JPS62228305A - Alumina coated tool and manufacture method therefor - Google Patents
Alumina coated tool and manufacture method thereforInfo
- Publication number
- JPS62228305A JPS62228305A JP7527186A JP7527186A JPS62228305A JP S62228305 A JPS62228305 A JP S62228305A JP 7527186 A JP7527186 A JP 7527186A JP 7527186 A JP7527186 A JP 7527186A JP S62228305 A JPS62228305 A JP S62228305A
- Authority
- JP
- Japan
- Prior art keywords
- alumina
- film
- coated tool
- thickness
- alumina film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Cutting Tools, Boring Holders, And Turrets (AREA)
- Physical Vapour Deposition (AREA)
- Chemical Vapour Deposition (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
(発明の分野)
本発明は靭性に優れたコーティング工具に関し、より詳
細にはコーティング層の最外層がアルミナで形成された
コーティング工具およびその製造方法に関する。DETAILED DESCRIPTION OF THE INVENTION (Field of the Invention) The present invention relates to a coated tool with excellent toughness, and more particularly to a coated tool in which the outermost layer of the coating layer is formed of alumina, and a method for manufacturing the same.
(従来技術)
従来から切削用工具は、工具鋼、高速度鋼、ダイス鋼お
よび超硬合金等から製造されているが、最近ではさらに
切削特性を向上させる目的に、前述の材料を母材とし、
その外表面にCVD法等の気相成長法によって、耐摩耗
性に優れた被覆層を形成することが行われている。(Prior art) Cutting tools have traditionally been manufactured from tool steel, high-speed steel, die steel, cemented carbide, etc., but recently, in order to further improve cutting characteristics, cutting tools have been manufactured using the above-mentioned materials as base materials. ,
A coating layer having excellent wear resistance is formed on the outer surface by a vapor phase growth method such as a CVD method.
このような被覆層としては、主として炭化チタン、炭窒
化チタン等のチタン系、アルミナ系が用いられているが
、コーティング工具としての強度、靭性の点において、
チタン系が優れるため、強靭性コーティング工具にはチ
タン系が多く用いられる。As such a coating layer, titanium-based materials such as titanium carbide and titanium carbonitride, and alumina-based materials are mainly used, but in terms of strength and toughness as coated tools,
Because titanium-based materials are superior, titanium-based materials are often used for tough coating tools.
しかしながら、アルミナ系は化学的安定性、耐熱性に優
れることから、高速切削領域下で使用する場合、有用と
される被覆材料であることから、アルミナ系被覆工具に
おける強度、靭性を向上させることが1つの課題とされ
ている。However, since alumina-based materials have excellent chemical stability and heat resistance, they are useful coating materials when used in high-speed cutting areas, so it is possible to improve the strength and toughness of alumina-based coated tools. This is considered to be one issue.
そこで、第1図に、従来のアルミナ膜表面構造の顕微鏡
写真を示す。Therefore, FIG. 1 shows a microscopic photograph of the surface structure of a conventional alumina film.
通常CVD法等の気相成長法によってアルミナ膜を形成
させると、第1図からも明らかなようにアルミナ膜は粒
径数ミクロンの微細な結晶の集合体として形成され、そ
の表面は、粒子径に応じた凹凸が形成されている。Normally, when an alumina film is formed by a vapor phase growth method such as the CVD method, the alumina film is formed as an aggregate of fine crystals with a grain size of several microns, as is clear from Figure 1. The unevenness is formed according to the
また、時に、結晶粒子の異常成長によって十数ミクロン
の集合体が形成される場合もある。In addition, aggregates of tens of microns may sometimes be formed due to abnormal growth of crystal grains.
このような凹凸部は、切削を行う際、被削材の切屑との
摩擦によって膜自体に局部的に応力が加わり、靭性を低
下させる要因となっていた。また、被削材が軟質である
と、凹凸部に切屑が溶着し、工具としての性能を低下さ
せる原因ともなっていた。When such uneven portions are cut, stress is locally applied to the film itself due to friction with chips of the work material, which causes a decrease in toughness. In addition, if the workpiece material is soft, chips may be welded to the uneven portions, causing a reduction in the performance of the tool.
(発明の構成)
本発明者らは上記問題に対し、研究を行った結果、気相
成長法によって形成したアルミナ膜の表面を特定の膜厚
を残しつつ、研摩を行い表面を平滑することによって膜
自体の耐摩耗性を維持しつつ、強度、靭性を高めるとと
もに、切削時における刃先の欠損等を防止し得ることを
見出した。(Structure of the Invention) The present inventors have conducted research to solve the above problem, and have found that by polishing the surface of an alumina film formed by a vapor phase growth method while leaving a certain thickness, the surface can be smoothed. It has been found that while maintaining the wear resistance of the film itself, it can increase strength and toughness and prevent damage to the cutting edge during cutting.
即ち、本発明によれば、基体の少なくとも刃部を含む外
表面にアルミナ膜が形成されたコーティング工具におい
て、該アルミナ膜が0.5乃至5μm以上の膜厚を有す
るとともに、該膜の表面粗さが1μm以下であることを
特徴とするアルミナコーティング工具が提供される。That is, according to the present invention, in a coating tool in which an alumina film is formed on the outer surface of the base including at least the blade portion, the alumina film has a thickness of 0.5 to 5 μm or more, and the surface roughness of the film is Provided is an alumina coated tool characterized by a thickness of 1 μm or less.
さらに本発明によれば、基体の外表面に気相成長法によ
りアルミナ膜を形成した後、アルミナ膜の少なくとも刃
部を含む表面を表面粗さ1μm以下、および厚膜0.5
乃至5μm以上に機械的研磨することを特徴とするアル
ミナコーティング工具の製造方法が提供される。Further, according to the present invention, after forming an alumina film on the outer surface of the substrate by a vapor phase growth method, the surface of the alumina film including at least the blade part has a surface roughness of 1 μm or less and a thickness of 0.5 μm.
Provided is a method for manufacturing an alumina coated tool, which is characterized by mechanical polishing to a thickness of 5 μm or more.
以下、本発明を詳述する。The present invention will be explained in detail below.
本発明によれば、アルミナ膜表面の表面粗さを1μm以
下・特に0.5μm以下に制御することが重要である。According to the present invention, it is important to control the surface roughness of the alumina film surface to 1 μm or less, particularly 0.5 μm or less.
ここでの表面粗さとは最大高さ粗さくJISBO601
に基づく)である。この構成によって被削材の切屑と刃
部表面との抵抗が低減されるとともに局部的な外部応力
の発生を防止することができ・膜の欠損を低減すること
ができ、工具寿命を向上させることができる。The surface roughness here refers to the maximum height roughness according to JISBO601.
). This configuration reduces the resistance between the chips of the workpiece and the blade surface, prevents the generation of local external stress, reduces film defects, and improves tool life. I can do it.
アルミナ膜の成膜時の表面は、成膜条件にもよるが膜厚
が小さい程平滑であるが所望の切削性能を得るためには
膜強度を大きくする必要があることから、アルミナ膜の
膜厚は0.5乃至5μm、特に1乃至3μmに制御すべ
きである。膜厚が0.5μm未満であるとアルミナの耐
摩耗性が十分に発揮されない。一方、5μmを超えると
、膜強度が不十分であり欠損しやすくなる。The surface of the alumina film when it is formed is smoother as the film thickness decreases, depending on the film formation conditions, but in order to obtain the desired cutting performance, it is necessary to increase the film strength. The thickness should be controlled between 0.5 and 5 μm, especially between 1 and 3 μm. If the film thickness is less than 0.5 μm, the wear resistance of alumina will not be sufficiently exhibited. On the other hand, if the thickness exceeds 5 μm, the film strength will be insufficient and defects will easily occur.
本発明において用いられる基体としては、それ自体ある
程度の機械的強度を必要とし、例えばWC。The substrate used in the present invention itself requires a certain degree of mechanical strength, such as WC.
TiC,T1CN、TiN等の炭化物、炭窒化物を主体
とする超硬合金もしくはサーメット、あるいはジルコニ
ア、5iJ4+StC等の焼結体が挙げられる。特にア
ルミナ膜の切削性能の点から超硬合金が望ましい。Examples include carbides such as TiC, T1CN, and TiN, cemented carbides or cermets mainly composed of carbonitrides, and sintered bodies such as zirconia and 5iJ4+StC. In particular, cemented carbide is desirable from the viewpoint of cutting performance for alumina film.
特に、超硬合金の基体上にTic、T1CN等の炭化物
、炭窒化物をコーティングし、その上にアルミナをコー
ティングすることが望ましい。In particular, it is desirable to coat a carbide or carbonitride such as Tic or T1CN on a cemented carbide base, and then coat alumina thereon.
本発明のアルミナコーティング工具の製造方法によれば
、まず、前述した所望の基体上に公知の気相成長法、例
えば熱CVD、 RFプラズマCVD 、マイクロ波C
VD 、 ECRブラズ?CVD等(7)CVD法、イ
オンビーム法、スバフタ法等のPVD法等によってアル
ミナ膜を形成後、アルミナ膜を公知の機械的研摩、例え
ばバレル研摩、ホーニング処理によって、研摩処理し、
表面粗さを1μm以下、特に0.5μm以下に設定する
。第2図は、本発明による研摩後のアルミナ膜表面構造
の顕微鏡写真でありこの研摩処理に当たり、基体上に設
けられたアルミナ膜の結晶粒子径が重要である。According to the method of manufacturing an alumina coated tool of the present invention, first, a known vapor phase growth method such as thermal CVD, RF plasma CVD, microwave C
VD, ECR Braz? CVD, etc. (7) After forming an alumina film by a PVD method such as a CVD method, an ion beam method, or a suvafuta method, the alumina film is polished by known mechanical polishing, such as barrel polishing or honing treatment,
The surface roughness is set to 1 μm or less, particularly 0.5 μm or less. FIG. 2 is a micrograph of the surface structure of the alumina film after polishing according to the present invention. In this polishing process, the crystal grain size of the alumina film provided on the substrate is important.
後述する実施例2から明らかなように欠損率は結晶粒子
径に依存する。よって本発明によれば研摩処理によって
膜の靭性はいずれにしても向上するが特に0.1乃至3
.0μmの粒子径において、その効果は顕著である。As is clear from Example 2 described later, the defect rate depends on the crystal grain size. Therefore, according to the present invention, the toughness of the film is improved by the polishing treatment in any case, but in particular, the toughness is improved by 0.1 to 3.
.. At a particle size of 0 μm, the effect is significant.
また・研摩処理後のアルミナ膜は前述した理由によって
0.5乃至5μm、特に1乃至3μmに設定される。Also, the alumina film after polishing is set to have a thickness of 0.5 to 5 μm, particularly 1 to 3 μm, for the reasons mentioned above.
さらに、研摩処理は、形成されたアルミナ膜の個々の結
晶粒子間に形成された谷間が消滅する程度で十分であり
、それ以上の研摩を行ってもアルミナ膜厚を減少させる
だけで耐摩耗性を劣化させる傾向にあるため望ましくな
い。Furthermore, the polishing treatment is sufficient to eliminate the valleys formed between the individual crystal grains of the formed alumina film, and further polishing will only reduce the alumina film thickness and improve the wear resistance. undesirable as it tends to deteriorate the
本発明を次の例で説明する。The invention is illustrated by the following example.
実施例
反応容器内に超硬合金基体を設置するとともに、基体を
1000℃に加熱し、そこへ11□、C)12およびT
iC1aの混合ガスを87:5:8の割合で導、入し、
基体表面に約6μmのTiCrrJを形成した。Example A cemented carbide substrate was placed in a reaction vessel, and the substrate was heated to 1000°C, and 11□, C) 12 and T
Introducing and introducing a mixed gas of iC1a at a ratio of 87:5:8,
TiCrrJ with a thickness of about 6 μm was formed on the surface of the substrate.
次に、同じ容器内にH2,GO□およびAlCl3ガス
を45:45:10の容積比で導入するとともに基体を
1000℃に加熱し平均膜厚3μm結晶粒径2.3μm
のAlz(h Nを形成した。Next, H2, GO□ and AlCl3 gases were introduced into the same container at a volume ratio of 45:45:10, and the substrate was heated to 1000°C, with an average film thickness of 3 μm and a crystal grain size of 2.3 μm.
of Alz(hN) was formed.
なお、この膜面の最大表面粗さは1.3μmであった。Note that the maximum surface roughness of this film surface was 1.3 μm.
得られたサンプルを市販のビータウオルターで刃先部
分のAlzO,膜面をホーニング研摩処理を行い、研摩
面の表面粗さの異なるサンプルを複数個製造した。The obtained sample was subjected to a honing treatment on the AlzO film surface at the cutting edge portion using a commercially available beater alterter, and a plurality of samples with different surface roughness of the polished surface were manufactured.
個々のサンプルに対し、下記切削条件にてフランク摩耗
量の測定を行った。Flank wear amount was measured for each sample under the following cutting conditions.
チップ形状 TNMG332 (刃先ホーニングN
0.06mm)被削材 SCM435
切削速度 V・200m/min
送り f=0.3mm/rev切込み
d=2mm
また、下記切削条件にて靭性テストとして欠損率を求め
た。欠損率は15秒間に刃先の欠損があった比率で表し
た。Chip shape TNMG332 (blade honing N
0.06mm) Work material SCM435 Cutting speed V・200m/min Feed f=0.3mm/rev Depth of cut
d=2mm In addition, the fracture rate was determined as a toughness test under the following cutting conditions. The breakage rate was expressed as the percentage of cutting edges that were broken within 15 seconds.
チップ形状 TNMG332
被削材 545C4本溝入り(溝幅5mm )切
削速度 V=100m/muin切込み d
=2mm
送り f=0.3mm/rev切削時間
15 (sec)
結果は第1表のl1hl〜5に示す。 さらにA1zO
i膜を7.0μm設け、研摩処理を行ったサンプルに同
様の切削テストを行った。結果を第1表N116に示す
。また、AlzOz膜の成膜条件を変え、結晶粒径が3
.5μmの膜を設け、研摩処理を行い、同様にテストを
行った。Chip shape TNMG332 Work material 545C 4 grooves (groove width 5mm) Cutting speed V=100m/muin Depth of cut d
=2mm feed f=0.3mm/rev cutting time
15 (sec) The results are shown in 11hl-5 of Table 1. Furthermore A1zO
A similar cutting test was conducted on a sample prepared by providing an i-film of 7.0 μm and undergoing polishing treatment. The results are shown in Table 1 N116. In addition, the deposition conditions of the AlzOz film were changed, and the crystal grain size was 3.
.. A 5 μm film was provided, polished, and tested in the same manner.
結果を第1表に7に示す。The results are shown in Table 1.
第1表から明らかなように、表面粗さが1μmを超える
サンプル阻1はフランク摩耗が少ない代わりに欠損率が
大きく、靭性が低いことがわかる。As is clear from Table 1, sample No. 1 with a surface roughness of more than 1 μm has less flank wear but has a large chipping rate and low toughness.
これに対し、表面粗さが1μm以下の本発明のサンプル
徹2乃至4は、いずれも欠損率は40%以下にとどめる
ことができ、膜の靭性が向上したことを確認した。なお
、ホーニング研摩処理時間に応じ、膜厚が小さくなり、
フランク摩耗量が増大する傾向にあるため、ホーニング
研摩処理による研摩量を最小限に抑えるべきであること
がわかる。On the other hand, samples 2 to 4 of the present invention, each having a surface roughness of 1 μm or less, were able to keep the defect rate to 40% or less, and it was confirmed that the toughness of the film was improved. Note that the film thickness decreases depending on the honing treatment time.
It can be seen that since the amount of flank wear tends to increase, the amount of polishing by the honing process should be minimized.
よって膜厚が0.5μmを下回る(階5)と摩耗量が大
きくなるため、アルミナコーティングの効果がな(なる
。一方膜厚が5μmを超えても(阻6)欠損率が増大し
、結晶粒径が3μmを超えても(嵐7)、欠損率が増大
する。Therefore, if the film thickness is less than 0.5 μm (grade 5), the amount of wear increases and the alumina coating becomes ineffective.On the other hand, if the film thickness exceeds 5 μm (inhibition 6), the defect rate increases and the crystallization Even when the particle size exceeds 3 μm (Arashi 7), the defect rate increases.
実施例2
次に実施例1において、アルミナ膜の成膜条件を変更し
、膜厚が3μmでアルミナの結晶粒子径が、0.1 μ
m未満、0.1〜1.0μrn 、1.0〜2.0μm
、 2.0〜3.0 μm 、3.0〜7.0
μm なる5種のサンプルを作成した。得られたサン
プルに対し、ホーニング処理を5秒間行った。Example 2 Next, in Example 1, the conditions for forming the alumina film were changed so that the film thickness was 3 μm and the alumina crystal grain size was 0.1 μm.
less than m, 0.1 to 1.0 μrn, 1.0 to 2.0 μm
, 2.0-3.0 μm, 3.0-7.0
Five types of samples were prepared. The obtained sample was honed for 5 seconds.
これらのサンプルに対し、下記切削条件でテストを行い
実施例1と同様の方法で欠損率を求めた。These samples were tested under the following cutting conditions, and the defect rate was determined in the same manner as in Example 1.
チップ形状 TNMG332 (刃先ホーニング’!
0.06mm )被削材 SCM435 (4
本4入す)切削速度 V=120m/min
切込み d=2mm
送り f=0.3mm/rev切削時間
15秒
結果は第2表に示す。Chip shape TNMG332 (blade honing'!
0.06mm) Work material SCM435 (4
Cutting speed V=120m/min Depth of cut d=2mm Feed f=0.3mm/rev Cutting time
The 15 second results are shown in Table 2.
第2表
第2表から、工具としての靭性の点からアルミナ結晶粒
径が0.1 μm以上、特にo、l乃至2.0μmのも
のが優れていることがわかった。Table 2 From Table 2, it was found that alumina crystal grains having a diameter of 0.1 μm or more, particularly o, l to 2.0 μm, are excellent in terms of toughness as a tool.
(発明の効果)
以上、詳述した通り、本発明のアルミナコーティング工
具によれば、気相成長法により形成されたアルミナ膜表
面の凹凸を機械研摩によって、研摩することによって凹
凸に起因する膜の剥離、強度劣化、溶着を防止でき、長
寿命の耐摩耗性に優れた強靭性のアルミナコーティング
工具を提供することが可能となる。(Effects of the Invention) As described above in detail, according to the alumina coating tool of the present invention, the irregularities on the surface of the alumina film formed by the vapor growth method are polished by mechanical polishing, thereby removing the film caused by the irregularities. It becomes possible to provide a strong alumina-coated tool that can prevent peeling, strength deterioration, and welding, and has a long life and excellent wear resistance.
第1図は従来のアルミナ膜表面構造の顕W1.鏡写真、
第2図は本発明による研摩後のアルミナ膜表面構造の顕
微鏡写真である。Figure 1 shows a diagram of the surface structure of a conventional alumina film W1. mirror photo,
FIG. 2 is a micrograph of the surface structure of the alumina film after polishing according to the present invention.
Claims (4)
が形成されたコーティング工具において、該アルミナ膜
が0.5乃至5μmの膜厚を有するとともに、該膜の表
面粗さが1μm以下であることを特徴とするアルミナコ
ーティング工具。(1) In a coating tool in which an alumina film is formed on the outer surface of the base including at least the blade part, the alumina film has a thickness of 0.5 to 5 μm, and the surface roughness of the film is 1 μm or less. An alumina coated tool characterized by:
mである特許請求の範囲第1項記載のアルミナコーティ
ング工具。(2) The crystal grain size of the alumina film is 0.1 to 3.0μ
The alumina coated tool according to claim 1, which is m.
成した後、アルミナ膜の少なくとも刃部を含む表面を表
面粗さ1μm以下、および厚膜0.5乃至5μmに機械
的研摩することを特徴とするアルミナコーティング工具
の製造方法。(3) After forming an alumina film on the outer surface of the substrate by a vapor growth method, the surface of the alumina film, including at least the blade part, is mechanically polished to a surface roughness of 1 μm or less and a thickness of 0.5 to 5 μm. A method for manufacturing an alumina coated tool characterized by:
mである特許請求の範囲第3項記載のアルミナコーティ
ング工具の製造方法。(4) The crystal grain size of the alumina film is 0.1 to 3.0μ
The method for manufacturing an alumina-coated tool according to claim 3, wherein the alumina-coated tool is m.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP61075271A JPH0818163B2 (en) | 1986-03-31 | 1986-03-31 | Alumina coating tool and manufacturing method thereof |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP61075271A JPH0818163B2 (en) | 1986-03-31 | 1986-03-31 | Alumina coating tool and manufacturing method thereof |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| JPS62228305A true JPS62228305A (en) | 1987-10-07 |
| JPH0818163B2 JPH0818163B2 (en) | 1996-02-28 |
Family
ID=13571399
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP61075271A Expired - Fee Related JPH0818163B2 (en) | 1986-03-31 | 1986-03-31 | Alumina coating tool and manufacturing method thereof |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JPH0818163B2 (en) |
Cited By (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS6416302A (en) * | 1987-07-10 | 1989-01-19 | Sumitomo Electric Industries | Coated cemented carbide tool |
| JP2006307318A (en) * | 2005-03-31 | 2006-11-09 | Kobe Steel Ltd | Method for producing alpha-alumina layer-formed member and surface treatment |
| WO2012153438A1 (en) | 2011-05-10 | 2012-11-15 | 住友電工ハードメタル株式会社 | Surface-coated cutting tool |
| CN106536102A (en) * | 2014-05-30 | 2017-03-22 | 三菱综合材料株式会社 | Surface-coated cutting tool |
Families Citing this family (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2005001088A (en) | 2003-06-13 | 2005-01-06 | Osg Corp | Member coated with hard coating film and its manufacturing method |
| JP4446469B2 (en) | 2004-03-12 | 2010-04-07 | 住友電工ハードメタル株式会社 | Coated cutting tool |
| WO2007049785A1 (en) | 2005-10-28 | 2007-05-03 | Kyocera Corporation | Surface-coated member, method for manufacture thereof, and cutting tool |
Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS5754550A (en) * | 1980-09-18 | 1982-04-01 | Jio Ee Hoomeru Ando Co | Apparatus for peeling barrel part of raw skin |
| JPS5934156A (en) * | 1982-08-20 | 1984-02-24 | Seiko Instr & Electronics Ltd | Chemical manipulator |
| JPS60152676A (en) * | 1984-01-18 | 1985-08-10 | Hitachi Choko Kk | Surface-coated sintered hard member |
| JPS6284903A (en) * | 1985-10-07 | 1987-04-18 | Mitsubishi Metal Corp | Surface-coated cemented carbide cutting tip |
-
1986
- 1986-03-31 JP JP61075271A patent/JPH0818163B2/en not_active Expired - Fee Related
Patent Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS5754550A (en) * | 1980-09-18 | 1982-04-01 | Jio Ee Hoomeru Ando Co | Apparatus for peeling barrel part of raw skin |
| JPS5934156A (en) * | 1982-08-20 | 1984-02-24 | Seiko Instr & Electronics Ltd | Chemical manipulator |
| JPS60152676A (en) * | 1984-01-18 | 1985-08-10 | Hitachi Choko Kk | Surface-coated sintered hard member |
| JPS6284903A (en) * | 1985-10-07 | 1987-04-18 | Mitsubishi Metal Corp | Surface-coated cemented carbide cutting tip |
Cited By (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS6416302A (en) * | 1987-07-10 | 1989-01-19 | Sumitomo Electric Industries | Coated cemented carbide tool |
| JP2006307318A (en) * | 2005-03-31 | 2006-11-09 | Kobe Steel Ltd | Method for producing alpha-alumina layer-formed member and surface treatment |
| WO2012153438A1 (en) | 2011-05-10 | 2012-11-15 | 住友電工ハードメタル株式会社 | Surface-coated cutting tool |
| US8968866B2 (en) | 2011-05-10 | 2015-03-03 | Sumitomo Electric Hardmetal Corp. | Surface-coated cutting tool |
| CN106536102A (en) * | 2014-05-30 | 2017-03-22 | 三菱综合材料株式会社 | Surface-coated cutting tool |
| US10456844B2 (en) | 2014-05-30 | 2019-10-29 | Mitsubishi Materials Corporation | Surface-coated cutting tool |
Also Published As
| Publication number | Publication date |
|---|---|
| JPH0818163B2 (en) | 1996-02-28 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JP2825693B2 (en) | Coating tool and method of manufacturing the same | |
| KR100671919B1 (en) | Sheath hard alloy | |
| EP1008673B1 (en) | Improved coating for cutting tool applied for cast iron | |
| KR101065572B1 (en) | Diamond Membrane Cloth Tool and Manufacturing Method Thereof | |
| US8383200B2 (en) | High hardness nanocomposite coatings on cemented carbide | |
| JP3675577B2 (en) | Method for producing diamond-coated article | |
| JP6507456B2 (en) | Method of manufacturing surface coated cutting tool | |
| JP2007136631A (en) | Cutting tip with replaceable edge | |
| EP1724039A1 (en) | Coated cutting tool | |
| JP2022134543A (en) | surface coated cutting tools | |
| JP3252711B2 (en) | Coated silicon nitride based tool | |
| US5858480A (en) | Ceramic-based substrate for coating diamond and method for preparing substrate for coating | |
| JP4142955B2 (en) | Surface coated cutting tool | |
| JPS62228305A (en) | Alumina coated tool and manufacture method therefor | |
| JP2021146478A (en) | Surface-coated cutting tool excellent in defect resistance | |
| JP7649468B2 (en) | Surface-coated cutting tools | |
| JPS6117909B2 (en) | ||
| JP7412679B2 (en) | Surface coated cutting tool with excellent fracture resistance | |
| JP3278785B2 (en) | Manufacturing method of surface coated cutting tool | |
| JP2006281361A (en) | Surface coated member and surface coated cutting tool | |
| JPH08118105A (en) | Surface-coated cemented carbide alloy cutting tool with tungsten carbide group having hard coating layer excellent in interlayer adhesion | |
| JPH08188846A (en) | Coated cemented carbide | |
| JPS6354495B2 (en) | ||
| JP3519260B2 (en) | Hard member coated with diamond film with excellent peel resistance | |
| JPH04280974A (en) | Boron nitride coated hard material |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| LAPS | Cancellation because of no payment of annual fees |