JPH0523375B2 - - Google Patents

Info

Publication number
JPH0523375B2
JPH0523375B2 JP60069552A JP6955285A JPH0523375B2 JP H0523375 B2 JPH0523375 B2 JP H0523375B2 JP 60069552 A JP60069552 A JP 60069552A JP 6955285 A JP6955285 A JP 6955285A JP H0523375 B2 JPH0523375 B2 JP H0523375B2
Authority
JP
Japan
Prior art keywords
light
temperature
wafer
heat treatment
treatment furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60069552A
Other languages
Japanese (ja)
Other versions
JPS61228637A (en
Inventor
Takatoshi Chiba
Hideyuki Teraoka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dainippon Screen Manufacturing Co Ltd
Original Assignee
Dainippon Screen Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dainippon Screen Manufacturing Co Ltd filed Critical Dainippon Screen Manufacturing Co Ltd
Priority to JP6955285A priority Critical patent/JPS61228637A/en
Publication of JPS61228637A publication Critical patent/JPS61228637A/en
Publication of JPH0523375B2 publication Critical patent/JPH0523375B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、半導体基板(以下、「ウエハ」と
いう)の温度を測定する温度測定装置を付設した
加熱装置に関し、特にウエハを加熱手段によつて
熱処理する装置において、そのウエハの温度をウ
エハに非接触で測定する温度測定装置を付設した
加熱装置に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a heating device equipped with a temperature measuring device for measuring the temperature of a semiconductor substrate (hereinafter referred to as a "wafer"), and particularly relates to a heating device that is equipped with a temperature measuring device for measuring the temperature of a semiconductor substrate (hereinafter referred to as a "wafer"), and particularly relates to a heating device that is attached to a temperature measuring device that measures the temperature of a semiconductor substrate (hereinafter referred to as a "wafer"). The present invention relates to a heating device that is equipped with a temperature measuring device that measures the temperature of a wafer without contacting the wafer.

〔従来の技術〕[Conventional technology]

半導体基板の製造工程で実施される種々の熱処
理においては、ウエハの表面温度を正確に測定し
て熱処理を行なう必要がある。従来、ウエハの温
度測定方法としては、例えば特開昭56−100412号
公報に開示されているように、ウエハの表面に熱
電対を当接させてウエハの表面温度を測定する方
法や、国際公開WO80/00522号に係る特許出願
公表昭55−500701号公報に開示されているよう
に、ウエハの熱による導電率の変化を利用してウ
エハの温度を測定する方法が知られている。しか
しながらこのような従来の測定方法にあつては、
ウエハ表面に測温接点を設けなければならず、こ
の接触測定に起因してウエハ表面を損傷させてし
まうといつたことが起こつたり、測温接点そのも
のの温度上昇がウエハ表面温度に影響を与える外
乱要因となる等の不都合がある。
In various heat treatments performed in the manufacturing process of semiconductor substrates, it is necessary to accurately measure the surface temperature of the wafer and perform the heat treatment. Conventionally, wafer temperature measurement methods include a method of measuring the surface temperature of a wafer by bringing a thermocouple into contact with the wafer surface, as disclosed in Japanese Patent Application Laid-Open No. 56-100412, and a method of measuring the surface temperature of a wafer by bringing a thermocouple into contact with the wafer surface, As disclosed in Patent Application Publication No. Sho 55-500701 related to WO80/00522, there is a known method of measuring the temperature of a wafer using changes in conductivity due to heat of the wafer. However, in such conventional measurement methods,
Temperature-measuring contacts must be provided on the wafer surface, and this contact measurement may damage the wafer surface, or the temperature rise of the temperature-measuring contact itself may affect the wafer surface temperature. There are disadvantages such as being a disturbance factor.

そこで本出願人は、ウエハに非接触で、かつ正
確にウエハの表面温度を測定する方法として、特
願昭58−240474号明細書や実願昭59−65931号明
細書に記載したように、光照射によつて加熱され
るウエハ自体が放射する輻射エネルギーを、フイ
ルターを介して検知する方法及びレンズによりウ
エハ表面の輻射光のみを集光させて検知する方法
を先に提案した。
Therefore, the present applicant proposed a method for accurately measuring the surface temperature of a wafer without contacting the wafer, as described in Japanese Patent Application No. 58-240474 and Utility Application No. 59-65931. We have previously proposed a method in which the radiant energy emitted by the wafer itself, which is heated by light irradiation, is detected through a filter, and a method in which only the radiant light from the wafer surface is collected and detected using a lens.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

特願昭58−240474号明細書や実願昭59−65931
号明細書に記載したようなウエハの温度測定方法
においては、ウエハが収容されている熱処理炉内
に検知手段もしくはガイド筒を挿入する必要があ
り、このため熱処理炉の壁面に通孔を穿設しなけ
ればならず、その加工に手間を要する。また、熱
処理炉の壁面に通孔を穿設し、その通孔を介して
検知手段もしくはガイド筒を炉内に挿入する方法
をとるため、それに起因して熱処理炉内の雰囲気
が部位によつて変化することがあり、ウエハの熱
処理結果に悪影響を及ぼすといつた問題がある。
Specification of patent application No. 58-240474 and utility application No. 59-65931
In the wafer temperature measurement method as described in the specification, it is necessary to insert a detection means or a guide tube into the heat treatment furnace in which the wafer is housed, and for this purpose, a through hole is bored in the wall of the heat treatment furnace. This process requires a lot of effort. In addition, since a through hole is drilled in the wall of the heat treatment furnace and the detection means or guide tube is inserted into the furnace through the hole, the atmosphere inside the heat treatment furnace may vary depending on the area. There is a problem in that the temperature may vary and may adversely affect the results of heat treatment of the wafer.

この発明は、これらの問題点を解決し、ウエハ
に非接触で、かつ、加熱用光源からの光などの影
響を受けずに正確にウエハの温度測定を行ない、
しかも熱処理炉自体には何ら加工を施す必要がな
く、また熱処理炉内に温度測定手段を配置する必
要がないような新規な温度測定装置を付設した加
熱装置を提供しようとしてなされたものである。
The present invention solves these problems and accurately measures the temperature of a wafer without contacting the wafer and without being affected by light from a heating light source.
Moreover, this was done in an attempt to provide a heating device equipped with a novel temperature measuring device that does not require any processing on the heat treatment furnace itself, and also eliminates the need to dispose a temperature measuring means within the heat treatment furnace.

〔問題点を解決するための手段〕[Means for solving problems]

この発明は、半導体の光透過率が照射光の波長
によつて変化し、また半導体自体の温度によつて
変化することを利用して上記課題の解決を図つ
た。上記原理を利用したものとして、光フアイバ
ーの両端にそれぞれ発光及び受光素子を配設し
て、その中間に半導体材を連結した構造のフアイ
バー温度センサーが、特開昭58−139038号公報や
特開昭59−168328号公報、「電子材料」1983年12
月号(P.44〜P.49)等に開示されているが、この
発明は、熱処理炉内にウエハを収容し、光源から
の光照射によつてそのウエハを加熱する熱処理装
置におけるウエハの温度測定装置に上記原理を応
用したものである。
This invention aims to solve the above problems by utilizing the fact that the light transmittance of a semiconductor changes depending on the wavelength of irradiated light and also changes depending on the temperature of the semiconductor itself. Using the above principle, a fiber temperature sensor has a structure in which a light emitting element and a light receiving element are arranged at both ends of an optical fiber, and a semiconductor material is connected between them, as disclosed in Japanese Patent Application Laid-open No. 58-139038 and Japanese Patent Application Laid-Open No. Publication No. 59-168328, "Electronic Materials" 1983, 12
This invention is disclosed in the 2011 issue of the 2016 issue of ``A Heat Treatment Furnace'' (P. 44-P. 49), etc., but this invention is a heat treatment apparatus that houses a wafer in a heat treatment furnace and heats the wafer with light irradiation from a light source. This is an application of the above principle to a temperature measuring device.

すなわち、この発明に係る温度測定装置を付設
した加熱装置は、ウエハを挾んで互いに対向する
ように熱処理炉の外部にそれぞれ発光手段及び受
光手段を配設し、それら発光手段及び受光手段
と、その受光手段からの出力信号に基づくウエハ
の光透過率特性からウエハの温度を求める手段と
によりウエハ温度の検知手段を構成したことを特
徴とする。より具体的な構成を言えば、上記発光
手段からの光を所定の周期(周波数)でもつて点
滅させる手段が配設され、他方受光手段には、そ
れからの出力信号の直流成分を除去する回路が接
続される。
That is, a heating device equipped with a temperature measuring device according to the present invention has a light emitting means and a light receiving means disposed outside the heat treatment furnace so as to face each other with the wafer sandwiched between the light emitting means and the light receiving means. The present invention is characterized in that the wafer temperature detection means is constituted by means for determining the temperature of the wafer from the light transmittance characteristics of the wafer based on the output signal from the light receiving means. More specifically, means for blinking the light from the light emitting means at a predetermined period (frequency) is provided, and the light receiving means is provided with a circuit for removing the DC component of the output signal from the light receiving means. Connected.

〔作用〕[Effect]

この発明に係る温度測定装置を付設した加熱装
置においては、発光手段によつてウエハの表面温
度測定用光を照射し、その透過光量を受光手段に
よつて検出し、受光手段から出力される信号によ
り、ウエハの温度に対応し変化する光透過率特性
を検知し、その光透過率特性からウエハの温度を
求めるものであり、ウエハに非接触でウエハの温
度を測定することができる。以下に第2図及び第
3図を参照しながら、ウエハの光透過率の変化か
らウエハの温度変化を求める方法について詳説す
る。
In the heating device equipped with the temperature measuring device according to the present invention, the light emitting means emits light for measuring the surface temperature of the wafer, the amount of transmitted light is detected by the light receiving means, and a signal is output from the light receiving means. This detects the light transmittance characteristics that change in response to the wafer temperature, and determines the wafer temperature from the light transmittance characteristics, making it possible to measure the wafer temperature without contacting the wafer. The method for determining the temperature change of the wafer from the change in the light transmittance of the wafer will be explained in detail below with reference to FIGS. 2 and 3.

半導体に、その半導体の禁制帯幅(エネルギー
ギヤツプ)Egに相当もしくはそれ以上のエネル
ギーの光を照射すると、半導体内部の励起に起因
して固有吸収が起こる。このときの光の波長λ0
λ0=hc/Eg(但し、hはプランク定数、Cは光
速)で表わされる。ここで、禁制帯幅Egは半導
体の種類によつて異なり、また半導体の温度が高
くなる程小さくなる。従つて、固有吸収波長λ0
半導体の種類によつて異なり、また半導体の温度
の上昇に伴つて長波長側へシフトすることにな
る。半導体による光の吸収は、この固有吸収波長
λ0を境として、λ0よりわずかに短波長側にずれる
に従つて急激に増加し、ついには半導体中を光が
ほとんど透過しなくなる。一方、固有吸収波長λ0
より長波長の光に対しては、半導体による光の吸
収はほとんどなくなり、半導体はほぼ透明な状態
となる。
When a semiconductor is irradiated with light with an energy equivalent to or greater than the semiconductor's forbidden band width (energy gap) Eg, intrinsic absorption occurs due to excitation inside the semiconductor. The wavelength λ 0 of the light at this time is expressed as λ 0 =hc/Eg (where h is Planck's constant and C is the speed of light). Here, the forbidden band width Eg differs depending on the type of semiconductor, and becomes smaller as the temperature of the semiconductor increases. Therefore, the characteristic absorption wavelength λ 0 also differs depending on the type of semiconductor, and shifts toward longer wavelengths as the temperature of the semiconductor increases. The absorption of light by a semiconductor sharply increases as the wavelength shifts slightly shorter than λ 0 from this characteristic absorption wavelength λ 0 , until almost no light passes through the semiconductor. On the other hand, the characteristic absorption wavelength λ 0
For light with longer wavelengths, the semiconductor absorbs almost no light, and the semiconductor becomes almost transparent.

第2図は、シリコンにおける光の波長と透過率
との関係、並びに固有吸収波長の温度特性を表わ
すグラフである。図において、例えば曲線T1は、
絶対温度T1=0°Kの場合の透過率変化を示し、こ
の温度では波長1.07μm以下の光はほとんどシリ
コンに吸収され、波長1.09μm以上の光はほとん
ど透過してしまう。また曲線T3は、絶対温度T3
=600°Kの場合の透過率変化を示し、この温度で
は波長1.17μm以下の光はほとんどシリコに吸収
され、波長、1.19μm以上の光はほとんど透過す
る。
FIG. 2 is a graph showing the relationship between the wavelength of light and the transmittance in silicon, as well as the temperature characteristics of the characteristic absorption wavelength. In the figure, for example, the curve T 1 is
The graph shows the change in transmittance when the absolute temperature T 1 =0°K. At this temperature, most of the light with a wavelength of 1.07 μm or less is absorbed by silicon, and most of the light with a wavelength of 1.09 μm or more is transmitted. Also, the curve T 3 is the absolute temperature T 3
It shows the change in transmittance when = 600°K. At this temperature, most of the light with a wavelength of 1.17 μm or less is absorbed by silico, and most of the light with a wavelength of 1.19 μm or more is transmitted.

第3図は、シリコン基板の表面に発光素子によ
つて光照射し、その透過光を受光素子によつて検
知する場合における光の波長と発光及び受光強度
との関係を表わすグラフである。図において、曲
線aは発光素子の強度分布、曲線bは受光素子の
強度分布、曲線cは発光素子と受光素子との間に
介在されたシリコン基板の温度T3=600°Kにおけ
る光透過率変化をそれぞれ示しており、また斜視
部分Aは、発光素子から照射された光のうち、シ
リコン基板を透過する光量を示している。そし
て、受光素子の強度分布は発光素子の強度分布に
比べて一般に広い波長域を有していることから、
発光素子が発光する光をシリコン基板に照射し、
その光のうちシリコン基板を透過した光量を受光
素子によつて検知すれば、シリコン基板の、その
温度における光透過率特性を知ることができる、
その光透過率特性からシリコン基板の温度を求め
ることができることとなる。例えば第3図におい
て、発光素子の強度分布曲線aとシリコン基板の
温度T3における透過率曲線cとにより囲まれた
斜視部分Aが示す光透過率特性を受光素子が検知
し、その信号を出力すると、その出力信号は温度
が上昇するほど低下するため、その関係を予めキ
ヤリブレートしておけば出力信号値に対応させて
温度指示計にシリコン基板の温度を表示させるよ
うにすることができる。
FIG. 3 is a graph showing the relationship between the wavelength of light and the intensity of light emission and light reception when the surface of a silicon substrate is irradiated with light by a light emitting element and the transmitted light is detected by a light receiving element. In the figure, curve a is the intensity distribution of the light emitting element, curve b is the intensity distribution of the light receiving element, and curve c is the light transmittance of the silicon substrate interposed between the light emitting element and the light receiving element at a temperature T 3 = 600°K. Each change is shown, and the perspective part A shows the amount of light transmitted through the silicon substrate out of the light emitted from the light emitting element. Since the intensity distribution of the light-receiving element generally has a wider wavelength range than the intensity distribution of the light-emitting element,
The light emitted by the light emitting element is irradiated onto the silicon substrate,
By detecting the amount of light that has passed through the silicon substrate with a light receiving element, it is possible to know the light transmittance characteristics of the silicon substrate at that temperature.
The temperature of the silicon substrate can be determined from the light transmittance characteristics. For example, in FIG. 3, the light receiving element detects the light transmittance characteristic shown by the oblique part A surrounded by the intensity distribution curve a of the light emitting element and the transmittance curve c at the temperature T3 of the silicon substrate, and outputs the signal. Then, the output signal decreases as the temperature rises, so if this relationship is calibrated in advance, it is possible to have the temperature indicator display the temperature of the silicon substrate in correspondence with the output signal value.

以上のようにしてウエハ(シリコン基板等)の
温度測定が行なわれる。
The temperature of a wafer (silicon substrate, etc.) is measured in the manner described above.

次に、発光手段に発振回路を接続して発光手段
を所定の周期で点滅させ、他方受光手段に同期整
流回路を接続して受光手段からの出力信号を前記
発振回路の周期に同期させて整流する場合は、周
期的変化がほとんどない加熱用光源からの光や加
熱された熱処理炉、ウエハ等から放射される光と
いつた測定用光以外の光については、受光手段の
出力信号のうちからその部分の信号は遮断され、
発光手段からの光についての信号のみを取り出す
ことができる。また、この加熱装置では、発光手
段及び受光手段が熱処理炉の外部にそれぞれ配設
されるため、熱処理炉内には温度測定手段は配置
されず、また熱処理炉自体には何らの加工も施さ
れない。
Next, an oscillation circuit is connected to the light emitting means to blink the light emitting means at a predetermined period, and a synchronous rectification circuit is connected to the light receiving means to synchronize and rectify the output signal from the light receiving means with the period of the oscillation circuit. In this case, light other than measurement light, such as light from a heating light source with almost no periodic changes or light emitted from heated heat treatment furnaces, wafers, etc., is determined from the output signal of the light receiving means. The signal in that area is cut off,
Only the signal regarding the light from the light emitting means can be extracted. Furthermore, in this heating device, since the light emitting means and the light receiving means are respectively arranged outside the heat treatment furnace, no temperature measuring means is placed inside the heat treatment furnace, and no processing is performed on the heat treatment furnace itself. .

〔実施例〕〔Example〕

以下、図面を参照しながらこの発明の実施例に
ついて説明する。
Embodiments of the present invention will be described below with reference to the drawings.

第1図は、この発明の1実施例である温度測定
装置を付設した加熱装置の概略構成を模式的に示
すブロツク図である。
FIG. 1 is a block diagram schematically showing the schematic configuration of a heating device equipped with a temperature measuring device, which is an embodiment of the present invention.

熱処理炉3は石英ガラスからなり、その上下両
面には互いに対向してハロゲンランプ等の加熱用
光源4が列設され、各加熱用光源4の背後には、
反射板5が設けられている。熱処理炉3の内部に
は、シリコン基板等のウエハ1が支持器2上に載
置されて収容されている。支持器2は熱処理炉3
と同様石英ガラスからなり、アーム6を介して図
示しない駆動装置によつて熱処理炉3へ搬入され
均一加熱するよう水平に往複移動されるようにな
つている。また熱処理炉3の一側面は、炉壁7に
よつて開閉自在とされており、その開口を介して
ウエハ1の搬入及び搬出が行なわれる。
The heat treatment furnace 3 is made of quartz glass, and heating light sources 4 such as halogen lamps are arranged in rows on both upper and lower surfaces facing each other, and behind each heating light source 4,
A reflecting plate 5 is provided. Inside the heat treatment furnace 3, a wafer 1 such as a silicon substrate is placed on a supporter 2 and accommodated. The supporter 2 is a heat treatment furnace 3
It is made of quartz glass as well, and is carried into the heat treatment furnace 3 via an arm 6 by a drive device (not shown), and is moved back and forth horizontally so as to uniformly heat it. Further, one side of the heat treatment furnace 3 can be opened and closed by a furnace wall 7, and the wafer 1 is carried in and out through the opening.

熱処理炉3の上方及び下方には、互いに対向し
て発光手段及び受光手段の一端が配設されてい
る。発光手段は、発光ダイオード(LED)等の
発光素子11、この発光素子11を一端に連結
し、他端が熱処理炉3の上面に導かれた光フアイ
バー12、及び光フアイバー12のその他端に配
置されたコリメーターレンズ13から構成されて
いる。尚、かかるコリメーターレンズ13によ
り、光フアイバー12から照射した光はほとんど
拡がることなく、ほぼ平行となる。
Above and below the heat treatment furnace 3, a light emitting means and one end of a light receiving means are arranged facing each other. The light emitting means includes a light emitting element 11 such as a light emitting diode (LED), an optical fiber 12 with one end connected to the light emitting element 11 and the other end guided to the upper surface of the heat treatment furnace 3, and the other end of the optical fiber 12 disposed. It is composed of a collimator lens 13. Note that due to the collimator lens 13, the light emitted from the optical fiber 12 hardly spreads and becomes almost parallel.

他方受光手段は、一端が熱処理炉3の下面に導
かれ、光フアイバー12の端面に対向して配設さ
れた光フアイバー17、この光フアイバー17の
他端に対向配置され、1.0μm以下及び1.5μm以上
の波長域の不要な光を遮断する光学フイルター1
9、レンズ20、及び例えばGeフオトダイオー
ドや、PbS光導電セル等の受光素子16などから
構成されている。尚、光フアイバー17の熱処理
炉3側の一端には必要に応じて図示のようにコン
デンサーレンズ18を対向配置してもよい。
On the other hand, the light receiving means includes an optical fiber 17 whose one end is guided to the lower surface of the heat treatment furnace 3 and is disposed opposite to the end surface of the optical fiber 12; Optical filter 1 that blocks unnecessary light in the wavelength range of μm or more
9, a lens 20, and a light receiving element 16 such as a Ge photodiode or a PbS photoconductive cell. Note that a condenser lens 18 may be disposed opposite to one end of the optical fiber 17 on the heat treatment furnace 3 side as shown in the figure, if necessary.

尚、光学フイルター19は、ウエハ1の温度測
定に不要な波長域の光を遮断することより、正確
な温度測定の障害となる加熱用光源4や炉壁から
の光の影響を少しでも排除して測定精度を向上す
るために設置したものである。さらに、あまり広
い波長域よりも、ウエハ1の温度測定に有用な波
長域になるべく限定した光を、受光素子16へ入
射するようにした方が、より高感度にウエハ1の
温度測定ができるとの理由に基づいて設置したも
のである。尚、受光素子16として、例えばGe
フオトダイオードのように1.5〜1.6μm以上の波
長域の光に対して、ほとんど感知しないものに
は、光学フイルター19を用いる必要はない。
The optical filter 19 blocks light in a wavelength range that is unnecessary for measuring the temperature of the wafer 1, thereby eliminating as much as possible the influence of light from the heating light source 4 and the furnace wall, which may impede accurate temperature measurement. It was installed to improve measurement accuracy. Furthermore, it is believed that the temperature of the wafer 1 can be measured with higher sensitivity by making the light incident on the light receiving element 16 as limited as possible to a wavelength range useful for measuring the temperature of the wafer 1, rather than using a too wide wavelength range. It was established based on the following reasons. In addition, as the light receiving element 16, for example, Ge
It is not necessary to use the optical filter 19 for devices such as photodiodes that hardly detect light in the wavelength range of 1.5 to 1.6 μm or more.

ところで、この発明に係る温度測定装置を付設
した加熱装置は、ウエハ1の表面に測定用光を照
射し、その透過光を検知することによつてウエハ
1の温度を測定するものであるが、熱処理炉3の
加熱用光源4においても、被処理基板、例えばシ
リコン基板等のウエハが吸収しやすい1〜2μm
の波長域の光を照射するハロゲンランプを使用し
ている。また熱処理炉3の壁面は石英ガラス製で
あり、0.5〜4μmの光をよく透過する。このため
受光素子16には発光手段からの測定用光以外の
温度測定の邪魔になる光も入り込むこととなる。
それら不要な光による悪影響を排除し、ウエハ1
の温度測定を正確に行なうことが望ましく、本実
施例において、かかる悪影響を排除するための手
段とその動作について、第4図〜を参照しな
がら、以下に説明する。
By the way, the heating device equipped with the temperature measuring device according to the present invention measures the temperature of the wafer 1 by irradiating the surface of the wafer 1 with measurement light and detecting the transmitted light. The heating light source 4 of the heat treatment furnace 3 also has a 1 to 2 μm diameter that is easily absorbed by the substrate to be processed, such as a wafer such as a silicon substrate.
A halogen lamp that emits light in the wavelength range is used. Further, the wall surface of the heat treatment furnace 3 is made of quartz glass, and transmits light of 0.5 to 4 μm well. Therefore, light that interferes with temperature measurement other than the measurement light from the light emitting means also enters the light receiving element 16.
By eliminating the harmful effects of unnecessary light, the wafer 1
It is desirable to measure the temperature accurately, and in this embodiment, means and operations for eliminating such adverse effects will be described below with reference to FIGS.

発光素子11には増幅器15を介して発振回路
14が接続されている。この発振回路14の出力
は第4図の線イに示す如きであり、その働きに
よつて発光素子11は、数百〜数十KHzの所定周
波数で点滅を繰り返す。発光手段からハウス1の
表面に投光され、ウエハ1を透過した光を受けた
受光素子16からの出力は第4図に曲線ロで表
わすような交流状となる。尚、曲線ロで表わされ
る出力信号中には、光源4からの光、加熱された
熱処理炉3の壁面、支持器2及びウエハ1から輻
射される光、並びにそれらの光のウエハ1の透過
光などに基づく不要な出力が含まれている。
An oscillation circuit 14 is connected to the light emitting element 11 via an amplifier 15. The output of this oscillation circuit 14 is as shown by line A in FIG. 4, and its function causes the light emitting element 11 to repeatedly blink at a predetermined frequency of several hundred to several tens of KHz. The output from the light receiving element 16, which receives the light emitted from the light emitting means onto the surface of the house 1 and transmitted through the wafer 1, becomes an alternating current shape as shown by the curve B in FIG. Note that the output signal represented by curve B includes light from the light source 4, light radiated from the heated wall surface of the heat treatment furnace 3, support 2, and wafer 1, and light transmitted through the wafer 1 of these lights. Contains unnecessary output based on etc.

ここで、加熱用光源4からの光、諸々の輻射光
などは昇温降温による時間的変化はあるものの、
周波数が数百〜数十KHzの発光素子11からの点
滅光に比べるとそれらはほとんど無視できる程度
の周期的変化である。そこで受光素子16出力側
には、増幅器21を介してコンデンサー22が接
続され、このコンデンサー22によつて受光素子
16から出力される信号中に含まれる直流成分を
遮断して交流成分だけの信号を取り出す。コンデ
ンサー22には、発振回路14の発振周波数を中
心周波数とする同調増幅器23が接続され、出力
信号のうち直流成分及び周期的変化の少ない部分
は遮断され、第4図の曲線ハに示すように、光
源4からの光や加熱された熱処理炉3、ウエハ1
等から輻射される光のように、周期的変化の少な
い光に基づく信号分が遮断される。そして発光素
子11から照射され、ウエハ1を透過した光に基
づく高周波の交流信号分のみが取り出されること
となる。同調増幅器23にはさらに、発振回路1
4に同期して出力信号を全波整流する同期整流回
路24、及び信号中に含まれる不要な交流成分や
雑音を排除する低域ろ波回路25が接続され、同
期整流回路24では、同調増幅器23からの信号
を同期整流して第4図の曲線ニで表わされるよ
うにし、低域ろ波回路25では不要な交流成分及
び雑音が除去され、第4図の線ホで表わされる
直流成分のみの出力が取り出される。そして曲線
ホにおいて、例えば時刻t1における出力v1は、例
えば第3図の斜線部分Aを示すものであり、その
出力値v1に応じて温度指示器26によりウエハ1
の温度が表示されることとなる。その第4図の
線ホで表わす各時刻における出力値の変化は、第
2図に示したようにシリコン基板等のウエハの光
透過率特性が温度によつて変化することに対応し
たものである。ちなみに、ウエハの温度が上昇す
るにつれ、第2図示のように短い波長の光を透過
しにくくなり、第3図にて斜線部分Aで示す面積
(ウエハを透過した光量)が減少するから、第4
図の線ホは右下りとなるのである。また、ウエ
ハの種類が異なれば、その半導体における固有吸
収波長λ0の温度依存性が異なり、従つて第2図に
おけるT1、T2、T3等の各温度の値も当然のこと
ながら変わることとなる。
Here, although the light from the heating light source 4 and various radiant lights change over time due to temperature rise and fall,
Compared to the blinking light from the light emitting element 11 whose frequency is several hundred to several tens of KHz, these periodic changes are almost negligible. Therefore, a capacitor 22 is connected to the output side of the light-receiving element 16 via an amplifier 21, and this capacitor 22 blocks the DC component contained in the signal output from the light-receiving element 16 and converts the signal containing only the AC component. Take it out. A tuned amplifier 23 whose center frequency is the oscillation frequency of the oscillation circuit 14 is connected to the capacitor 22, and the DC component and parts with small periodic changes in the output signal are blocked, as shown in curve C in FIG. , the light from the light source 4, the heated heat treatment furnace 3, and the wafer 1
Signals based on light with little periodic variation, such as light radiated from other sources, are blocked. Then, only the high frequency AC signal based on the light emitted from the light emitting element 11 and transmitted through the wafer 1 is extracted. The tuned amplifier 23 further includes an oscillation circuit 1
A synchronous rectifier circuit 24 that performs full-wave rectification of the output signal in synchronization with 4 and a low-pass filter circuit 25 that eliminates unnecessary alternating current components and noise contained in the signal are connected. The signal from 23 is synchronously rectified so as to be represented by curve d in Figure 4, and the low-pass filter circuit 25 removes unnecessary AC components and noise, and only the DC component represented by line HO in Figure 4. The output of is retrieved. In curve E, the output v 1 at time t 1 indicates, for example, the shaded area A in FIG.
The temperature will be displayed. The change in the output value at each time indicated by the line H in Fig. 4 corresponds to the change in the light transmittance characteristics of a wafer such as a silicon substrate depending on the temperature, as shown in Fig. 2. . Incidentally, as the temperature of the wafer rises, it becomes difficult for light with short wavelengths to pass through as shown in Figure 2, and the area shown by the shaded area A in Figure 3 (the amount of light transmitted through the wafer) decreases. 4
The line H in the figure is downward to the right. Furthermore, if the type of wafer is different, the temperature dependence of the characteristic absorption wavelength λ 0 of the semiconductor will be different, and therefore the values of each temperature such as T 1 , T 2 , T 3 in Fig. 2 will naturally change. That will happen.

また図示した実施例のように発光手段自体を点
滅させるに限らず、例えば発光手段の光源として
シリコン基板等のウエハの吸収波長域の光を含む
タングステンランプを用い、その光源と光フアイ
バーとの間にメカニカルチヨツパーを介設し、そ
のチヨツパーをチヨツパー駆動手段によつて駆動
させて数百〜数十KHzの周波数で光源からの光を
遮断及び通過させるようにしてもよい。
In addition to blinking the light emitting means itself as in the illustrated embodiment, for example, a tungsten lamp containing light in the absorption wavelength range of a wafer such as a silicon substrate may be used as the light source of the light emitting means, and the light source may be connected to an optical fiber. A mechanical chopper may be interposed therein, and the chopper may be driven by chopper driving means to block and pass light from the light source at a frequency of several hundred to several tens of KHz.

尚、発光用及び受光用の光フアイバー12,1
7の熱処理炉3側端部の取付位置は、必ずしも熱
処理炉3の外壁表面である必要はなく、熱処理炉
3の外壁表面から離して反射板5のすぐ内側に配
置しても差し支えない。
In addition, optical fibers 12, 1 for emitting light and receiving light
The mounting position of the end portion on the heat treatment furnace 3 side of 7 does not necessarily have to be on the outer wall surface of the heat treatment furnace 3, and may be placed just inside the reflector plate 5 away from the outer wall surface of the heat treatment furnace 3.

さらにまた、発光手段や受光手段に必ずしも光
フアイバーを使用する必要はなく、これらを直接
熱処理炉に取り付けてもよい。また、上記実施例
にて使用した発光手段に付設のコリメーターレン
ズ13や、受光手段に付設の光学フイルター1
9、レンズ20、コンデンサーレンズ18等も必
ずしも使用するものでなく、設計の態様により他
のものに代用してもよい。そして、同調増幅器2
3は、必ずしも発光手段からの光の点滅周波数の
み同調して増幅する必要はなく、かかる周波数の
信号を増幅さえできればよく、受光手段からの信
号がその後段の信号処理に必要とされる強さに対
して十分であれば用いなくてもよい。同期整流回
路24や低域ろ波回路25も必ずしも必要でな
く、これらを使用しない場合には、例えば第4図
の曲線ハや第4図の曲線ニの各最大値を評価
検討するようにすればよい。
Furthermore, it is not always necessary to use optical fibers as the light emitting means and the light receiving means, and these may be directly attached to the heat treatment furnace. In addition, the collimator lens 13 attached to the light emitting means used in the above embodiment, and the optical filter 1 attached to the light receiving means
9, the lens 20, the condenser lens 18, etc. are not necessarily used, and may be replaced with other lenses depending on the design aspect. And tuned amplifier 2
3, it is not necessarily necessary to synchronize and amplify only the blinking frequency of the light from the light emitting means, it is only necessary to amplify the signal of this frequency, and the signal from the light receiving means has the strength required for the subsequent signal processing. It does not need to be used if it is sufficient for The synchronous rectifier circuit 24 and the low-pass filter circuit 25 are not necessarily necessary, and if they are not used, the maximum values of curves C and D in FIG. 4, for example, should be evaluated and considered. Bye.

そして、加熱手段も赤外線を含む光を照射する
光照射ランプに限定するものでなく、ウエハを加
熱するものであれば他のものでもよい。
The heating means is not limited to a light irradiation lamp that irradiates light including infrared rays, but may be any other means as long as it heats the wafer.

〔効果〕〔effect〕

この発明に係る温度測定装置を付設した加熱装
置は以上のように構成されているので、次のよう
な諸効果を奏する。
Since the heating device equipped with the temperature measuring device according to the present invention is configured as described above, it has the following effects.

(i) ウエハに非接触で、従来法以上の正確な温度
測定を行なうことができる。
(i) Temperature measurement can be performed more accurately than conventional methods without contacting the wafer.

(ii) ウエハに非接触であるため、熱処理に際して
ウエハを揺動もしくは水平面内で回転させなが
らウエハの温度を測定することができる。
(ii) Since there is no contact with the wafer, the temperature of the wafer can be measured while the wafer is rocked or rotated in a horizontal plane during heat treatment.

(iii) 熱処理炉の壁面に孔加工を施すなどして熱処
理炉の形状を変更することなく、ウエハの温度
測定を非接触で行なうことができる。
(iii) The temperature of the wafer can be measured in a non-contact manner without changing the shape of the heat treatment furnace, such as by drilling holes in the wall of the heat treatment furnace.

(iv) 熱処理炉内のウエハに近接してガイド筒やセ
ンサーなどの温度測定手段を配設する必要がな
いため、熱処理炉内の雰囲気を均一に保つこと
ができ、温度測定に伴つて熱処理効果に悪影響
を及ぼすといつた心配がない。
(iv) Since there is no need to install temperature measuring means such as a guide tube or sensor close to the wafer in the heat treatment furnace, the atmosphere inside the heat treatment furnace can be maintained uniformly, and the heat treatment effect can be improved by measuring the temperature. There is no need to worry about it having a negative impact on your health.

(v) 温度測定装置は、小形、軽量かつ安価に製作
することができる。
(v) The temperature measuring device can be made small, lightweight, and inexpensive.

そのほか、発光手段を所定の周期で点滅させる
ことによつて受光手段からの出力信号を交流状と
し、それを適宜処理するようにしているので、周
期的変化がない加熱用光源や炉壁等から放射され
る光エネルギーの影響をなくすことができ、ウエ
ハの温度のみを正確に測定することができる。
In addition, by blinking the light emitting means at a predetermined period, the output signal from the light receiving means is converted into an alternating current signal, which is then processed as appropriate. The influence of emitted light energy can be eliminated, and only the temperature of the wafer can be accurately measured.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、この発明の1実施例である温度測定
装置を付設した加熱装置の概略構成を模式的に示
すブロツク図であり、第2図は、シリコン半導体
における光の波長と透過率との関係及び固有吸収
波長の温度特性を表わすグラフ、第3図は、シリ
コン基板の表面に光照射しその透過光を検知する
場合における、光の波長と発光及び受光強度との
関係を表わすグラフであり、また第4図〜
は、受光素子に接続の発振回路および受光素子か
らの出力信号を種々処理した後における出力信号
の様子を表わすグラフである。 1……半導体基板(ウエハ)、3……熱処理炉、
4……加熱用光源、11……発光素子、12,1
7……光フアイバー、13……コリメーターレン
ズ、14……発振回路、16……受光素子、18
……コンデンサーレンズ、19……光学フイルタ
ー、23……同調増幅器、24……同期整流回
路、25……低域ろ波回路。
FIG. 1 is a block diagram schematically showing the schematic configuration of a heating device equipped with a temperature measuring device, which is an embodiment of the present invention, and FIG. 2 shows the relationship between the wavelength of light and the transmittance in a silicon semiconductor. FIG. 3 is a graph showing the relationship between the wavelength of light and the intensity of light emission and light reception when the surface of a silicon substrate is irradiated with light and the transmitted light is detected. , and Figure 4~
is a graph showing the state of the output signal after various processing of the output signal from the oscillation circuit connected to the light receiving element and the light receiving element. 1... Semiconductor substrate (wafer), 3... Heat treatment furnace,
4...Heating light source, 11...Light emitting element, 12,1
7... Optical fiber, 13... Collimator lens, 14... Oscillator circuit, 16... Light receiving element, 18
... Condenser lens, 19 ... Optical filter, 23 ... Tuning amplifier, 24 ... Synchronous rectifier circuit, 25 ... Low-pass filter circuit.

Claims (1)

【特許請求の範囲】[Claims] 1 半導体基板を収容する熱処理炉と、この熱処
理炉内に収容された半導体基板を加熱する加熱手
段と、この加熱手段によつて熱処理される半導体
基板の温度を検知する温度検知手段とを備えてな
る、温度測定装置を付設した加熱装置において、
前記半導体基板を挾んで互いに対向するように前
記熱処理炉の外部にそれぞれ配設された発光手段
及び受光手段と、前記発光手段からの光を所定の
周波数で点滅させる手段と、前記受光手段に接続
された直流成分除去回路とから前記温度検知手段
を構成し、前記受光手段からの出力信号に基づく
半導体基板の光透過率特性からその温度を求める
ようにしたことを特徴とする、温度測定装置を付
設した加熱装置。
1. A heat treatment furnace for accommodating a semiconductor substrate, a heating means for heating the semiconductor substrate housed in the heat treatment furnace, and a temperature detection means for detecting the temperature of the semiconductor substrate heat-treated by the heating means. In a heating device equipped with a temperature measuring device,
A light emitting means and a light receiving means respectively disposed outside the heat treatment furnace so as to sandwich the semiconductor substrate and facing each other; a means for blinking light from the light emitting means at a predetermined frequency; and a means connected to the light receiving means. The temperature measuring device is characterized in that the temperature detecting means is constituted by a DC component removal circuit which has been removed, and the temperature is determined from the light transmittance characteristics of the semiconductor substrate based on the output signal from the light receiving means. Attached heating device.
JP6955285A 1985-04-01 1985-04-01 Method and device for temperature measurement of semiconductor substrate Granted JPS61228637A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6955285A JPS61228637A (en) 1985-04-01 1985-04-01 Method and device for temperature measurement of semiconductor substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6955285A JPS61228637A (en) 1985-04-01 1985-04-01 Method and device for temperature measurement of semiconductor substrate

Publications (2)

Publication Number Publication Date
JPS61228637A JPS61228637A (en) 1986-10-11
JPH0523375B2 true JPH0523375B2 (en) 1993-04-02

Family

ID=13406005

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6955285A Granted JPS61228637A (en) 1985-04-01 1985-04-01 Method and device for temperature measurement of semiconductor substrate

Country Status (1)

Country Link
JP (1) JPS61228637A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4890933A (en) * 1988-02-17 1990-01-02 Itt Corporation Transmission method to determine and control the temperature of wafers or thin layers with special application to semiconductors
KR20020029453A (en) * 2000-10-13 2002-04-19 조길천 Uncontacted type Thermometry of Semiconductor Surface
DE102007042779B4 (en) * 2007-09-07 2009-07-09 Mattson Thermal Products Gmbh Calibration substrate and method
KR100997305B1 (en) 2008-06-26 2010-11-29 현대제철 주식회사 Dropping temperature measuring instrument for iron ore and method thereof
JP5255534B2 (en) * 2009-08-06 2013-08-07 株式会社アドバンテスト Temperature detection device, handler device, test device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59222730A (en) * 1983-06-02 1984-12-14 Toshiba Corp Optical temperature measuring device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59222730A (en) * 1983-06-02 1984-12-14 Toshiba Corp Optical temperature measuring device

Also Published As

Publication number Publication date
JPS61228637A (en) 1986-10-11

Similar Documents

Publication Publication Date Title
JP3192161B2 (en) Non-contact measurement method and system for heated object temperature by radiation
CA1273820A (en) Color measuring and control device
KR960013995B1 (en) Method for measuring surface temperature of semiconductor wafer substrate and heat-treating apparatus
JP5436428B2 (en) Calibration substrate and calibration method
CA2538554A1 (en) Gas detection method and gas detector device
JP2004327053A (en) Cooker
EP0458388B1 (en) Method and device for measuring temperature radiation using a pyrometer wherein compensation lamps are used
JPH0523375B2 (en)
US6118107A (en) Process and device for in-service measurement of temperature in at least one cooking zone of a cooking area with a glass ceramic plate
JP2003317920A (en) Induction heating cooking device
JPH03216526A (en) Method of measuring temperature of semiconductor material by light transmission factor
JPH04130746A (en) Radiation thermometer and method for wafer temperature measurement
CN104303275B (en) Determined in pulsed laser anneal using the depth of fusion of infrared-interference technique
JPS614945A (en) Infrared absorption moisture meter with calibrating device
JPS63198837A (en) Method and device for measuring temperature of semiconductor substrate
JPH01296617A (en) Quartz lamp heating device
JPS63182528A (en) Ultraviolet-ray illuminance measuring instrument for ultraviolet-ray irradiating device for optical fiber drawing device
JPH09126889A (en) Method and instrument for measuring temperature of semiconductor substrate
KR100985341B1 (en) A Temperature Measurement Apparatus for Steel using Laser Diode
SU1101687A1 (en) Device for measuring temperature of heating of rotating parts in machining
JPS61175534A (en) Emissivity measuring apparatus
SU1619015A1 (en) Method of checking thickness of material
Sturm et al. Low Temperature (≥ 400° C) Silicon Pyrometry AT 1.1 μm with Emissivity Correction
JP2000114195A (en) Substrate processing apparatus, jig used for calibration of radiation termometer thereof, and calibrating method of the same
GUPTA et al. Broadband optical radiation detector[Patent]