JPS62227096A - Method for preventing corrosion by sulfurization - Google Patents

Method for preventing corrosion by sulfurization

Info

Publication number
JPS62227096A
JPS62227096A JP6981286A JP6981286A JPS62227096A JP S62227096 A JPS62227096 A JP S62227096A JP 6981286 A JP6981286 A JP 6981286A JP 6981286 A JP6981286 A JP 6981286A JP S62227096 A JPS62227096 A JP S62227096A
Authority
JP
Japan
Prior art keywords
corrosion
fuel
combustion
temperature
slurry
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6981286A
Other languages
Japanese (ja)
Inventor
Hirosuke Okura
大蔵 宏祐
Shigeru Nakai
滋 中井
Takamasa Ishioka
石岡 高昌
Takashi Matsuo
隆 松尾
Mitsuo Onozawa
光雄 小野沢
Masaki Shoji
正樹 東海林
Akinori Yagawa
矢川 明徳
Takeshi Morita
武 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiho Kogyo Co Ltd
Original Assignee
Taiho Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiho Kogyo Co Ltd filed Critical Taiho Kogyo Co Ltd
Priority to JP6981286A priority Critical patent/JPS62227096A/en
Publication of JPS62227096A publication Critical patent/JPS62227096A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B1/00Engines characterised by fuel-air mixture compression
    • F02B1/02Engines characterised by fuel-air mixture compression with positive ignition
    • F02B1/04Engines characterised by fuel-air mixture compression with positive ignition with fuel-air mixture admission into cylinder

Landscapes

  • Incineration Of Waste (AREA)
  • Liquid Carbonaceous Fuels (AREA)
  • Solid Fuels And Fuel-Associated Substances (AREA)
  • Preventing Corrosion Or Incrustation Of Metals (AREA)

Abstract

PURPOSE:To effectively inhibit and prevent corrosion by sulfurization at high temp. by charging a slurry, powder or a soln. of an Al compound together with fuel into the combustion atmosphere in a heating furnace. CONSTITUTION:A slurry, powder or a soln. of an Al compound or a hydrate thereof is mixed with heavy oil, coal, oil coke or other fuel by dispersion and the mixture is charged into the combustion atmosphere in a heating furnace or a boiler. The Al compound or the hydrate reacts with free S and CO produced at the reducing part of the combustion atmosphere such as the high temp. part to make the free S and CO harmless, so corrosion by sulfurization is effectively inhibited.

Description

【発明の詳細な説明】 (産業上の利用分野) −この発明は、工業用加熱炉、ボイラー、ディーゼルエ
ンジン、ガソリンエンジン、タービン、熱交換器、その
他の燃焼装置を低酸素条件て運転する場合において、し
ばしば発生する高温硫化腐食を有効に抑制防止する方法
に関する。
Detailed Description of the Invention (Field of Industrial Application) - This invention is applicable to industrial heating furnaces, boilers, diesel engines, gasoline engines, turbines, heat exchangers, and other combustion devices operated under low oxygen conditions. The present invention relates to a method for effectively suppressing and preventing high-temperature sulfide corrosion that often occurs.

(従来の技術) 従来過剰の酸素量のもとての重油燃焼において発生する
腐食としては、金属温度600℃以上て発生する高温腐
食と低温部で発生する硫M腐食等が知られており、これ
等の腐食防止策としてはマグネシウムに代表される添加
剤か使用されてきた。
(Prior art) Corrosion that occurs when burning heavy oil with an excessive amount of oxygen is known as high-temperature corrosion that occurs at metal temperatures of 600°C or higher, and sulfur M corrosion that occurs in low-temperature areas. Additives such as magnesium have been used to prevent corrosion.

この場合の高温腐食は、バナジウムアタックによるもの
で、マグネシウムのような添加剤を使用した場合、次の
ような機構によりバナジウムアタックか抑制される。
High-temperature corrosion in this case is due to vanadium attack, and when an additive such as magnesium is used, vanadium attack is suppressed by the following mechanism.

MgO+ V2O54Mg0−V2O。MgO+V2O54Mg0-V2O.

nMgO+ mNazO・nV、Os  →  mNa
=o・n(MgO・V2O5)一方、昨今ボイラーの構
造酸は材質の改善による燃焼効率の向上は目ざましいも
のかある。
nMgO+ mNazO・nV, Os → mNa
=o・n(MgO・V2O5) On the other hand, there has recently been a remarkable improvement in the combustion efficiency of boilers due to improved materials.

特に、大型ボイラーでの低酸素運転か可能になり、熱効
率が飛躍的に上昇してきた。
In particular, it has become possible to operate large boilers in low oxygen levels, resulting in a dramatic increase in thermal efficiency.

しかし、このボイラーの低酸素運転に伴なって従来の高
酸素燃焼ては殆ど認められなかった硫化腐食か高温部で
発生するようになった。
However, with the low-oxygen operation of this boiler, sulfide corrosion, which was almost never observed in conventional high-oxygen combustion, began to occur in high-temperature parts.

即ち、高酸素燃焼ては油中のri&黄分は全てSO□、
SO,3になるか、低酸素燃焼では還元雰囲気か炉内各
所に出来、硫化物の発生か認められるようになっており
、特に過剰酸素量1.5z以下のボイラーの高温部木管
壁には硫化鉄か多量に検出されるようになった。
In other words, in high oxygen combustion, all of the ri and yellow content in the oil is SO□,
In low-oxygen combustion, sulfides are formed in the reducing atmosphere or in various places inside the furnace, and are observed to occur, especially on the wood pipe walls of the high-temperature parts of boilers with an excess oxygen content of 1.5z or less. Iron sulfide has started to be detected in large quantities.

この高温硫化腐食は、燃焼室内の、火炎に直接触れたり
、火炎に最も近い超高温部の還元雰囲気内で発生し易く
、運転条件によって異なるか場合によっては従来のバナ
ジウムアタックによる腐食の数十〜数百倍にものぼる非
常に恐ろしい腐食である。
This high-temperature sulfide corrosion tends to occur in the combustion chamber, in direct contact with the flame, or in the reducing atmosphere of the ultra-high-temperature part closest to the flame, and varies depending on the operating conditions. This is extremely terrifying corrosion, hundreds of times more severe.

(発明が解決しようとする問題点) この高温硫化腐食はバナジウムアタックによる腐食機構
とは異なるところから従来のマグネシウムからなる添加
剤たけては解決することかできない。
(Problems to be Solved by the Invention) Since this high-temperature sulfide corrosion is different from the corrosion mechanism caused by vanadium attack, it cannot be solved using conventional additives made of magnesium.

また、高温硫化腐食の抑制法として燃焼室内の鋼材の材
質を、耐食性の高い材質に取り換えることか実施されて
いるが、高価な設備や長い修理期間など多くの問題かあ
る。
In addition, as a method to suppress high-temperature sulfide corrosion, replacing the steel in the combustion chamber with a material with higher corrosion resistance has been implemented, but there are many problems such as expensive equipment and long repair times.

また、低硫黄燃料を使用する等の対策か講じられている
か、この方法も費用か掛り過ぎる欠点がある。
Additionally, measures such as using low sulfur fuel have been taken, but this method also has the disadvantage of being too expensive.

(問題点を解決するための手段) 以上の問題点を解決するために、本願発明者等は鋭意研
究の結果、アルミニウム化合物又はその水和物を主成分
としたスラリー、粉末又は液状物を燃料とともに、燃焼
雰囲気中に投入により、極めて有効に上述のような高温
硫化腐食を抑制、防止することかできることを見出した
ものである。
(Means for Solving the Problems) In order to solve the above problems, the inventors of the present application have conducted intensive research and found that slurry, powder, or liquid materials containing aluminum compounds or hydrates thereof as a main component can be used as fuel. In addition, we have discovered that the above-mentioned high-temperature sulfidation corrosion can be extremely effectively suppressed and prevented by introducing it into a combustion atmosphere.

この発明で使用されるスラリー、粉末又は液状物はアル
ミニウム化合物又はその水和物単独て構成してもよいか
、アルミニウム化合物又はその水和物を主成分とし、こ
れにアルカリ土類金属化合物又は/及び遷移金属、その
他の金属の化合物の1種又は1II4以上との組合せ又
は共晶物の形態で構成してもよい。
The slurry, powder, or liquid used in the present invention may be composed of an aluminum compound or its hydrate alone, or may have an aluminum compound or its hydrate as a main component, and an alkaline earth metal compound or/and an aluminum compound or its hydrate as a main component. It may also be configured in the form of a combination or eutectic with one or more of transition metals, other metal compounds, or 1II4 or more.

アルミニウム化合物又はその水和物と他種金属化合物を
組合せて使用する場合、組合物の割合としては酸化物換
算によるモル比て八IJi /他種金属酸化物;1以上
か好ましい。
When an aluminum compound or its hydrate and another metal compound are used in combination, the ratio of the combination is preferably 8 IJi/other metal oxide: 1 or more in terms of oxide.

この発明で使用するアルミニウム化合物は′Ma物であ
っても、有機金属塩であってもよく、具体的ニハ、A1
20i 、 AI(011)z、ナフテン酸アルミニウ
ム、石油スルホン酸アルミニウム、脂肪酸アルミニウム
、有機酸アルミニウム等、アルミニウムの水和物として
は、A1□03・nfl□0の化学式てあられすことか
できるアルミナゲルに代表されるゲル状物質である。
The aluminum compound used in this invention may be a 'Ma compound or an organic metal salt, and specifically
Hydrates of aluminum such as 20i, AI(011)z, aluminum naphthenate, aluminum petroleum sulfonate, aluminum fatty acids, aluminum organic acids, etc., include alumina gel, which can be expressed by the chemical formula A1□03・nfl□0. It is a gel-like substance represented by.

これらと組合せることのてきるアルカリ土類金属として
は、Mg、 Ca、 Ba′?、遷移金属としては、F
e、Go、旧、Mn、 Ti等、その他の金属としては
、Si、 Cu等の金属を使用でき、他の遷移金属も使
用可能であるか、コストか高く不適切である。
Alkaline earth metals that can be combined with these include Mg, Ca, Ba'? , as a transition metal, F
Metals such as Si, Cu, etc. can be used as other metals such as e, Go, old, Mn, and Ti.Although other transition metals can also be used, they are expensive and inappropriate.

これらの金属は、酸化物、水酸化物等の無機化合物てあ
っても、ナフテン酸塩、スルホン酸塩、脂肪酸塩、有機
酸塩等の有機物の形態であってもよい。
These metals may be in the form of inorganic compounds such as oxides and hydroxides, or organic substances such as naphthenates, sulfonates, fatty acid salts, and organic acid salts.

本発明者らは、アルミニウム化合物に上述の他種金属の
1種又は1種以上を併用することにより硫化腐食防止に
相乗効果かあることを見出したのである。
The present inventors have discovered that the use of one or more of the above-mentioned other metals in combination with an aluminum compound has a synergistic effect in preventing sulfide corrosion.

この発明に用いる金属や化合物は粉末、スラリー、液状
等いずれの形態で使用することもてきる。
The metals and compounds used in this invention can be used in any form such as powder, slurry, or liquid.

粉末形態て使用す、る場合は、できる限り細かい方か良
いか、一般に重版されている粉体約100ル以下なら使
用することができる。
If it is used in powder form, it should be as fine as possible; generally reprinted powders of about 100 liters or less can be used.

スラリーとする場合には、溶剤として石油系溶剤か一般
的に使用することができ、これらの石油系溶剤としては
引火点70°C以上のものが望ましく、特にこれに重版
の界面活性剤を使用することにより分散力を上げ、均一
なスラリーを得ることかできる。
When making a slurry, petroleum-based solvents can generally be used as the solvent, and it is desirable that these petroleum-based solvents have a flash point of 70°C or higher, and in particular, reprinted surfactants are used in this. By doing so, it is possible to increase the dispersion power and obtain a uniform slurry.

更に、液状として使用する場合には有機金属塩を石油系
溶剤に溶解させて使用することかできるが、アルミン酸
ソーダのような化合物を使用して水性の溶液を調整し、
これを添加してもその効果については上記油性溶液のも
のと全く変らない。
Furthermore, when used in liquid form, organometallic salts can be dissolved in petroleum solvents, but compounds such as sodium aluminate can be used to prepare aqueous solutions.
Even if this is added, the effect is no different from that of the above-mentioned oil-based solution.

この発明で使用する燃料としては重油、石炭、オイルコ
ークス、コークス等があるか、前記アルミニウム化合物
又はその水和物を主成分とする粉末状、スラリー状、液
状の添加剤はこれ等燃料中に混合、散布して燃焼雰囲気
中に投入したり、燃料とは別途燃焼火炎中に投入するよ
うにしてもよく、適宜ボイラーの型、燃焼方法等により
最適な方法を選択すればよい。
Fuels used in this invention include heavy oil, coal, oil coke, coke, etc., and powdered, slurry, and liquid additives containing the aluminum compound or its hydrate as a main component may be added to these fuels. It may be mixed and dispersed and then introduced into the combustion atmosphere, or it may be introduced into the combustion flame separately from the fuel, and the most suitable method may be selected depending on the type of boiler, combustion method, etc.

なお、この場合高温硫化腐食の抑制に有効なアルミニウ
ム化合物又はその水和物の添加量は、運転状況、使用燃
料中のS、Naの組成により異なるか、硫化腐食の元凶
となる燃料中のSの作用を抑v1するに必要な量てあれ
ばよく、0.3〜5zのSを含有する上記燃料に対して
A1.03換算で1/100〜1/10.000程度か
適当で好ましくは11500〜1/:l、00口がよい
In this case, the amount of aluminum compound or its hydrate added that is effective in suppressing high-temperature sulfide corrosion may vary depending on the operating conditions and the composition of S and Na in the fuel used, or the amount of S in the fuel that is the cause of sulfide corrosion may vary depending on the operating conditions and the composition of S and Na in the fuel used. It is sufficient to have the amount necessary to suppress the effect of v1, and it is appropriate and preferably about 1/100 to 1/10.000 in terms of A1.03 for the above fuel containing S of 0.3 to 5z. 11500~1/:l, 00 mouth is good.

(発明の効果) この発明のように、アルミニウム化合物又はその水和物
を主成分としたスラリー、粉末又は液状物を燃料ととも
に、低酸素運転条件での燃焼雰囲気中に投入すると1両
性金属であるアルミニウム化合物又はその水和物か上述
の燃焼雰囲気中高温部等の還元部分てしばしば発生する
遊離のS或はCO等と反応してこれ等を無害化し、硫化
腐食の発生を効果的に抑制する。
(Effects of the Invention) As in this invention, when a slurry, powder, or liquid material containing an aluminum compound or its hydrate as a main component is introduced together with fuel into a combustion atmosphere under low oxygen operating conditions, it is an amphoteric metal. Aluminum compounds or their hydrates react with free S or CO, etc., which are often generated in the above-mentioned reducing parts such as high-temperature parts in the combustion atmosphere, rendering them harmless and effectively suppressing the occurrence of sulfide corrosion. .

したかって、この発明によれば低酸素運転条件て、しば
しば生ずる高温硫化腐食の防止を、現存の燃焼状態及び
装置のま\安価で、且つ簡便な方法て有効に行うことか
てきるのである。
Therefore, according to the present invention, it is possible to effectively prevent high-temperature sulfidation corrosion that often occurs under low-oxygen operating conditions using an inexpensive and simple method that uses existing combustion conditions and equipment.

さらにアルミニウム化合物又はその水和物に前述の遷移
金属その他の金属もしくはその化合物の1種又は1種以
上を併用すると、硫化腐食防止に相乗効果を示す他にN
Ox低下、バナジウム腐食防止、801対策など他のボ
イラー障害防止策をも合せて行なわせることかてきる。
Furthermore, when one or more of the above-mentioned transition metals, other metals, or their compounds are used in combination with an aluminum compound or its hydrate, in addition to showing a synergistic effect in preventing sulfide corrosion, N
Other measures to prevent boiler failure, such as reducing oxygen, preventing vanadium corrosion, and taking measures against 801, can also be taken.

(実施例) 以下、この発明の実施例を示す。(Example) Examples of this invention will be shown below.

l)添加剤の製法 (A)八120:l  (平均粒径5ル)20部、閘g
(011)210部を煙霧灯油60部、レシチンとPO
Eノニルフェノールエーテル(IILBIO)10部を
ホモジナイザー 10000rp、mて攪拌しながら水
を2〜3ifl加え、30分間攪拌し、安定なオイルス
ラリーとした。
l) Additive manufacturing method (A) 8120: l (average particle size 5 l) 20 parts, g
(011) 210 parts fume kerosene 60 parts, lecithin and PO
While stirring 10 parts of E nonylphenol ether (IILBIO) using a homogenizer at 10,000 rpm, 2 to 3 ifl of water was added, and the mixture was stirred for 30 minutes to form a stable oil slurry.

(B・)オレイン酸処理したAI(011)、:15部
とオレイン酸処理した四三酸化鉄20部を白灯油45部
に入れ、ホモジナイザーて分散し、均一安定したスラリ
ーとする。
(B.) 15 parts of oleic acid-treated AI (011) and 20 parts of oleic acid-treated triiron tetroxide are added to 45 parts of white kerosene and dispersed using a homogenizer to form a uniform and stable slurry.

(C)オクテン酸アルミニウム6部を白灯油94部に溶
解し、溶液とした。
(C) 6 parts of aluminum octenoate was dissolved in 94 parts of white kerosene to form a solution.

実施例1 上記3種の添加剤をプランジャーポンプを用いて、燃料
中にl : 1000の容量割合でボイラー燃料の配管
に強制的に混入し、燃料と共に燃焼させる。
Example 1 The above three additives are forcibly mixed into the boiler fuel piping at a volume ratio of 1:1000 into the fuel using a plunger pump, and are combusted together with the fuel.

実験を行なったボイラー型式と運転条件は下記のよって
ある。
The boiler type and operating conditions used in the experiment are as follows.

ボイラ型式と運転条件 最大蒸発量: :150T/11.最大蒸気圧カニ 1
25Kg/cm2最大蒸気温度=540℃、燃料使用敬
:21Kl/11燃料:C重油(32,4%) 、  
過剰酸素量:1.OK高温硫化腐食の判定は、無添加て
半年間ボイラーを運転し、高温硫化腐食を起している高
温部のチューブを切取り、新しいチューブと交換して」
二記のように添加剤を投入して半年間連続して燃焼運転
を行ない、同し場所のチューブを裁断し、JIS G 
0560鋼材のサルファプリント試験方法で、硫化物の
付着状態を判定したところ、高温燃焼ガスの流れ方向に
面した部分に硫化物の生成がみられ、硫化腐食の生して
いることが認められた。
Boiler model and operating conditions Maximum evaporation amount: : 150T/11. Maximum steam pressure crab 1
25Kg/cm2 Maximum steam temperature = 540℃, Fuel usage: 21Kl/11Fuel: C heavy oil (32.4%),
Excess oxygen amount: 1. OK To determine high-temperature sulfide corrosion, operate the boiler for six months without additives, cut out the tube in the high-temperature section where high-temperature sulfide corrosion is occurring, and replace it with a new tube.
As shown in Section 2, additives were added and combustion operation was performed continuously for six months, and the tube was cut at the same location, and the JIS G
When the state of sulfide adhesion was determined using the sulfur print test method for 0560 steel, sulfide formation was observed in the area facing the flow direction of high-temperature combustion gas, indicating that sulfide corrosion was occurring. .

また鋼材の硫化腐食発生部分を顕微鏡で観察した。この
結果は、第1図のように無添加(ブランク)の場合には
チューブの金属表面か凹凸になり、硫化腐食か激しいか
、添加剤(A)(B)(C)を使用した場合は、硫化物
層が薄く、チューブ表面かなだらかである。
In addition, the parts of the steel where sulfide corrosion occurred were observed using a microscope. As shown in Figure 1, if no additives (blank) are used, the metal surface of the tube will be uneven, and whether it is severe sulfide corrosion or if additives (A), (B), and (C) are used. , the sulfide layer is thin and the tube surface is smooth.

実施例2 燃焼炉内の実灰を粉砕し、これに上記添加剤(A)  
(B)  (C)全5XトlOXずつ添加し、更にカー
ボンブラック1%と2%を加え、均一に混合し、ルツボ
に10部入れてこの中に5TBA−24のテストピース
を埋込む。次ニC0t12%、0□4%、5O2250
0pplの試験ガス雰囲気下にある電気炉中にこのルツ
ボを入れ、炉内の雰囲気温度650°Cとし、3時間加
熱後、テストピースの腐食減量を測定した。
Example 2 The actual ash in the combustion furnace was pulverized, and the above additive (A) was added to it.
(B) (C) Add a total of 5X tolOX, further add 1% and 2% of carbon black, mix uniformly, place 10 parts in a crucible, and embed a 5TBA-24 test piece therein. Next C0t12%, 0□4%, 5O2250
The crucible was placed in an electric furnace in an atmosphere of 0 ppl test gas, the atmosphere temperature in the furnace was set to 650°C, and after heating for 3 hours, the corrosion loss of the test piece was measured.

この結果を第2図に示す。The results are shown in FIG.

これによれば、添加剤(A)(B)(C)を添加した場
合はいずれも無添加(ブランク)の場合に比較して腐食
減量か少なかった。
According to this, when additives (A), (B), and (C) were added, the corrosion loss was smaller than when no additives were added (blank).

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、実施例1において高温硫化腐食の状態を観察
するために裁断されたチューブ鋼材を顕微鏡て観察した
状態を示す図面て、第1図(A)はブランク試験におけ
る図面で、第1図(B)は添加剤を使用した場合の図面
、第2図は、実施例2における添加剤の種類とテストピ
ース腐食減量との関係を示す図て、第2図(A)はカー
ボンブラック1%加えた場合の図、第2図(B)はカー
ボンブラック2%を加えた場合の図である。 第1図 (A) CB)
Figure 1 is a drawing showing the state of the cut tube steel material observed under a microscope in order to observe the state of high-temperature sulfide corrosion in Example 1. Figure (B) is a diagram when additives are used, Figure 2 is a diagram showing the relationship between the type of additive and the corrosion loss of the test piece in Example 2, and Figure 2 (A) is a diagram showing the relationship between the type of additive and the corrosion loss of the test piece in Example 2. Figure 2 (B) is a diagram when 2% of carbon black is added. Figure 1 (A) CB)

Claims (1)

【特許請求の範囲】[Claims] アルミニウム化合物又はその水和物を主成分としたスラ
リー、粉末又は液状物を燃料とともに、燃焼雰囲気中に
投入し、燃焼炉中の高温部における硫化腐食を防止する
ことを特徴とする硫化腐食防止法。
A sulfide corrosion prevention method characterized by introducing a slurry, powder, or liquid material containing an aluminum compound or its hydrate as a main component into a combustion atmosphere together with fuel to prevent sulfide corrosion in a high-temperature section of a combustion furnace. .
JP6981286A 1986-03-29 1986-03-29 Method for preventing corrosion by sulfurization Pending JPS62227096A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6981286A JPS62227096A (en) 1986-03-29 1986-03-29 Method for preventing corrosion by sulfurization

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6981286A JPS62227096A (en) 1986-03-29 1986-03-29 Method for preventing corrosion by sulfurization

Publications (1)

Publication Number Publication Date
JPS62227096A true JPS62227096A (en) 1987-10-06

Family

ID=13413543

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6981286A Pending JPS62227096A (en) 1986-03-29 1986-03-29 Method for preventing corrosion by sulfurization

Country Status (1)

Country Link
JP (1) JPS62227096A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04345688A (en) * 1991-05-24 1992-12-01 Mitsubishi Heavy Ind Ltd Fuel additive for preventing high-temperature oxidation and high-temperature corrosion

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57135895A (en) * 1981-02-13 1982-08-21 Matsushita Electric Ind Co Ltd Solid fuel
JPS5750185Y2 (en) * 1977-09-13 1982-11-02
JPS6099920A (en) * 1983-11-04 1985-06-03 Mitsubishi Heavy Ind Ltd Agent for raising melting point of combustion ash
JPS6179787A (en) * 1984-09-27 1986-04-23 Mitsubishi Heavy Ind Ltd Method for preventing corrosion of boiler

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5750185Y2 (en) * 1977-09-13 1982-11-02
JPS57135895A (en) * 1981-02-13 1982-08-21 Matsushita Electric Ind Co Ltd Solid fuel
JPS6099920A (en) * 1983-11-04 1985-06-03 Mitsubishi Heavy Ind Ltd Agent for raising melting point of combustion ash
JPS6179787A (en) * 1984-09-27 1986-04-23 Mitsubishi Heavy Ind Ltd Method for preventing corrosion of boiler

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04345688A (en) * 1991-05-24 1992-12-01 Mitsubishi Heavy Ind Ltd Fuel additive for preventing high-temperature oxidation and high-temperature corrosion

Similar Documents

Publication Publication Date Title
US3002826A (en) Fuel oil additive to reduce corrosion and deposits
KR101572562B1 (en) process of manufacturing
US20100077653A1 (en) High flash point additives for treating carbon-based fuels
CN109072110B (en) Use of vanadium corrosion inhibitors in gas turbines
US3205053A (en) Fuel oil composition containing corrosion inhibiting additive
JPH0413798A (en) Fuel additive
JPS62227096A (en) Method for preventing corrosion by sulfurization
JP2977569B2 (en) Method and apparatus for operating a gas turbine by introducing additives
JPH06116575A (en) Hydrocarbon fuel and additive therefor
JPS5824478B2 (en) How to burn fuel
JP3712262B2 (en) Operation method of gas turbine with additive
CN1062590C (en) Composite heavy oil comburant and its preparation
JPH0560516B2 (en)
KR100743826B1 (en) Fuel additive for bituminous heavy oil/water emulsion fuel and method of combustion
JP3011326B2 (en) Fuel additives and fuels
US3523767A (en) Fuel oil additive and method of making the same
JP3609119B2 (en) Fuel additive and fuel composition containing the same
JPS62167392A (en) Method for preventing sulfation corrosion
JPH0798953B2 (en) Combustion method of ultra heavy oil-water emulsion fuel
JPH0560517B2 (en)
JPH03243695A (en) Combustion modification of o/w type emulsion fuel from bitumen heavy oil
JP2772156B2 (en) Fuel additive for high temperature oxidation and high temperature corrosion prevention
JPS5823440B2 (en) Method for preventing corrosion in high-temperature parts of boilers using heavy oil as the combustion source
JPS61152794A (en) Fuel additive
JP2006516301A (en) Novel use of phosphorus-nitrogen-metal complexes