JPS62228934A - Method for measuring moisture content of sludge - Google Patents
Method for measuring moisture content of sludgeInfo
- Publication number
- JPS62228934A JPS62228934A JP61070709A JP7070986A JPS62228934A JP S62228934 A JPS62228934 A JP S62228934A JP 61070709 A JP61070709 A JP 61070709A JP 7070986 A JP7070986 A JP 7070986A JP S62228934 A JPS62228934 A JP S62228934A
- Authority
- JP
- Japan
- Prior art keywords
- sludge
- laser beam
- water
- water content
- moisture content
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000010802 sludge Substances 0.000 title claims abstract description 76
- 238000000034 method Methods 0.000 title claims description 18
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 56
- 238000010438 heat treatment Methods 0.000 claims abstract description 13
- 238000001228 spectrum Methods 0.000 claims abstract description 12
- 238000005259 measurement Methods 0.000 claims description 11
- 238000010521 absorption reaction Methods 0.000 claims description 3
- 238000000691 measurement method Methods 0.000 claims 1
- 230000008020 evaporation Effects 0.000 abstract description 6
- 238000001704 evaporation Methods 0.000 abstract description 6
- 230000003595 spectral effect Effects 0.000 abstract 1
- 238000010586 diagram Methods 0.000 description 5
- 230000008569 process Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 239000002699 waste material Substances 0.000 description 2
- 230000009471 action Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 230000018044 dehydration Effects 0.000 description 1
- 238000006297 dehydration reaction Methods 0.000 description 1
- 239000010840 domestic wastewater Substances 0.000 description 1
- 239000010794 food waste Substances 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000010842 industrial wastewater Substances 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 238000004611 spectroscopical analysis Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/25—Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
- G01N21/31—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
- G01N21/35—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
- G01N21/3554—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for determining moisture content
Landscapes
- Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
Abstract
Description
【発明の詳細な説明】 〔産業上の利用分野〕 本発明は汚泥含水率測定方法の改良に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to an improvement in a method for measuring sludge water content.
生活及び産業廃水や廃棄物を活性汚泥法によって処理し
て得られる活性汚泥又は汚泥、或いは生ゴミその他の可
燃物を含む汚泥状の廃棄物は、通常これを脱水処理した
後、焼却処分に付している。Activated sludge or sludge obtained by treating domestic and industrial wastewater and waste by the activated sludge method, or sludge-like waste containing food waste and other combustible materials, is usually dehydrated and then incinerated. are doing.
その場合の焼却効率は汚泥の含水率によって大幅に変化
し、含水率が多いと多大の燃料を必要とする詐りでなく
、不完全燃焼を生じる等の弊害がある。The incineration efficiency in this case varies greatly depending on the water content of the sludge, and if the water content is high, it not only requires a large amount of fuel but also has disadvantages such as incomplete combustion.
そのため、従来、脱水処理後の汚泥を焼却炉に搬入する
前に予めその含水率を測定し、これが成る一定の水準以
下に保たれるよう脱水処理、その他を制御等していた。For this reason, conventionally, the moisture content of dehydrated sludge is measured before it is delivered to an incinerator, and the dehydration process and other processes are controlled to keep it below a certain level.
上記の如き汚泥の含水率の測定方法として、例えば水に
対する吸収率の異なる少なくとも二つのレーザビームを
重畳して水分を検すべき汚泥の表面に照射し、その反射
光のスペクトルを分析して汚泥の含水率を測定する方法
が提供されている。As a method for measuring the water content of sludge as described above, for example, at least two laser beams with different absorption rates for water are superimposed and irradiated onto the surface of the sludge whose water content is to be tested, and the spectrum of the reflected light is analyzed to determine whether the sludge is sludge or not. A method is provided for measuring the moisture content of.
然しなから、上記の方法によるときは、汚泥中に含まれ
る各種物体の色彩や、測定用レーザビーム以外の外光の
影響で測定精度が低下するという問題があった。However, when using the above-mentioned method, there is a problem in that the measurement accuracy is reduced due to the influence of the colors of various objects contained in the sludge and external light other than the measurement laser beam.
本発明は上記の問題点を解決するためなされたものであ
り、その目的とするところは、比較的簡便な手段により
汚泥の含水率を高精度に測定し得る汚泥含水率測定方法
を提供することにある。The present invention has been made to solve the above problems, and its purpose is to provide a sludge water content measuring method that can measure the water content of sludge with high precision using relatively simple means. It is in.
上記の目的は、水に対する吸収率の異なる少なくとも二
つのレーザビームを重畳して水分を検すべき汚泥の表面
に照射し、その反射光のスペクトルを分析して汚泥の含
水率を測定する方法に於て、被測定点の汚泥をレーザビ
ームで加熱し水蒸気を発生せしめつ\含水率測定を行な
うことによって達成される。The above purpose is to create a method for measuring the water content of sludge by superimposing at least two laser beams with different absorption rates for water, irradiating the surface of the sludge whose water content is to be tested, and analyzing the spectrum of the reflected light. This is achieved by heating the sludge at the measurement point with a laser beam to generate water vapor and measuring the water content.
上記加熱用レーザビームが測定用レーザビームを兼ねる
ようにしても良いし、加熱用レーザビームを測定用レー
ザビームとは別異に設けるようにしても良い。The heating laser beam may also serve as the measurement laser beam, or the heating laser beam may be provided separately from the measurement laser beam.
また、水蒸気の発生効率を向上させるため、上記加熱用
レーザビームをパルス状に断続させるようにすることも
推奨される。Furthermore, in order to improve the efficiency of water vapor generation, it is also recommended that the heating laser beam be intermittent in a pulsed manner.
上記の如き構成であると、レーザビームで加熱されて汚
泥から発生する水蒸気の蒸発量がレーザビームの強度の
みでなく、汚泥の含水率によって変化するので、これを
利用して汚泥の色彩の変化や外光の影響を受けることな
く反射光のスペクトルを分析することが可能となり、汚
泥の含水率の測定値の信頼度を高め得るものである。With the above configuration, the amount of evaporation of water vapor generated from sludge heated by the laser beam changes not only with the intensity of the laser beam but also with the water content of the sludge, so this can be used to change the color of the sludge. This makes it possible to analyze the spectrum of reflected light without being affected by sunlight or external light, and can increase the reliability of the measured value of the water content of sludge.
以下、図面を参照しつ\本発明を具体的に説明する。 Hereinafter, the present invention will be specifically explained with reference to the drawings.
第1図は本発明にかへる汚泥含水率測定方法を実施する
ために使用する装置の一実施例を示す説明図、第2図は
本発明にか\る汚泥含水率測定方法を実施するために使
用する装置のもう一つの実施例の要部を示す説明図であ
る。FIG. 1 is an explanatory diagram showing an embodiment of the apparatus used to carry out the sludge water content measuring method according to the present invention, and FIG. FIG. 4 is an explanatory diagram showing the main parts of another embodiment of the device used for the purpose of the present invention.
而して、第1図中、1はレーザビーム照射装置、2はそ
の主胴部、3はレンズ筒、4及び5はレーザ発振器、6
は反射鏡、7はハーフミラ−18は収束レンズ、9はモ
ータ、10はCCD等のイメージセンサを内蔵したカメ
ラ、11は制御装置、12はスペクトルスキャナ、13
は風防、14はベルトコンベア、15は胸高化ローラ装
置、16は汚泥である。In FIG. 1, 1 is a laser beam irradiation device, 2 is its main body, 3 is a lens barrel, 4 and 5 are laser oscillators, and 6 is a laser beam irradiation device.
1 is a reflecting mirror, 7 is a half mirror, 18 is a converging lens, 9 is a motor, 10 is a camera with a built-in image sensor such as a CCD, 11 is a control device, 12 is a spectrum scanner, 13
14 is a windshield, 14 is a belt conveyor, 15 is a chest height roller device, and 16 is sludge.
而して、図では省略した親水装置により親水処理した汚
泥16は、ベルトコンベア14により図中右側から左側
へ輸送され、その過程で、少なくともレーザビーム照射
装置1によりレーザビームを照射される部分の汚泥の表
面の高さが均等となるように、胸高化ローラ装置15に
よって汚泥の胸高化が行なわれる。The sludge 16 that has been subjected to hydrophilic treatment by a hydrophilic device (not shown) is transported from the right side to the left side in the figure by the belt conveyor 14, and in the process, at least the portion irradiated with the laser beam by the laser beam irradiation device 1 is The height of the sludge is increased by the height increase roller device 15 so that the height of the surface of the sludge is uniform.
胸高化ローラ装置15は、適宜の重量を有するローラ1
5aと、これを上下方向に一定範囲内で移動可能に軸支
する枠体15b等から成り、ベルトコンベア14とロー
ラ15aの間を通過する汚泥16は、ローラ15aの自
重若しくは図では省略した適宜の荷重機構の作用により
押圧されて胸高化されるものである。The chest heightening roller device 15 includes a roller 1 having an appropriate weight.
The sludge 16 passing between the belt conveyor 14 and the roller 15a is reduced by the weight of the roller 15a or by an appropriate amount not shown in the figure. The chest height is increased by being pressed by the action of the loading mechanism.
上記の如(して胸高化された汚泥16は、レーザビーム
照射装置lの下を通過する際、その表面に波長の異なる
二つのレーザビームが照射され、その反射光のスペクト
ルが分析されるようになっている。When the sludge 16 raised to chest height as described above passes under the laser beam irradiation device 1, its surface is irradiated with two laser beams with different wavelengths, and the spectrum of the reflected light is analyzed. It has become.
即ち、レーザビーム照射装置1は二つのレーザ発振器4
及び5を有し、レーザ発振器4からは水に対して比較的
吸収され易い波長(例えば1.46μm)のレーザ光が
発せられ、レーザ発振器5からは水に対して比較的吸収
され難い波長(例えば1゜96μm)のレーザ光が発せ
られる。レーザ発振器4から発せられたレーザ光は、主
胴部2内に固定された反射鏡6によって反射され、ハー
フミラ−7を通過した後、収束レンズ8によって汚泥1
6の表面上に収束されて照射される。一方、レーザ発振
器5から発せられたレーザ光も、主胴部2内に固定され
たハーフミラ−7によって反射され、上記レーザ発振器
4からのレーザ光と重畳され、収束レンズ8によって汚
泥16の表面上に収束されて照射される。That is, the laser beam irradiation device 1 includes two laser oscillators 4.
and 5, the laser oscillator 4 emits a laser beam with a wavelength (for example, 1.46 μm) that is relatively easily absorbed by water, and the laser oscillator 5 emits a laser beam with a wavelength (for example, 1.46 μm) that is relatively easily absorbed by water. For example, a laser beam of 1°96 μm) is emitted. The laser beam emitted from the laser oscillator 4 is reflected by a reflecting mirror 6 fixed in the main body 2, passes through a half mirror 7, and then is reflected by a converging lens 8 into the sludge 1.
It is focused and irradiated onto the surface of 6. On the other hand, the laser beam emitted from the laser oscillator 5 is also reflected by the half mirror 7 fixed in the main body 2, superimposed on the laser beam from the laser oscillator 4, and is directed onto the surface of the sludge 16 by the converging lens 8. It is focused and irradiated.
その際、汚泥16上の照射スポットの影像が、CCD等
のイメージセンサを内蔵するカメラ10によって検知さ
れ、制御装置11を介して上記照射スポットが最小とな
るようにモータ9を作動させて、レンズ筒3を主胴部3
に対して図中上下方向に摺動させることにより、収束レ
ンズ8の焦点調節が自動的に行なわれる。At that time, the image of the irradiation spot on the sludge 16 is detected by the camera 10 that has a built-in image sensor such as a CCD, and the motor 9 is operated via the control device 11 so that the irradiation spot is minimized, and the lens Connect tube 3 to main body 3
By sliding the converging lens 8 in the vertical direction in the figure, the focus of the converging lens 8 is automatically adjusted.
而して、汚泥16の表面に上記の如くしてスポット状に
照射されたレーザビームの反射光は、スペクトルスキャ
ナ12に入射し、そのスペクトルの分布状態から、公知
の手段により汚泥16の含水率が測定される。The reflected light of the laser beam irradiated onto the surface of the sludge 16 in a spot shape as described above enters the spectrum scanner 12, and the water content of the sludge 16 is determined from the distribution state of the spectrum by known means. is measured.
而して、水に対して比較的吸収され難い波長のレーザ発
振器5からのレーザビームの多くは汚泥16の表面で反
射されるが、水に対して比較的吸収され易い波長のレー
ザ発振器4からのレーザビームの多くは汚泥16中の水
に吸収され、汚泥を加熱してこれに含有される水その他
の成分等を蒸発さらには分解させる。Therefore, most of the laser beam from the laser oscillator 5 with a wavelength that is relatively hard to be absorbed by water is reflected by the surface of the sludge 16, but the laser beam from the laser oscillator 4 with a wavelength that is relatively easily absorbed by water is reflected by the surface of the sludge 16. Most of the laser beam is absorbed by the water in the sludge 16 and heats the sludge to evaporate and decompose water and other components contained therein.
而して、このとき発生する蒸気の蒸発量及び速度は汚泥
の含水率と密接な関係がある。Therefore, the amount and rate of evaporation of the steam generated at this time are closely related to the water content of the sludge.
即ち、汚泥中の固形分の含有率が高いと、レーザビーム
は汚泥中にさほど深くは浸透せず、又、汚泥の比熱も低
下するので、汚泥表面の温度が高まり、水分等の蒸発が
盛んに起るが、固形分の含水率が低いと、レーザビーム
が汚泥深く浸透し、深部で吸収されるようになり、又、
汚泥の比熱も増大するので、汚泥表面の温度の上昇が少
なく、蒸発も抑制されることになる。In other words, if the solids content in the sludge is high, the laser beam will not penetrate very deeply into the sludge, and the specific heat of the sludge will also decrease, increasing the temperature of the sludge surface and increasing the evaporation of water, etc. However, if the water content of the solids is low, the laser beam will penetrate deep into the sludge and be absorbed at the deep part, and
Since the specific heat of the sludge also increases, the rise in temperature of the sludge surface is small and evaporation is also suppressed.
而して、照射されるレーザビームは発生した蒸気を透過
し、汚泥表面で反射、散乱されるので、この反射、散乱
光のスペクトルをスペクトルスキャナ12で分析するこ
とにより汚泥表面上の水蒸気分圧、即ち汚泥の含水率が
知られ、場合によっては他の成分の含有率等も測定され
得るものである。The irradiated laser beam passes through the generated vapor and is reflected and scattered on the sludge surface, so the spectrum of this reflected and scattered light is analyzed by the spectrum scanner 12 to determine the water vapor partial pressure on the sludge surface. That is, the water content of the sludge is known, and in some cases, the content of other components can also be measured.
なお、3a及び3bはレンズ筒3に明けられた蒸気抜き
のための孔である。Note that 3a and 3b are holes made in the lens barrel 3 for releasing steam.
第2図に示した実施例に於ては、スペクトルスキャナの
代わりにフォトダイオード等のフォトセンサを用いて、
レーザ発振器4及び5から発射され/ri泥の表面で反
射された波長の異なる二種のレーザビームの強度を比較
することにより、汚泥の含水率を測定し得るように構成
しである。In the embodiment shown in FIG. 2, a photosensor such as a photodiode is used instead of the spectrum scanner.
The water content of the sludge can be measured by comparing the intensities of two types of laser beams having different wavelengths emitted from the laser oscillators 4 and 5 and reflected on the surface of the /ri mud.
叩ち、第2図中、第1図と同一の番号を付したものは第
1図と同様の構成要素を示しており、更に、17は集光
レンズ、18はプリズム、19及び20はフォトダイオ
ード等のフォトセンサである。In FIG. 2, the same numbers as in FIG. 1 indicate the same components as in FIG. It is a photo sensor such as a diode.
第1図に示した実施例の場合と同様に、水に吸収され易
い波長と、吸収され難い波長の二種のレーザビームが重
畳され、収束レンズ8により収束されて汚泥16の表面
に照射され、これにより汚泥の表面から水分が蒸発せし
められる。レーザビームはこの水蒸気を通過し、汚泥表
面で反射、散乱するが、この反射、散乱光は集光レンズ
17により平行光線とされた上、プリズム18に入射す
る。然るときは、波長の異なる上記二種のレーザビーム
は互いに屈折率が異なるため二つに分光されて、水に吸
収され易い波長の短いレーザ光はフォトセンサ19に、
水に吸収され難い波長の長いレーザ光はフォトセンサ2
0にそれぞれ照射される。従って、フォトセンサ19及
び20の出力を比較することにより汚泥16の含水率を
測定し得るものである。As in the case of the embodiment shown in FIG. 1, two types of laser beams, one with a wavelength that is easily absorbed by water and the other with a wavelength that is not easily absorbed, are superimposed, focused by a converging lens 8, and irradiated onto the surface of the sludge 16. , which causes water to evaporate from the surface of the sludge. The laser beam passes through this water vapor and is reflected and scattered on the sludge surface, but this reflected and scattered light is converted into parallel light by the condenser lens 17 and then enters the prism 18. In such a case, the two types of laser beams having different wavelengths have different refractive indexes, so they are split into two, and the laser beam with a short wavelength that is easily absorbed by water is transmitted to the photosensor 19.
Laser light with a long wavelength that is difficult to be absorbed by water is detected by the photo sensor 2.
0 respectively. Therefore, by comparing the outputs of the photosensors 19 and 20, the water content of the sludge 16 can be measured.
なお、上記の実施例に於ては、水に吸収され易い波長の
加熱用レーザビームで加熱と測定を兼ねるようにしたが
、測定用のビームとは別異に、加熱専用のレーザビーム
を用いるようにしても良い。Note that in the above embodiment, a heating laser beam with a wavelength that is easily absorbed by water was used for both heating and measurement, but it is also possible to use a heating laser beam separate from the measurement beam. You can do it like this.
また、水等の蒸発効果を増大させるため、レーザビーム
、特に加熱用レーザビームをパルス状に断続させるよう
にすることも推奨される。Furthermore, in order to increase the evaporation effect of water and the like, it is also recommended to intermittent the laser beam, especially the heating laser beam, in a pulsed manner.
本発明は叙上の如く構成されるから、本発明によるとき
は、レーザビームにより汚泥の含水量に応じて発生する
水蒸気がレーザビームの照射点近くに立ち込め、レーザ
ビームを選択的に吸収するので、汚泥の色彩の変化や外
光の影響を受けることなく汚泥の含水量を測定すること
が可能となり、測定の精度と信頼性が向上する。Since the present invention is constructed as described above, according to the present invention, water vapor generated by the laser beam according to the water content of the sludge gathers near the irradiation point of the laser beam and selectively absorbs the laser beam. , it becomes possible to measure the water content of sludge without being affected by changes in the color of sludge or external light, improving measurement accuracy and reliability.
なお、本発明の構成は叙上の実施例に限定されるもので
なく、レーザビームの照射手段、分光、測定手段等は広
く公知のフォトエレクトロニクス技術を利用し得るもの
であり、本発明はその目的の範囲内に於て上記の説明か
ら当業者が容易に想到し得るすべての変更実施例を包摂
するものである。Note that the configuration of the present invention is not limited to the above-mentioned embodiments, and the laser beam irradiation means, spectroscopy, measurement means, etc. can utilize widely known photoelectronics technology, and the present invention It is intended to cover all modifications and variations that can be easily figured out by those skilled in the art from the above description within the scope of the invention.
第1図は本発明にか\る汚泥含水率測定方法を実施する
ために使用する装置の一実施例を示す説明図、第2図は
本発明にか\る汚泥含水率測定方法を実施するために使
用する装置のもう一つの実施例の要部を示す説明図であ
る。Fig. 1 is an explanatory diagram showing an embodiment of the apparatus used to carry out the sludge water content measuring method according to the present invention, and Fig. 2 is an explanatory diagram showing an example of the apparatus used to carry out the sludge water content measuring method according to the present invention. FIG. 4 is an explanatory diagram showing the main parts of another embodiment of the device used for the purpose of the present invention.
Claims (1)
ビームを重畳して水分を検すべき汚泥の表面に照射し、
その反射光のスペクトルを分析して汚泥の含水率を測定
する方法に於て、被測定点の汚泥をレーザビームで加熱
し水蒸気を発生せしめつゝ含水率測定を行なうことを特
徴とする汚泥含水率測定方法。 2)加熱用レーザビームが測定用レーザビームを兼ねる
特許請求の範囲第1項記載の汚泥含水率測定方法。 3)加熱用レーザビームが測定用レーザビームとは別異
に設けられる特許請求の範囲第1項記載の汚泥含水率測
定方法。 4)加熱用レーザビームがパルス状に断続する特許請求
の範囲第1項ないし第3項のうちいずれか一に記載の汚
泥含水率測定方法。[Claims] 1) At least two laser beams having different water absorption rates are superimposed and irradiated onto the surface of sludge whose water content is to be tested;
In the method of measuring the water content of sludge by analyzing the spectrum of the reflected light, the sludge water content is measured by heating the sludge at a measurement point with a laser beam to generate water vapor. Rate measurement method. 2) The sludge water content measuring method according to claim 1, wherein the heating laser beam also serves as a measuring laser beam. 3) The sludge water content measuring method according to claim 1, wherein the heating laser beam is provided separately from the measurement laser beam. 4) The sludge water content measuring method according to any one of claims 1 to 3, wherein the heating laser beam is intermittent in a pulsed manner.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61070709A JPS62228934A (en) | 1986-03-31 | 1986-03-31 | Method for measuring moisture content of sludge |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61070709A JPS62228934A (en) | 1986-03-31 | 1986-03-31 | Method for measuring moisture content of sludge |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS62228934A true JPS62228934A (en) | 1987-10-07 |
Family
ID=13439379
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61070709A Pending JPS62228934A (en) | 1986-03-31 | 1986-03-31 | Method for measuring moisture content of sludge |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62228934A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03199942A (en) * | 1989-12-27 | 1991-08-30 | Chino Corp | Coating-amount measuring apparatus |
JPH03117750U (en) * | 1990-03-15 | 1991-12-05 | ||
JPH04286939A (en) * | 1991-03-15 | 1992-10-12 | Shokuhin Sangyo Online Sensor Gijutsu Kenkyu Kumiai | Method and apparatus for continuously measuring moisture |
JPH04286938A (en) * | 1991-03-15 | 1992-10-12 | Shokuhin Sangyo Online Sensor Gijutsu Kenkyu Kumiai | Method and apparatus continuously measuring moisture |
JP2015148600A (en) * | 2014-01-07 | 2015-08-20 | パナソニック インテレクチュアル プロパティ コーポレーション オブアメリカPanasonic Intellectual Property Corporation of America | Component measuring apparatus and moving body |
-
1986
- 1986-03-31 JP JP61070709A patent/JPS62228934A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03199942A (en) * | 1989-12-27 | 1991-08-30 | Chino Corp | Coating-amount measuring apparatus |
JPH03117750U (en) * | 1990-03-15 | 1991-12-05 | ||
JPH04286939A (en) * | 1991-03-15 | 1992-10-12 | Shokuhin Sangyo Online Sensor Gijutsu Kenkyu Kumiai | Method and apparatus for continuously measuring moisture |
JPH04286938A (en) * | 1991-03-15 | 1992-10-12 | Shokuhin Sangyo Online Sensor Gijutsu Kenkyu Kumiai | Method and apparatus continuously measuring moisture |
JP2015148600A (en) * | 2014-01-07 | 2015-08-20 | パナソニック インテレクチュアル プロパティ コーポレーション オブアメリカPanasonic Intellectual Property Corporation of America | Component measuring apparatus and moving body |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR960042049A (en) | Optical measuring method and optical measuring device | |
WO2005022112A8 (en) | Method and apparatus for the detection of terahertz radiation absorption | |
JPS57186169A (en) | Detector for particle coagulation pattern | |
JPS62228934A (en) | Method for measuring moisture content of sludge | |
JP6668841B2 (en) | Laser gas analyzer | |
US5786887A (en) | Atomic absorption spectrophotometer and atomic absorption spectrochemical analysis | |
JPS5630630A (en) | Foreign matter detector | |
JP2008256440A (en) | Analyzer | |
US11977026B2 (en) | Far-infrared spectroscopy device and far-infrared spectroscopy method | |
JP7141057B2 (en) | Concentration measuring device and concentration measuring method | |
JPS6312527B2 (en) | ||
JPH07306139A (en) | Method and instrument for measuring concentration of component, etc., of liquid sample | |
GB2300476A (en) | Pyrometer with laser emissivity measurement | |
JPH112604A (en) | Method and device for analyzing element | |
JPS61228637A (en) | Method and device for temperature measurement of semiconductor substrate | |
US5357334A (en) | Spectroanalyzer correcting for deterioration of transmissibility | |
JPH0875651A (en) | Method for emission spectrochemical analysis by laser | |
WO2022138464A1 (en) | Water leakage sensor | |
JPS5566060A (en) | Bar-code detection circuit | |
CN111307733B (en) | Atomic absorption spectrophotometer | |
JPS5752807A (en) | Device for measuring film thickness | |
JP2004101478A (en) | Simultaneous and optical measurement method using multiple light, and apparatus for the same | |
JPS5646404A (en) | Measuring device of optical film thickness | |
JPS5669606A (en) | Focus detector | |
JPH06273330A (en) | Turbidimeter |