Memory Device and Manufacturing Method thereof
JPH0552069B2 (en)
JPS6126264A (en) Manufacture of semiconductor device
JP3253846B2 (en) Semiconductor device and manufacturing method thereof
JPH0616559B2 (en) Method for manufacturing semiconductor device
JP3371600B2 (en) Method for manufacturing MIS transistor
JP2998540B2 (en) Manufacturing method of nonvolatile semiconductor memory device
JPH0481327B2 (en)
KR100489586B1 (en) Method of forming junction part of semiconductor device
JP2888461B2 (en) Insulated gate semiconductor device and method of manufacturing the same
JPS59231863A (en) Insulated gate semiconductor device and manufacture thereof
JPH02303049A (en) Semiconductor device and manufacture thereof
JPH01117066A (en) Manufacture of mos type semiconductor device
JPH0795535B2 (en) Method for manufacturing semiconductor device
JPH05211328A (en) Mos transistor and manufacturing method thereof
EP0400670B1 (en) Semiconductor memory device and method of manufacturing the same
JPS59135768A (en) Manufacture of semiconductor device
JPH01226176A (en) Manufacture of semiconductor device
JPH01278777A (en) Manufacture of mosfet