JPS61228637A - Method and device for temperature measurement of semiconductor substrate - Google Patents

Method and device for temperature measurement of semiconductor substrate

Info

Publication number
JPS61228637A
JPS61228637A JP6955285A JP6955285A JPS61228637A JP S61228637 A JPS61228637 A JP S61228637A JP 6955285 A JP6955285 A JP 6955285A JP 6955285 A JP6955285 A JP 6955285A JP S61228637 A JPS61228637 A JP S61228637A
Authority
JP
Japan
Prior art keywords
light
light emitting
temperature
semiconductor substrate
wafer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6955285A
Other languages
Japanese (ja)
Other versions
JPH0523375B2 (en
Inventor
Takatoshi Chiba
隆俊 千葉
Hideyuki Teraoka
寺岡 秀行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dainippon Screen Manufacturing Co Ltd
Original Assignee
Dainippon Screen Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dainippon Screen Manufacturing Co Ltd filed Critical Dainippon Screen Manufacturing Co Ltd
Priority to JP6955285A priority Critical patent/JPS61228637A/en
Publication of JPS61228637A publication Critical patent/JPS61228637A/en
Publication of JPH0523375B2 publication Critical patent/JPH0523375B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor

Abstract

PURPOSE:To effect the temperature measurement of a wafer without contact with the wafer accurately and to eliminate the need of any process for a heat reactor itself by detecting the quantity of transmitted light by irradiating a surface of the wafer with the temperature measuring light of necessary wavelength. CONSTITUTION:A surface of a semiconductor substrate 1 in a heat reactor 3 is irradiated with the temperature measuring light of necessary wavelength to detect the quantity of transmitted light. Then the temperature is worked out from the light transmittance characteristic of the semiconductor substrate. For example, one end of a light emitting means and that of a light accepting means are arranged oppositely above and under the heat reactor 3. The light emitting means is composed of a light emitting element 11 such as a light emitting diode, an optical fiber 12, and a collimater lens 13, and the light accepting means is composed of a condenser lens 18, an optical fiber 17, an optical filter 19, a lens 20 and a light accepting element 16 such as Ge photo diode. The influence of the light energy radiated from a light source or walls of the heat reactor is eliminated by switching on and off the light emitting means by a predetermined period.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、半導体基板(以下、「ウェハ」という)の
温度を測定する方法及び装置に関し、特にウェハを加熱
手段によって熱処理する装置において、そのウェハの温
度をウェハに非接触で測定する方法及び装置に関する。
Detailed Description of the Invention (Industrial Application Field) The present invention relates to a method and apparatus for measuring the temperature of a semiconductor substrate (hereinafter referred to as a "wafer"), and particularly to an apparatus for heat-treating a wafer using a heating means. The present invention relates to a method and apparatus for measuring the temperature of a wafer without contacting the wafer.

〔従来の技術〕[Conventional technology]

半導体基板の製造工程で実施される種々の熱処理におい
ては、ウェハの表面温度を正確に測定して熱処理を行な
う必要がある。従来、ウェハの温度測定方法としては1
例えば特開昭56−100412号公報に開示されてい
るように、ウェハの表面に熱電対を当接させてウェハの
表面温度を測定する方法や1国際公開WO301005
22号に係る特許出願公表昭55−500701号公報
に開示されているように、ウェハの熱による導電率の変
化を利用してウェハの温度を測定する方法が知られてい
る。しかしながらこのような従来の測定方法にあっては
、ウェハ表面に測温接点を設けなければならず、この接
触測定に起因してウェハ表面を損傷させてしまうといっ
たことが起こったり、測温接点そのものの温度上昇がウ
ェハ表面温度に影響を与える外乱要因となる等の不都合
がある。
In various heat treatments performed in the manufacturing process of semiconductor substrates, it is necessary to accurately measure the surface temperature of the wafer and perform the heat treatment. Conventionally, the wafer temperature measurement method is 1.
For example, as disclosed in Japanese Patent Application Laid-Open No. 56-100412, there is a method of measuring the surface temperature of a wafer by bringing a thermocouple into contact with the surface of the wafer, and International Publication WO 301005
As disclosed in Japanese Patent Application Publication No. 55-500701 related to No. 22, there is a known method of measuring the temperature of a wafer by utilizing changes in conductivity due to heat of the wafer. However, in such conventional measurement methods, a temperature measurement contact must be provided on the wafer surface, and this contact measurement may damage the wafer surface or damage the temperature measurement contact itself. There are disadvantages such as a rise in temperature becoming a disturbance factor that affects the wafer surface temperature.

そこで本出願人は、ウェハに非接触で、かつ正確にウェ
ハの表面温度を測定する方法として。
Therefore, the applicant proposed a method for accurately measuring the surface temperature of a wafer without contacting the wafer.

特願昭58−240474号明細書や実願昭59−65
931号明細書に記載したように、光照射によって加熱
されるウェハ自体が放射する輻射エネルギーを、フィル
ターを介して検知する方法及びレンズによりウェハ表面
の輻射光のみを集光させて検知する方法を先に提案した
Specification of Japanese Patent Application No. 58-240474 and Utility Application No. 1987-65
As described in the specification of No. 931, there is a method of detecting the radiant energy emitted by the wafer itself heated by light irradiation through a filter, and a method of detecting the radiant energy by focusing only the radiant light on the wafer surface with a lens. I suggested it earlier.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

特願昭58−240474号明細書や実願昭59−65
931号明細書に記載したようなウェハの温度測定方法
においては、ウェハが収容されている熱処理炉内に検知
手段もしくはガイド筒を挿入する必要があり、このため
熱処理炉の壁面に通孔を穿設しなければならず、その加
工に手間を要する。また、熱処理炉の壁面に通孔を穿設
し、その通孔を介して検知手段もしくはガイド筒を炉内
に挿入する方法をとるため。
Specification of Japanese Patent Application No. 58-240474 and Utility Application No. 1987-65
In the wafer temperature measurement method as described in the specification of No. 931, it is necessary to insert a detection means or a guide tube into the heat treatment furnace in which the wafer is housed, and for this purpose, a through hole is drilled in the wall of the heat treatment furnace. The processing requires time and effort. Another method is to provide a through hole in the wall of the heat treatment furnace and insert the detection means or guide cylinder into the furnace through the through hole.

それに起因して熱処理炉内の雰囲気が部位によって変化
することがあり、ウェハの熱処理結果に悪影響を及ぼす
といった問題がある。
As a result, the atmosphere within the heat treatment furnace may change depending on the location, which poses a problem of adversely affecting the results of heat treatment of the wafer.

この発明は、これらの問題点を解決し、ウェハに非接触
で、かつ正確にウェハの温度測定を行ない、しかも熱処
理炉自体には何ら加工を施す必要がないような新規な半
導体基板の温度測定方法及び装置を提供しようとしてな
されたちである。
This invention solves these problems and provides a novel method for temperature measurement of semiconductor substrates that accurately measures the temperature of a wafer without contacting the wafer, and does not require any processing on the heat treatment furnace itself. We have attempted to provide a method and apparatus.

〔問題点を解決するための手段〕[Means for solving problems]

この発明は、半導体の光透過率が照射光の波長によって
変化し、また半導体自体の温度によって変化することを
利用して上記課題の解決を図った。上記原理を利用した
ものとして、光ファイバーの両端にそれぞれ発光及び受
光素子を配設して、その中間に半導体材を連結した構造
のファイバ一温度センサーが、特開昭58−13903
8号公報や特開昭59−168328号公報、「電子材
料J 1983年12月号(p。
This invention aims to solve the above problems by utilizing the fact that the light transmittance of a semiconductor changes depending on the wavelength of irradiated light and also changes depending on the temperature of the semiconductor itself. Utilizing the above principle, a fiber temperature sensor is disclosed in Japanese Patent Laid-Open No. 58-13903, which has a structure in which light emitting and light receiving elements are arranged at both ends of an optical fiber, and a semiconductor material is connected in between.
No. 8, JP-A-59-168328, "Electronic Materials J December 1983 issue (p.

44〜P、49)等に開示されているが、この発明は、
熱処理炉内にウェハを収容し、光源からの光照射によっ
てそのウェハを加熱する熱処理装置におけるウェハの温
度測定方法及び装置に上記原理を応用したものである。
44-P, 49), etc., but this invention
The above principle is applied to a method and apparatus for measuring the temperature of a wafer in a heat treatment apparatus in which a wafer is housed in a heat treatment furnace and the wafer is heated by light irradiation from a light source.

すなわちこの発明に係るウェハの温度測定方法は、ウェ
ハの表面に所要波長の温度測定用光を照射してその透過
光量を検出し、ウェハの光透過率特性からそのウェハの
温度を求めることを特徴とする。
That is, the wafer temperature measurement method according to the present invention is characterized in that the surface of the wafer is irradiated with temperature measurement light of a required wavelength, the amount of transmitted light is detected, and the temperature of the wafer is determined from the light transmittance characteristics of the wafer. shall be.

またこの発明に係るウェハの温度測定装置は。Further, there is a wafer temperature measuring device according to the present invention.

ウェハの表面及び裏面に互いに対向させて発光手段及び
受光手段を付設し、それら発光手段及び受光手段と、そ
の受光手段からの出力信号に基づくウェハの光透過率特
性からウェハの温度を求める手段とによりウェハ温度の
検知手段を構成したことを特徴とする。より具体的な構
成を言えば、上記発光手段からの光を所定の周期(周波
数)でもって点滅させる手段が配設され、他方受光手段
には、それからの出力信号の直流成分を除去する回路が
接続される。
A means for determining the temperature of the wafer from a light transmittance characteristic of the wafer based on an output signal from the light emitting means and the light receiving means and an output signal from the light emitting means and the light receiving means. The present invention is characterized in that the wafer temperature detection means is constructed by the following. More specifically, means for blinking the light from the light emitting means at a predetermined period (frequency) is provided, and the light receiving means is provided with a circuit for removing the DC component of the output signal from the light receiving means. Connected.

(作  用〕 この発明に係るウェハの温度測定方法及び装置において
は9発光手段によってウェハの表面に温度測定用光を照
射し、その透過光量を受光手段によって検出し、受光手
段から出力される信号により、ウェハの温度に対応して
変化する光透過率特性を検知し、その光透過率特性から
ウェハの温度を求めるものであり、ウェハに非接触でウ
ェハの温度を測定することができる。
(Function) In the wafer temperature measuring method and apparatus according to the present invention, temperature measuring light is irradiated onto the surface of the wafer by the light emitting means, the amount of transmitted light is detected by the light receiving means, and a signal is output from the light receiving means. This detects the light transmittance characteristics that change in response to the wafer temperature, and determines the wafer temperature from the light transmittance characteristics, making it possible to measure the wafer temperature without contacting the wafer.

以下に第2図及び第3図を参照しながら、ウェハの光透
過率の変化からウェハの温度変化を求める方法について
詳説する。
The method for determining the temperature change of the wafer from the change in the light transmittance of the wafer will be explained in detail below with reference to FIGS. 2 and 3.

半導体に、その半導体の禁制帯幅(エネルギーギャップ
)Egに相当もしくはそれ以上のエネルギーの光を照射
すると、半導体内部の励起に起因して固有吸収が起こる
。このときの光の波長λ。は、λ。=hc/Eg(但し
、hはブランク定数、Cは光速)で表わされる。ここで
、禁制帯幅Egは半導体の種類によって異なり、また半
導体の温度が高くなる程小さくなる。従って、固有吸収
波長λ。も半導体の種類によって異なり、また半導体の
温度の上昇に伴って長波長側へシフトすることになる。
When a semiconductor is irradiated with light having an energy equivalent to or greater than the forbidden band width (energy gap) Eg of the semiconductor, intrinsic absorption occurs due to excitation inside the semiconductor. The wavelength λ of the light at this time. is λ. =hc/Eg (where h is a blank constant and C is the speed of light). Here, the forbidden band width Eg differs depending on the type of semiconductor, and becomes smaller as the temperature of the semiconductor increases. Therefore, the characteristic absorption wavelength λ. varies depending on the type of semiconductor, and shifts to longer wavelengths as the temperature of the semiconductor increases.

半導体による光の吸収は、この固有吸収波長λ。を境と
して。
The absorption of light by a semiconductor is at this specific absorption wavelength λ. as a boundary.

そのλ。よりわずかに短波長側にずれるに従って急激に
増加し、ついには半導体中を光がほとんど透過しなくな
る。一方、固有吸収波長λ1より長波長の光に対しては
、半導体による光の吸収はほとんどなくなり、半導体は
ほぼ透明な状態となる。
Its λ. It increases rapidly as the wavelength shifts slightly to the shorter wavelength side, until almost no light passes through the semiconductor. On the other hand, for light having a wavelength longer than the characteristic absorption wavelength λ1, the semiconductor absorbs almost no light, and the semiconductor becomes almost transparent.

第2図は、シリコンにおける光の波長と透過率との関係
、並びに固有吸収波長の温度特性を表わすグラフである
0図において、例えば曲線T1は、絶対温度T工=O’
 Kの場合の透過率変化を示し、この温度では波長1.
07μm以下の光はほとんどシリコンに吸収され、波長
1゜09μm以上の光はほとんど透過してしまう。
FIG. 2 is a graph showing the relationship between the wavelength of light and the transmittance in silicon, as well as the temperature characteristics of the intrinsic absorption wavelength.
It shows the change in transmittance in the case of K, and at this temperature, the wavelength is 1.
Most of the light with a wavelength of 0.07 μm or less is absorbed by silicon, and most of the light with a wavelength of 1.09 μm or more is transmitted.

また曲線T、は、絶対温度T、=600”Kの場合の透
過率変化を示し、この温度では波長1゜17μm以下の
光はほとんどシリコンに吸収され、波長1.19μm以
上の光はほどんど透過する。
In addition, curve T shows the change in transmittance when the absolute temperature T is 600"K; at this temperature, most of the light with a wavelength of 1°17 μm or less is absorbed by silicon, and the light with a wavelength of 1.19 μm or more is almost completely absorbed by silicon. To Penetrate.

第3図は、シリコン基板の表面に発光素子によフて光照
射し、その透過光を受光素子によって検知する場合にお
ける光の波長と発光及び受光強度との関係を表わすグラ
フである6図において1曲線aは発光素子の強度分布、
曲線すは受光素子の強度分布、曲線Cは発光素子と受光
素子との間に介在されたシリコン基板の温度T、=60
0@Kにおける光透過率変化をそれぞれ示しており、ま
た斜線部分Aは、発光素子から照射された光のうち、シ
リコン基板を透過。
Figure 3 is a graph showing the relationship between the wavelength of light and the intensity of light emitted and received light when the surface of a silicon substrate is irradiated with light by a light emitting element and the transmitted light is detected by a light receiving element. 1 curve a is the intensity distribution of the light emitting element,
The curve S represents the intensity distribution of the light-receiving element, and the curve C represents the temperature T of the silicon substrate interposed between the light-emitting element and the light-receiving element, = 60
Each shows the change in light transmittance at 0@K, and the shaded area A shows the light emitted from the light emitting element that is transmitted through the silicon substrate.

する光量を示している。そして、受光素子の強度分布は
発光素子の強度分布に比べて一般に広い波長域を有して
いることから、発光素子が発光する光をシリコン基板に
照射し、その光のうちシリコン基板を透過した光量を受
光素子によって検知すれば、シリコン基板の、その温度
における光透過率特性を知ることができ、その光透過率
特性からシリコン基板の温度を求めることができること
となる。例えば第3図において、発光素子の強度分布曲
線aとシリコン基板の温度T3における透過率曲線Cと
により囲まれた斜線部分Aが示す光透過率特性を受光素
子が検知し、その信号を出力すると、その出力信号は温
度が上昇するほど低下するため、その関係を予めキャリ
プレートしておけば出力信号値に対応させて温度指示計
にシリコン基板の温度を表示させるようにすることがで
きる。
It shows the amount of light. Since the intensity distribution of the light-receiving element generally has a wider wavelength range than that of the light-emitting element, the light emitted by the light-emitting element is irradiated onto the silicon substrate, and some of the light is transmitted through the silicon substrate. By detecting the amount of light with a light receiving element, the light transmittance characteristics of the silicon substrate at that temperature can be known, and the temperature of the silicon substrate can be determined from the light transmittance characteristics. For example, in FIG. 3, when the light receiving element detects the light transmittance characteristic indicated by the shaded area A surrounded by the intensity distribution curve a of the light emitting element and the transmittance curve C at the temperature T3 of the silicon substrate, and outputs the signal. Since the output signal decreases as the temperature rises, if the relationship is calibrated in advance, the temperature indicator can display the temperature of the silicon substrate in correspondence with the output signal value.

以上のようにしてウェハ(シリコン基板等)の温度測定
が行なわれる。
The temperature of a wafer (silicon substrate, etc.) is measured in the manner described above.

次に1発光手段に発振回路を接続して発光手段を所定の
周期で点滅させ、他方受光手段に同期整流回路を接続し
て受光手段からの出力信号を前記発振回路の周期に同期
させて整流する場合は、周期的変化がほとんどない加熱
用光源か−らの光や加熱された熱処理炉、ウェハ等から
放射される光といった測定月光以外の光については、受
光手段の出力信号のうちからその部分の信号は遮断され
1発光手段からの光についての信号のみを取り出すこと
ができる。
Next, an oscillation circuit is connected to one light emitting means to blink the light emitting means at a predetermined period, and a synchronous rectification circuit is connected to the other light receiving means to synchronize and rectify the output signal from the light receiving means with the period of the oscillation circuit. In this case, for light other than measurement moonlight, such as light from a heating light source with almost no periodic changes or light emitted from a heated heat treatment furnace, wafer, etc., the output signal of the light receiving means is determined. The signals of the parts are blocked, and only the signal regarding the light from one light emitting means can be taken out.

〔実 施 例〕〔Example〕

以下、図面を参照しながらこの発明の実施例について説
明する。
Embodiments of the present invention will be described below with reference to the drawings.

第1図は、この発明の1実施例である半導体基板の温度
測定装置の概略構成を熱処理炉の模式図とともに示すブ
ロック図である。  ゛熱処理炉(3)は石英ガラスか
らなり、その上下両面には互いに対向してハロゲンラン
プ等の加熱用光源(4)が列設され、各加熱用光源(4
)の背後には、反射板(5)が設けられている。熱処理
炉(3)の内部には、シリコン基板等のウェハ(1)が
支持器(2)上に載置されて収容されている。支持器(
2)は熱処理炉(3)と同様石英ガラスからなり、アー
ム(6)を介して図示しない駆動装置によって熱処理炉
(3)へ搬入され均一加熱するよう水平に往復移動され
るようになっている。また熱処理炉(3)の−側面は、
炉壁(7)によって開閉自在とされており、その開口を
介してウェハ(1)の搬入及び搬出が行なわれる。
FIG. 1 is a block diagram showing a schematic configuration of a temperature measuring device for a semiconductor substrate, which is an embodiment of the present invention, together with a schematic diagram of a heat treatment furnace.゛The heat treatment furnace (3) is made of quartz glass, and heating light sources (4) such as halogen lamps are arranged in rows on both upper and lower surfaces of the furnace, facing each other.
) is provided with a reflective plate (5). A wafer (1) such as a silicon substrate is placed on a supporter (2) and accommodated inside the heat treatment furnace (3). Support (
Like the heat treatment furnace (3), the heat treatment furnace (3) is made of quartz glass, and is carried into the heat treatment furnace (3) via an arm (6) by a drive device (not shown), and is moved back and forth horizontally to uniformly heat the furnace. . In addition, the negative side of the heat treatment furnace (3) is
It can be opened and closed by the furnace wall (7), and wafers (1) are loaded and unloaded through the opening.

熱処理炉(3)の上方及び下方には、互いに対向して発
光手段及び受光手段の一端が配設されている0発光手段
は、発光ダイオード(LED)等の発光素子(11)、
この発光素子(11)を一端に連結し、他端が熱処理炉
(3)の上面に導かれた光ファイバー(12)、及び光
ファイバー(12)のその他端に配置されたコリメータ
ーレンズ(13)から構成されている。尚、かかるコリ
メーターレンズ(13)により、光ファイバー(12)
から照射した光はほとんど拡がることなく、はぼ平行と
なる。
Above and below the heat treatment furnace (3), a light emitting means and one end of a light receiving means are arranged facing each other.The light emitting means includes a light emitting element (11) such as a light emitting diode (LED),
This light emitting element (11) is connected to one end of an optical fiber (12), the other end of which is guided to the top surface of a heat treatment furnace (3), and a collimator lens (13) arranged at the other end of the optical fiber (12). It is configured. Note that the collimator lens (13) allows the optical fiber (12) to
The light emitted from the surface hardly spreads and becomes almost parallel.

他方受光手段は、一端が熱処理炉(3)の下面に導かれ
、光ファイバー(12)の端面に対向して配設された光
ファイバー(17) 、この光ファイバー (17)の
他端に対向配置され、1.0μm以下及び1.5μm以
上の波長域の不要な光を遮断する光学フィルター(19
)、レンズ(20)、及び例えばGeフォトダイオード
や、PbS光導電セル等の受光素子(16)などから構
成されている。
On the other hand, the light receiving means includes an optical fiber (17) whose one end is guided to the lower surface of the heat treatment furnace (3) and which is disposed opposite to the end surface of the optical fiber (12), and which is disposed opposite to the other end of the optical fiber (17). Optical filter (19
), a lens (20), and a light receiving element (16) such as a Ge photodiode or a PbS photoconductive cell.

尚、光ファイバー(17)の熱処理炉(3)側の一端に
は必要に応じて図示のようにコンデンサーレンズ(18
)を対向配置してもよい。
A condenser lens (18) may be attached to one end of the optical fiber (17) on the heat treatment furnace (3) side as shown in the figure, if necessary.
) may be placed facing each other.

尚、光学フィルター(19)は、ウエノX(1)の温度
測定に不要な波長域の光を遮断することにより、正確な
温度測定の障害となる加熱用光源(4)や炉壁からの光
の影響を少しでも排除して測定精度を向上するために設
置したものである。
The optical filter (19) blocks light in wavelength ranges that are unnecessary for temperature measurement of Ueno This was installed to improve measurement accuracy by eliminating the effects of

さらに、あまり広い波長域よりも、ウェハ(1)の温度
測定に有用な波長域になるべく限定した光を、受光素子
(16)へ入射するようにした方が、より高感度にウェ
ハ(1)の温度測定ができるとの理由に基づいて設置し
たものである。尚、受光素子(16)として、例えばG
eフォトダイオードのように1.5〜1.6μm以上の
波長域の光に対して、はとんど感知しないものには、光
学フィルター(19)を用いる必要はない。
Furthermore, rather than using a too wide wavelength range, it is better to limit the wavelength range useful for measuring the temperature of the wafer (1) to the light receiving element (16) so that the wafer (1) can be measured with higher sensitivity. It was installed based on the reason that it was possible to measure the temperature of In addition, as the light receiving element (16), for example, G
It is not necessary to use an optical filter (19) for a device such as an e-photodiode that hardly detects light in a wavelength range of 1.5 to 1.6 μm or more.

ところで、この発明に係る温度測定方法及び装置は、ウ
ェハ(1)の表面に測定用光を照射し、その透過光を検
知することによってウェハ(1)の温度を測定するもの
であるが、熱処理炉(3)の加熱用光源(4)において
も、被処理基板1例えばシリコン基板等のウェハが吸収
しやすい1〜2μmの波長域の光を照射するハロゲンラ
ンプを使用している。また熱処理炉(3)の壁面は石英
ガラス製であり、0.5〜4μmの光をよく透過する。
By the way, the temperature measuring method and device according to the present invention measure the temperature of the wafer (1) by irradiating the surface of the wafer (1) with measurement light and detecting the transmitted light. The heating light source (4) of the furnace (3) also uses a halogen lamp that emits light in a wavelength range of 1 to 2 μm that is easily absorbed by the substrate to be processed 1, for example, a wafer such as a silicon substrate. Further, the wall surface of the heat treatment furnace (3) is made of quartz glass and transmits light of 0.5 to 4 μm well.

このため受光素子(16)には発光手段からの測定月光
以外の温度測定の邪魔になる光も入り込むこととなる。
Therefore, light that interferes with temperature measurement other than the measurement moonlight from the light emitting means also enters the light receiving element (16).

それら不要な光による悪影響を排除し、ウェハ(1)の
温度測定を正確に行なうことが望ましく、本実施例にお
いて、かかる悪影響を排除するための手段とその動作に
ついて、第4図(1)〜(V)を参照しながら、以下に
説明する。
It is desirable to eliminate the harmful effects of unnecessary light and accurately measure the temperature of the wafer (1). This will be explained below with reference to (V).

発光素子(11)には増幅器(15)を介して発振回路
(14)が接続されている。この発振回路(14)の・
出力は第4図(1)の線(イ)に示す如きであり。
An oscillation circuit (14) is connected to the light emitting element (11) via an amplifier (15). This oscillation circuit (14)
The output is as shown by line (a) in FIG. 4(1).

その働きによって発光素子(11)は、数百〜数十KH
zの所定周波数で点滅を繰り返す0発光手段からウェハ
(1)の表面に投光され、ウェハ(1)を透過した光を
受けた受光素子(16)からの出力は第4図(II)に
曲線(ロ)で表わすような交流状となる。尚、曲線(ロ
)で表わされる出力信号中には、光1(4)からの光、
加熱された熱処理炉(3)の壁面、支持器(2)及びウ
ェハ(1)から輻射される光、並びにそれらの光のウェ
ハ(1)の透過光などに基づく不要な出力が含まれてい
る。
Due to its function, the light emitting element (11) can generate several hundred to several tens of KH.
Figure 4 (II) shows the output from the light receiving element (16) that receives the light emitted from the light emitting means that repeats blinking at a predetermined frequency of z onto the surface of the wafer (1) and that passes through the wafer (1). It becomes an alternating current shape as shown by the curve (b). Note that the output signal represented by the curve (b) includes light from light 1 (4),
Contains unnecessary output based on light radiated from the heated heat treatment furnace (3) wall, support (2), and wafer (1), as well as light transmitted through the wafer (1), etc. .

ここで、加熱用光源(4)からの光、諸々の輻射光など
は昇温降温による時間的変化はあるものの1周波数が数
KHzの発光素子(11)からの点滅光に比べるとそれ
らはほとんど無視できる程度の周期的変化である。そこ
で発光素子(16)の出力側には、増幅II(21)を
介してコンデンサー (22)が接続され、このコンデ
ンサー(22)によって発光素子(16)から出力され
る信号中に含まれる直流成分を遮断して交流成分だけの
信号を取り出すコンデンサー(22)には、発振回路(
14)の発振周波数を中心周波数とする同調増幅器(2
3)が接続され、出力信号のうち直流成分及び周期的変
化の少ない部分は遮断され、第4図(III)の曲線(
ハ)に示すように、光源(4)からの光や加熱された熱
処理炉(3)、ウェハ(1)等から輻射される光のよう
に1周期的変化の少ない光に基づく信号分が遮断される
。そして発光素子(11)から照射され、ウェハ(1)
を透過した光に基づく高周波の交流信号分のみが取り出
されることとなる。同調増幅器(23)にはさらに、発
振回路(14)に同期して出力信号を全波整流する同期
整流回路(24)、及び信号中に含まれる不要な交流成
分や雑音を排除する低域ろ波回路(25)が接続され、
同期整流回路(24)では、同調増幅器(23)からの
信号を同期整流して第4図(TV)の曲線(ニ)で表わ
されるようにし、低域ろ波回路(25)では不要な交流
成分及び雑音が除去され。
Here, although the light from the heating light source (4) and various radiant lights change over time due to temperature rise and fall, they are almost constant compared to the blinking light from the light emitting element (11) whose frequency is several KHz. This is a negligible periodic change. Therefore, a capacitor (22) is connected to the output side of the light emitting element (16) via an amplifier II (21), and this capacitor (22) absorbs the DC component contained in the signal output from the light emitting element (16). An oscillation circuit (
A tuned amplifier (2) whose center frequency is the oscillation frequency of (14)
3) is connected, and the DC component and parts with small periodic changes in the output signal are cut off, resulting in the curve (III) in Figure 4 (III).
As shown in c), signals based on light that does not change periodically, such as light from the light source (4), light radiated from the heated heat treatment furnace (3), wafer (1), etc., are blocked. be done. The light emitting element (11) then illuminates the wafer (1).
Only the high frequency alternating current signal based on the light that has passed through is extracted. The tuned amplifier (23) further includes a synchronous rectifier circuit (24) that performs full-wave rectification of the output signal in synchronization with the oscillation circuit (14), and a low-frequency filter that eliminates unnecessary AC components and noise contained in the signal. The wave circuit (25) is connected,
The synchronous rectifier circuit (24) synchronously rectifies the signal from the tuned amplifier (23) as shown by curve (d) in Figure 4 (TV), and the low-pass filter circuit (25) removes unnecessary alternating current. components and noise are removed.

第4図(V)の線(ホ)で表わされる直流成分のみの出
力が取り出される。そして曲線(ホ)Kt;$1で1例
えば時刻t、における出力V、は1例えば第3図の斜線
部分Aを示すものであり、その出力値v8に応じて温度
指示器(26)によりウェハ(1)の温度が表示される
こととなる。その第4図(V)の線(ホ)で表わす各時
刻における出力値の変化は、第2図に示したようにシリ
コン基板等のウェハの光透過率特性が温度によって変化
することに対応したものである。ちなみに、ウェハの温
度が上昇するにつれ、第2図示のように短い波長の光を
透過しにくくなり、第3図にて斜線部分Aで示す面積(
ウェハを透過した光量)が減少するから、第4図(V)
の線(ホ)は右下りとなるのである。また、ウェハの種
類が異なれば、その半導体における固有吸収波長λ。
The output of only the DC component represented by the line (E) in FIG. 4(V) is taken out. Curve (e) Kt: $1, for example, the output V at time t is 1, for example, the shaded area A in FIG. The temperature of (1) will be displayed. The change in the output value at each time indicated by the line (E) in Figure 4 (V) corresponds to the change in the optical transmittance characteristics of a wafer such as a silicon substrate depending on the temperature, as shown in Figure 2. It is something. Incidentally, as the temperature of the wafer rises, it becomes difficult for light with short wavelengths to pass through as shown in Figure 2, and the area shown by the shaded area A in Figure 3 (
Since the amount of light transmitted through the wafer decreases, the amount of light transmitted through the wafer decreases.
The line (E) slopes downward to the right. Also, if the type of wafer is different, the characteristic absorption wavelength λ of the semiconductor will be different.

の温度依存性が異なり、従って第2図におけるTL、T
、、T3等の各温度の値も当然のことながら変わること
となる。
The temperature dependence of TL and T in FIG.
, , T3, etc., will of course also change.

また図示した実施例のように発光手段自体を点滅させる
に限らず1例えば発光手段の光源としてシリコン基板等
のウェハの吸収波長域の光を含むタングステンランプを
用い、その光源と光ファイバーとの間にメカニカルチョ
ッパーを介設し、そのチョッパーをチョッパー駆動手段
によって駆動させて数KHzの周波数で光源からの光を
遮断及び通過させるようにしてもよい。
In addition to blinking the light emitting means itself as in the illustrated embodiment, for example, a tungsten lamp containing light in the absorption wavelength range of a wafer such as a silicon substrate may be used as the light source of the light emitting means, and the light source may be connected to an optical fiber. A mechanical chopper may be provided, and the chopper may be driven by chopper driving means to block and pass light from the light source at a frequency of several KHz.

尚1発光用及び受光用の光ファイバー(12)、(17
)の熱処理炉(3)側端部の取付位置は、必ずしも熱処
理炉(3)の外壁表面である必要はなく。
1. Optical fibers (12) and (17) for emitting and receiving light.
) does not necessarily have to be attached to the outer wall surface of the heat treatment furnace (3).

壁面を貫通させて熱処理炉(3)内に配置してもよく、
また逆に熱処理炉(3)の外壁表面から離して反射板(
5)のすぐ内側に配置しても差し支えない。
It may be placed in the heat treatment furnace (3) by penetrating the wall surface,
Conversely, the reflector (
5) may be placed immediately inside.

さらにまた、発光手段や受光手段に必ずしも光ファイバ
ーを使用する必要はなく、これらを直接熱処理炉に取り
付けてもよい、また、上記実施例にて使用した発光手段
に付設のコリメーターレンズ(13)や、受光手段に付
設の光学フィルター(19)、レンズ(20) 、コン
デンサーレンズ(18)等も必ずしも使用するものでな
く、設計の態様により他のものに代用してもよい、そし
て。
Furthermore, it is not always necessary to use optical fibers as the light emitting means and the light receiving means, and these may be directly attached to the heat treatment furnace. The optical filter (19), lens (20), condenser lens (18), etc. attached to the light receiving means are not necessarily used, and may be replaced with other ones depending on the design aspect.

同調増幅器(23)は、必ずしも発光手段からの光の点
滅周波数のみ同期して増幅する必要はなく。
The tuned amplifier (23) does not necessarily need to synchronize and amplify only the blinking frequency of the light from the light emitting means.

かかる周波数の信号を増幅さえできればよく、受光手段
からの信号がその後段の信号処理に必要とされる強さに
対して十分であれば用いなくてもよい、同期整流回路(
24)や低域ろ波回路(25)も必ずしも必要でなく、
これらを使用しない場合には、例えば第4図(II)の
曲線(ハ)や第4図(rV)の曲線(ニ)の各最大値を
評価検討するようにすればよい。
It is only necessary to amplify the signal of such a frequency, and it is not necessary to use a synchronous rectifier circuit (
24) and low-pass filter circuit (25) are not necessarily necessary,
If these are not used, for example, the maximum values of the curve (c) in FIG. 4 (II) and the curve (d) in FIG. 4 (rV) may be evaluated and studied.

そして、加熱手段も赤外線を含む光を照射する光照射ラ
ンプに限定するものでなく、ウェハを加熱するものであ
れば他のものでもよい。
The heating means is not limited to a light irradiation lamp that irradiates light including infrared rays, but may be any other means as long as it heats the wafer.

〔効  果〕〔effect〕

この発明に係る半導体基板の温度測定方法及び装置は以
上のように構成されているので、次のような諸効果を奏
する。
Since the semiconductor substrate temperature measuring method and device according to the present invention are configured as described above, the following effects can be achieved.

i)ウェハに非接触で、従来法以上の正確な温度測定を
行なうことができる。
i) It is possible to measure temperature more accurately than conventional methods without contacting the wafer.

if)ウェハに非接触であるため、熱処理に際してウェ
ハを揺動もしくは水平面内で回転させなからウェハの温
度を測定することができる。
if) Since there is no contact with the wafer, the temperature of the wafer can be measured without shaking or rotating the wafer in a horizontal plane during heat treatment.

1ii)必らずしも熱処理炉の壁面に孔加工を施さなく
てもウェハの温度測定を非接触で行なうことができる。
1ii) Temperature measurement of the wafer can be performed in a non-contact manner without necessarily forming holes in the wall surface of the heat treatment furnace.

iv)熱処理炉内のウェハに近接してガイド筒やセンサ
ーを付設する必要がないため、熱処理炉内の雰囲気を均
一に保つことができ、温度測定に伴って熱処理効果に悪
影響を及ぼすといった心配がない。
iv) Since there is no need to install a guide tube or sensor close to the wafer in the heat treatment furnace, the atmosphere inside the heat treatment furnace can be maintained uniformly, and there is no need to worry about adverse effects on the heat treatment effect due to temperature measurement. do not have.

V)温度測定装置は、小形、軽量かつ安価に製作するこ
とができる。
V) The temperature measuring device can be made small, lightweight and inexpensive.

そのほか1発光手段を所定の周期で点滅させることによ
って受光手段からの出力信号を交流状とし、それを適宜
処理するようにすれば、熱処理炉の光源や炉壁等から放
射される光エネルギーの影響をなくすことができ、ウェ
ハの温度のみを正確に測定することができる。
In addition, if the output signal from the light receiving means is made into an alternating current state by blinking the light emitting means at a predetermined period, and the signal is processed appropriately, the influence of the light energy emitted from the light source of the heat treatment furnace, the furnace wall, etc. It is possible to accurately measure only the temperature of the wafer.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、この発明の1実施例である半導体基板の温度
測定装置の概略構成を熱処理炉の模式図とともに示すブ
ロック図であり、第2図は。 シリコン半導体における光の波長と透過率と□の関係及
び固有吸収波長の温度特性を表わすグラフ、第3図は、
シリコン基板の表面に光照射しその透過光を検知する場
合における。光の波長と発光及び受光強度との関係を表
わすグラフであり、また第4図(1)〜(V)は、受光
素子に接続の発振回路および受光素子からの出力信号を
種々処理した後における出力信号の様子を表わすグラフ
である。 1・・・半導体基板(ウェハ)3・・・熱処理炉4・・
・加熱用光源     11・・・発光素子12、17
・・・光ファイバー 13・・・コリメーターレンズ 14・・・発振回路1
6・・・受光素子 18・・・コンデンサーレンズ 19・・・光学フィル
ター23・・・同調増幅器     24・・・同期整
流回路25・・・低域ろ波回路 第1図 第2図 第3図
FIG. 1 is a block diagram showing a schematic configuration of a semiconductor substrate temperature measuring device according to an embodiment of the present invention, together with a schematic diagram of a heat treatment furnace. Figure 3 is a graph showing the relationship between the wavelength of light, transmittance, and □ in a silicon semiconductor, and the temperature characteristics of the characteristic absorption wavelength.
In the case where the surface of a silicon substrate is irradiated with light and the transmitted light is detected. 4 is a graph showing the relationship between the wavelength of light and the intensity of light emission and light reception, and FIGS. It is a graph showing the state of an output signal. 1... Semiconductor substrate (wafer) 3... Heat treatment furnace 4...
・Heating light source 11...Light emitting elements 12, 17
...Optical fiber 13...Collimator lens 14...Oscillation circuit 1
6... Light receiving element 18... Condenser lens 19... Optical filter 23... Tuning amplifier 24... Synchronous rectifier circuit 25... Low pass filter circuit Figure 1 Figure 2 Figure 3

Claims (1)

【特許請求の範囲】 1、熱処理炉内に収容され、加熱手段によって熱処理さ
れる半導体基板の温度を測定する半導体基板の温度測定
方法において、半導体基板の表面に所要波長の温度測定
用光を照射してその透過光量を検出し、半導体基板の光
透過率特性からその温度を求めることを特徴とする半導
体基板の温度測定方法。 2、熱処理炉内に収容され、加熱手段によって熱処理さ
れる半導体基板の温度を検知する検知手段を備えてなる
半導体基板の温度測定装置において、前記半導体基板の
表面及び裏面に対向して付設された発光手段及び受光手
段と、発光手段からの光を所定の周波数で点滅させる手
段と、受光手段に接続の直流成分除去回路とからなり、
受光手段からの出力信号に基づく半導体基板の光透過率
特性からその温度を求めることを特徴とする半導体基板
の温度測定装置。 3、発光手段は、発光素子と、この発光素子を一端に連
結した光ファイバーと、この光ファイバーの他端に配置
されたコリメーターレンズとからなる特許請求の範囲第
2項記記載の半導体基板の温度測定装置。 4、発光素子は発光ダイオードである特許請求の範囲第
3項記載の半導体基板の温度測定装置。 5、発光手段は、ランプ及びこのランプを一端に連結し
た光ファイバーからなる特許請求の範囲第2項又は第4
項記載の半導体基板の温度測定装置。 6、発光手段からの光を所定の周波数で点滅させる手段
は、発光手段に接続し、発光手段を点滅制御する発振回
路からなる特許請求の範囲第2項ないし第5項のいずれ
かに記載の半導体基板の温度測定装置。 7、発光手段からの光を所定の周波数で点滅させる手段
は、発光手段と熱処理炉の間に配設されたメカニカルチ
ョッパーからなる特許請求の範囲第2項ないし第5項の
いずれかに記載の半導体基板の温度測定装置。 8、受光手段は、コンデンサーレンズと、このコンデン
サーレンズを一端に配置した光ファイバーと、この光フ
ァイバーの他端に対向配置された光学フィルター及び受
光素子と、その受光素子の出力側に接続された増幅器と
からなる特許請求の範囲第2項記載ないし第5項のいず
れかに記載の半導体基板の温度測定装置。
[Claims] 1. In a method for measuring the temperature of a semiconductor substrate housed in a heat treatment furnace and heat-treated by a heating means, the surface of the semiconductor substrate is irradiated with temperature measurement light of a desired wavelength. A method for measuring the temperature of a semiconductor substrate, comprising detecting the amount of transmitted light and determining the temperature from the light transmittance characteristics of the semiconductor substrate. 2. A temperature measuring device for a semiconductor substrate, which is housed in a heat treatment furnace and includes a detection means for detecting the temperature of a semiconductor substrate heat-treated by a heating means, which is attached opposite to the front and back surfaces of the semiconductor substrate. It consists of a light emitting means, a light receiving means, a means for blinking the light from the light emitting means at a predetermined frequency, and a DC component removal circuit connected to the light receiving means,
A temperature measuring device for a semiconductor substrate, characterized in that the temperature of the semiconductor substrate is determined from the light transmittance characteristics of the semiconductor substrate based on an output signal from a light receiving means. 3. The temperature of the semiconductor substrate according to claim 2, wherein the light emitting means comprises a light emitting element, an optical fiber connected to one end of the light emitting element, and a collimator lens disposed at the other end of the optical fiber. measuring device. 4. The temperature measuring device for a semiconductor substrate according to claim 3, wherein the light emitting element is a light emitting diode. 5. The light emitting means comprises a lamp and an optical fiber connected to one end of the lamp, as claimed in claim 2 or 4.
A temperature measuring device for a semiconductor substrate as described in 1. 6. The means for blinking the light from the light emitting means at a predetermined frequency comprises an oscillation circuit connected to the light emitting means and controlling the blinking of the light emitting means according to any one of claims 2 to 5. Temperature measuring device for semiconductor substrates. 7. The device according to any one of claims 2 to 5, wherein the means for blinking the light from the light emitting means at a predetermined frequency comprises a mechanical chopper disposed between the light emitting means and the heat treatment furnace. Temperature measuring device for semiconductor substrates. 8. The light receiving means includes a condenser lens, an optical fiber with the condenser lens arranged at one end, an optical filter and a light receiving element arranged opposite to each other at the other end of the optical fiber, and an amplifier connected to the output side of the light receiving element. A temperature measuring device for a semiconductor substrate according to any one of claims 2 to 5.
JP6955285A 1985-04-01 1985-04-01 Method and device for temperature measurement of semiconductor substrate Granted JPS61228637A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6955285A JPS61228637A (en) 1985-04-01 1985-04-01 Method and device for temperature measurement of semiconductor substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6955285A JPS61228637A (en) 1985-04-01 1985-04-01 Method and device for temperature measurement of semiconductor substrate

Publications (2)

Publication Number Publication Date
JPS61228637A true JPS61228637A (en) 1986-10-11
JPH0523375B2 JPH0523375B2 (en) 1993-04-02

Family

ID=13406005

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6955285A Granted JPS61228637A (en) 1985-04-01 1985-04-01 Method and device for temperature measurement of semiconductor substrate

Country Status (1)

Country Link
JP (1) JPS61228637A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0214543A (en) * 1988-02-17 1990-01-18 Internatl Standard Electric Corp Method and apparatus for measurement and control of temperature of wafer of thin film
KR20020029453A (en) * 2000-10-13 2002-04-19 조길천 Uncontacted type Thermometry of Semiconductor Surface
KR100997305B1 (en) 2008-06-26 2010-11-29 현대제철 주식회사 Dropping temperature measuring instrument for iron ore and method thereof
JP2010539681A (en) * 2007-09-07 2010-12-16 マットソン テクノロジー インコーポレイテッド Calibration substrate and calibration method
JP2011038802A (en) * 2009-08-06 2011-02-24 Advantest Corp Temperature detector, handler device, testing device, and method for detecting temperature

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59222730A (en) * 1983-06-02 1984-12-14 Toshiba Corp Optical temperature measuring device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59222730A (en) * 1983-06-02 1984-12-14 Toshiba Corp Optical temperature measuring device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0214543A (en) * 1988-02-17 1990-01-18 Internatl Standard Electric Corp Method and apparatus for measurement and control of temperature of wafer of thin film
KR20020029453A (en) * 2000-10-13 2002-04-19 조길천 Uncontacted type Thermometry of Semiconductor Surface
JP2010539681A (en) * 2007-09-07 2010-12-16 マットソン テクノロジー インコーポレイテッド Calibration substrate and calibration method
KR100997305B1 (en) 2008-06-26 2010-11-29 현대제철 주식회사 Dropping temperature measuring instrument for iron ore and method thereof
JP2011038802A (en) * 2009-08-06 2011-02-24 Advantest Corp Temperature detector, handler device, testing device, and method for detecting temperature

Also Published As

Publication number Publication date
JPH0523375B2 (en) 1993-04-02

Similar Documents

Publication Publication Date Title
JP3192161B2 (en) Non-contact measurement method and system for heated object temperature by radiation
US4707138A (en) Color measuring and control device
JPH02256254A (en) Temperature measuring method for semiconductor wafer and semiconductor manufacturing apparatus
JPS60131430A (en) Measuring device of temperature of semiconductor substrate
JPH0214543A (en) Method and apparatus for measurement and control of temperature of wafer of thin film
EP0458388B1 (en) Method and device for measuring temperature radiation using a pyrometer wherein compensation lamps are used
JPS61228637A (en) Method and device for temperature measurement of semiconductor substrate
US6118107A (en) Process and device for in-service measurement of temperature in at least one cooking zone of a cooking area with a glass ceramic plate
JPH03216526A (en) Method of measuring temperature of semiconductor material by light transmission factor
Ahlawat Study of band gap energy and thermal properties of PbI 2 by photoacoustic spectroscopy
JPH0318340B2 (en)
JPH04130746A (en) Radiation thermometer and method for wafer temperature measurement
JPH07502821A (en) Heating control method and device
JPS63198837A (en) Method and device for measuring temperature of semiconductor substrate
JPS614945A (en) Infrared absorption moisture meter with calibrating device
JPH05507356A (en) Object temperature measurement method and device and heating method
JPH01296617A (en) Quartz lamp heating device
SU1619015A1 (en) Method of checking thickness of material
JP4267112B2 (en) Temperature measuring method and temperature measuring device
JPH07318426A (en) Temperature measuring device by raman scattering and method therefor
JPS63182528A (en) Ultraviolet-ray illuminance measuring instrument for ultraviolet-ray irradiating device for optical fiber drawing device
EP0196082B1 (en) Annealing method by irradiation of light beams
JPH09126889A (en) Method and instrument for measuring temperature of semiconductor substrate
JPS6135516A (en) Semiconductor heat processing control method
JPH02132824A (en) Semiconductor manufacturing device