JP3609119B2 - Fuel additive and fuel composition containing the same - Google Patents

Fuel additive and fuel composition containing the same Download PDF

Info

Publication number
JP3609119B2
JP3609119B2 JP10908394A JP10908394A JP3609119B2 JP 3609119 B2 JP3609119 B2 JP 3609119B2 JP 10908394 A JP10908394 A JP 10908394A JP 10908394 A JP10908394 A JP 10908394A JP 3609119 B2 JP3609119 B2 JP 3609119B2
Authority
JP
Japan
Prior art keywords
fuel
oil
additive
fuel additive
fine particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP10908394A
Other languages
Japanese (ja)
Other versions
JPH07292373A (en
Inventor
淳 上原
和夫 清水
利昭 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Oil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Oil Corp filed Critical Nippon Oil Corp
Priority to JP10908394A priority Critical patent/JP3609119B2/en
Publication of JPH07292373A publication Critical patent/JPH07292373A/en
Application granted granted Critical
Publication of JP3609119B2 publication Critical patent/JP3609119B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0001】
【産業上の利用分野】
本発明は燃料、特に重油、アスファルト、アスファルト/水エマルション燃料等に対し、安価で、分散性が良く、腐食性が少なく、かつ媒塵の低減効果を有する燃料添加剤(助燃剤)及びそれを含む燃料組成物に関する。
【0002】
【従来技術】
重油、アスファルト等の重質燃料は残炭分が多く、バーナー、ボイラー等の外燃機関や、舶用ディーゼル機関等の内燃機関等で燃焼させた場合、未燃焼炭化水素(媒塵)が多く発生しやすいという傾向がある。燃焼機器を改善することなく簡便に媒塵を抑制するため方法として、過剰空気量を増やして燃焼させるなどの方法が取られるがこの方法では燃焼効率が低下し、有害な窒素酸化物も増加してしまう。そこで、空気量を増やすことなく媒塵を低減する方法として燃料に添加剤を添加するという方法が採られている。
【0003】
この種の試みとして従来より、Ba、Ca、Fe、Mn、Ce等の様々な元素を含む添加剤について研究がなされている。
無機微粒子の形態を有する添加剤としてはFe、カーボンブラック、Caなど微粉状粒子に鉄系材料を加えた添加剤(特開平5−9479)等があるが、無機微粒子の固形物のみでは粒径を小さくしても表面積に限度があるため添加元素の効力を発揮させるには限度があり、また、使用中に無機微粒子が沈降する恐れもある。
また、油溶性化合物を含む添加剤としては、例えばCeを含む油溶性石鹸(特開昭53−12907)からなる添加剤等があるが、添加量を多くしないと十分な効果が得られず、高価である。
さらに還元雰囲気での使用も可能なものとして様々な金属を含む化合物(特開平03−244692)からなる添加剤もあるが、このような構造式が限られている化合物はいずれも合成するのにコストがかかる。
【0004】
これらの問題点を解決するために、少量で媒塵低減効果を上げる添加剤としてCe、Nd、La等を含む添加剤(特開平1−256593)も挙げられる。しかし希土類元素は助燃効果は大きいが、Feなどの遷移金属、アルカリ金属及びアルカリ土類金属に比べると高価であるという欠点がある。
また、Na、Kのようなアルカリ金属系の添加剤は助燃効果が高いが、重油中に含まれるバナジウムと低融点化合物を生成し、排気系等で高温腐食を起こすことが知られている。またアルカリ土類金属のうち比較的効果が大きく、安価なCaは堆積物の付着力が強く、剥がれ難いという欠点を有する。
【0005】
【発明が解決しようとする課題】
本発明は前記問題点を解決し、安価で、分散性が良く、装置の腐食が少なく、さらに媒塵の低減効果を有する燃料添加剤及びそれを含む燃料組成物を提供することを目的とする。
【0006】
【課題を解決するための手段】
本発明者らは上記目的を解決するために鋭意研究した結果、CeとFeを特定の形態で組合せた燃料添加剤を燃料に配合することにより、上記目的を達成できることを見い出し本発明を完成した。
【0007】
すなわち、本発明はCeを含む無機物の微細粒子とFe含む油溶性有機酸塩又はFeを含む無機物の微細粒子とCeを含む油溶性有機酸塩を含むことを特徴とする燃料添加剤に関する。
【0008】
また、本発明は、燃料に、Ceを含む無機物の微細粒子とFeを含む油溶性有機酸塩又はFeを含む無機物の微細粒子とCeを含む油溶性有機酸塩を含む燃料添加剤が配合されていることを特徴とする燃料組成物に関する。
以下本発明を具体的に説明する。
【0009】
本発明で対象とする燃料は、主として重油、アスファルト、アスファルト/水エマルション燃料等の重質燃料であるが、特にこれらに限定されるものではない。
【0010】
本発明で使用するCeを含む無機物とは、非油溶性のCeを含む無機物であり、具体的には、例えばCe金属、CeO、Ce、Ce(OH)、CeCl、Ce(SO、Ce(CO、及びこれらを含む鉱物等が挙げられる。
【0011】
本発明で使用するFeを含む無機物とは、非油溶性のFeを含む無機物であり、具体的には、例えばFe金属、FeO、Fe、FeO(OH)、Fe(OH)、FeCO、FeSO、FeCl、FeCl、Fe(NO等が挙げられる。
【0012】
Ce及びFeを含む無機物の微細粒子の粒径はできるだけ微細な方が良い。例えば、1μm以下が好ましく、さらに0.1μm以下が好ましい。しかしながら、このように微粉砕するのにコストがかかるようであれば燃料油の粘度にあわせて燃料中で安定に分散できる範囲の大きさでもよい。
【0013】
本発明で使用するCeを含む油溶性有機酸塩とは、Ceとナフテン酸、オクチル酸、スルホン酸、ステアリン酸、パルミチン酸等の有機酸とを反応させたものである。具体的には、例えばCeナフテン酸、Ceオクチル酸、Ceスルホン酸、Ceステアリン酸、Ceパルミチン酸等が挙げられる。
【0014】
本発明で使用するFeを含む油溶性有機酸塩とはFeとナフテン酸、オクチル酸、スルホン酸、ステアリン酸、パルミチン酸等の有機酸とを反応させたものである。具体的には、例えばFeナフテン酸、Feオクチル酸、Feスルホン酸、Feステアリン酸、Feステアリン酸、Feパルミチン酸等が挙げられる。
【0015】
本発明の燃料添加剤において、FeとCe両元素合計量に対するCe含有量は10〜90重量%であり、好ましくは30〜80重量%であり、更に好ましくは40〜70重量%である。
Ce含有量が10重量%未満であるとCeとFeの両元素が接する効率が悪くなり、助燃効果がFeのみの場合とほとんど変わらない。
Ce含有量が90重量%を超えるとCeとFeの両元素が接する効率が悪くなり、助燃効果がCeのみの場合とほとんど変わらない。
【0016】
本発明の燃料添加剤はCeを含む無機物の微細粒子等Feを含む油溶性有機酸塩、又はFeを含む無機物の微細粒子とCeを含む油溶性有機酸塩を溶剤に溶解したものである。本発明で使用される溶剤は特に限定されないが、例えば灯油、軽油、重油等の石油系溶剤、あるいはベンゼン、トルエン、キシレン等の芳香族系溶剤等が挙げられる。
【0017】
本発明の燃料組成物は上記本発明の燃料添加剤を燃料に配合したものであるが、燃料に対する燃料添加剤の含有量は金属量で1重量ppm〜1000重量ppmであり、さらに好ましくは5重量ppm〜100重量ppmである。
1重量ppm未満であると量が少なすぎて媒塵低減効果も小さい。1000重量ppmを超えると逆に添加量の割には媒塵低減効果が上がらない。
【0018】
【作用】
本発明の燃料添加剤で媒塵低減効果が大きい理由としては、Ce酸化物には酸素を出し入れする酸素ポンプ機能があり、その機能により残炭分の完全燃焼が促進されていると考えられるが、Fe酸化物が介在することでその反応速度がさらに促進されている可能性がある。さらにFeの添加で生成カーボンの結晶化が低くおさえられるので燃焼しやすい残留炭素が形成される。これらの効果によりCe、Feを合わせることで燃焼促進効果が増大するものと思われる。
また、Ceは重油中のバナジウムと化合し高融点化合物を生成するので、燃焼生成物による高温腐食を抑制するという利点も合わせて有している。
【0019】
また、CeとFeとを組合わせれば大きな相乗効果が期待できるが両方とも微細粒子では分散性が悪く、沈降の恐れがある。またCeとFeが近傍に存在する確立も低く、大きな相乗効果が期待できない。一方本発明では微粒子と油溶性化合物では油溶性化合物が界面活性剤のようなはたらきで微粒子表面に吸着していると思われるので、CeとFeが近傍に存在しつつしかも分散性が良く、微粒子添加剤の欠点である沈降がほとんどない。
【0020】
【実施例】
本発明を実施例及び比較例により、さらに具体的に以下に説明する。
燃焼速度の測定、算出方法、媒塵量の測定方法及び燃焼炉の条件は以下の通りである。
〔燃焼速度の測定及び算出方法〕
燃料添加剤を添加した燃料油10mgを示差熱天秤(理学電機製TG8110)を用い昇温速度100℃/分で500℃まで加熱し燃焼させ500℃で保持した時の生成残炭の質量減少曲線から燃焼速度を算出した。空気流量は100ml/分とした。(本測定装置では100ml/分以下にすると空気の拡散律速となり測定値が変動しやすいため)算出方法は次式を利用した(注(1)、(2))。
燃焼速度定数ksは次式で求められる。
【0021】
【数1】

Figure 0003609119
:定数、T:温度、m、m:各測定点での質量
σ:表面積、τ:測定点間の時間間隔
【0022】
実際の測定では、T=500℃(一定)、m/m=2.6(一定)にし、またσ=一定とみなせば、上式は
【0023】
【数2】
Figure 0003609119
となるので、1/τで燃焼速度定数の比較ができる。
注(1)柴山ら、日本機械学会論文集、34(260)、769(1968)
(2)候ら、日本機械学会論文集、54(507)3301(1988)
【0024】
〔媒塵量の測定方法〕
媒塵量は、排ガス中のダスト濃度の測定方法(JIS Z 8808)により測定した。
【0025】
〔燃焼炉の条件〕
燃焼炉 :ボイラー
油量 :100L/h
排ガスO :1%
蒸気量 :30kg/cm
【0026】
実施例1〜4
CeO微細粒子をトルエン溶剤にコロイド状に分散させたものにFeナフテン酸塩を混合し、表1の金属組成比で燃料添加剤を調製した。得られた燃料添加剤をC重油(比重0.9422、残炭分5.17wt%、硫黄分1.94wt%)に金属濃度が0.03wt%となるように添加して得られた燃料組成物について、燃焼速度を測定した。その結果を表1に示した。
【0027】
実施例5〜6
FeO微細粒子をトルエン溶剤にコロイド状に分散させたものに、Ceナフテン酸塩を混合し、表1の金属組成比で燃料添加剤を調製した以外は実施例1と同様に燃料組成物を調製して燃焼速度を測定した。その結果を表1に示した
【0028】
比較例1
CeO微細粒子をトルエン溶剤にコロイド状に分散させた燃料添加剤を調製した以外は実施例1と同様に燃料組成物を調製して燃焼速度を測定した。その結果を表1に示した。
【0029】
比較例2
FeO微細粒子とトルエン溶剤にコロイド状に分散させた燃料添加剤を調製した以外は実施例1と同様に燃料組成物を調製して燃焼速度を測定した。その結果を表1に示した。
【0030】
比較例3
燃料添加剤を用いないで、実施例1の上記C重油について燃焼速度を測定し、その結果を表1に示した。
【0031】
実施例7
実施例3で得られた燃料添加剤を実施例1の上記C重油について金属量が30ppmとなるように添加し燃料組成物を調製した。燃焼炉で燃焼実験を行い燃焼炉での媒塵量を測定した。その結果を表2に示した。
【0032】
実施例8
実施例6で得られた燃料添加剤を用いて、実施例7と同様に燃料組成物を調製し、同様に媒塵量を測定した。その結果を表2に示した。
【0033】
比較例4
比較例1で得られた燃料添加剤を用いて、実施例7と同様に燃料組成物を調製し、同様に媒塵量を測定した。その結果を表2に示した。
【0034】
比較例5
燃料添加剤を用いないで、実施例1の上記C重油について実施例7と同様に媒塵量を測定した。その結果を表2に示した。
【0035】
【表1】
Figure 0003609119
【0036】
【表2】
Figure 0003609119
【0037】
実施例1〜8及び比較例1〜5から次のことが言える。
▲1▼本発明の燃料添加剤を用いる実施例1〜6では燃焼速度が大きい。
▲2▼比較例1のCeO微細粒子のみを用いた燃料添加剤ケース、比較例2のFeO微細粒子のみを用いた燃料添加剤ケース及び比較例3の燃料添加剤を用いないケースは、いずれも燃焼速度が大きい。
▲3▼本発明の燃料添加剤を用いる実施例5〜6では媒塵の抑制効果が顕著で、また、使用に際して燃料添加剤の沈降は見られなかった。
▲4▼比較例4のCeO微細粒子のみを用いた燃料添加剤ケース及び比較例5の燃料添加剤を用いないケースは媒塵量が多い。
【0038】
【発明の効果】
本発明の燃料添加剤は、比較的安価で、燃料への分散性が良く、装置の腐食が少なく、さらに、燃焼促進効果が大きいため煤煙抑制効果が高いという利点を有する。[0001]
[Industrial application fields]
The present invention is a fuel additive (supporting agent) that is inexpensive, has good dispersibility, has little corrosiveness, and has a dust reducing effect on fuels, particularly heavy oil, asphalt, asphalt / water emulsion fuel, and the like. It is related with the fuel composition containing.
[0002]
[Prior art]
Heavy fuels such as heavy oil and asphalt have a large amount of residual coal, and when burned in an external combustion engine such as a burner or boiler, or an internal combustion engine such as a marine diesel engine, a large amount of unburned hydrocarbon (dust) is generated. There is a tendency to be easy to do. As a method to easily suppress dust without improving combustion equipment, a method such as increasing the amount of excess air and burning is used, but this method decreases the combustion efficiency and increases harmful nitrogen oxides. End up. Therefore, a method of adding an additive to the fuel has been adopted as a method of reducing dust without increasing the amount of air.
[0003]
As an attempt of this kind, studies have been made on additives containing various elements such as Ba, Ca, Fe, Mn, and Ce.
Examples of the additive having the form of inorganic fine particles include an additive obtained by adding an iron-based material to fine powder particles such as Fe, carbon black, and Ca (JP-A-5-9479). Even if it is made small, the surface area is limited, so that there is a limit to exert the effect of the additive element, and the inorganic fine particles may settle during use.
Moreover, as an additive containing an oil-soluble compound, for example, there is an additive made of an oil-soluble soap containing Ce (Japanese Patent Laid-Open No. 53-12907), but a sufficient effect cannot be obtained unless the addition amount is increased. Expensive.
In addition, there are additives made of compounds containing various metals (Japanese Patent Laid-Open No. 03-244692) that can be used in a reducing atmosphere. However, such compounds with limited structural formulas can be synthesized. There will be a cost.
[0004]
In order to solve these problems, an additive containing Ce, Nd, La and the like (Japanese Patent Laid-Open No. 1-256593) is also mentioned as an additive that increases the dust reduction effect in a small amount. However, although rare earth elements have a large auxiliary effect, they are disadvantageous in that they are more expensive than transition metals such as Fe, alkali metals, and alkaline earth metals.
In addition, alkali metal additives such as Na and K have a high auxiliary combustion effect, but it is known that vanadium and a low-melting-point compound contained in heavy oil are generated and high-temperature corrosion is caused in an exhaust system or the like. Further, among alkaline earth metals, Ca is relatively effective, and inexpensive Ca has the disadvantage that the deposit has strong adhesion and is difficult to peel off.
[0005]
[Problems to be solved by the invention]
An object of the present invention is to solve the above problems, and to provide a fuel additive having a low cost, good dispersibility, little corrosion of the apparatus, and further having a dust reducing effect, and a fuel composition containing the same. .
[0006]
[Means for Solving the Problems]
As a result of diligent research to solve the above-mentioned object, the present inventors have found that the above-mentioned object can be achieved by adding a fuel additive in which Ce and Fe are combined in a specific form to the fuel, thereby completing the present invention. .
[0007]
That is, this invention relates to the fuel additive characterized by including the inorganic fine particle containing Ce, the oil-soluble organic acid salt containing Fe, or the inorganic fine particle containing Fe, and the oil-soluble organic acid salt containing Ce.
[0008]
Further, in the present invention, a fuel additive containing inorganic fine particles containing Ce and oil-soluble organic acid salt containing Fe or inorganic fine particles containing Fe and oil-soluble organic acid salt containing Ce is blended in the fuel. It is related with the fuel composition characterized by the above-mentioned.
The present invention will be specifically described below.
[0009]
The fuels targeted in the present invention are mainly heavy fuels such as heavy oil, asphalt, and asphalt / water emulsion fuel, but are not particularly limited thereto.
[0010]
The inorganic substance containing Ce used in the present invention is an inorganic substance containing non-oil soluble Ce. Specifically, for example, Ce metal, CeO 2 , Ce 2 O 3 , Ce (OH) 3 , CeCl 3 , Ce 2 (SO 4 ) 3 , Ce 2 (CO 3 ) 3 and minerals containing these.
[0011]
The inorganic substance containing Fe used in the present invention is an inorganic substance containing non-oil-soluble Fe. Specifically, for example, Fe metal, FeO, Fe 2 O 3 , FeO (OH), Fe (OH) 2 , FeCO 3, FeSO 4, FeCl 2 , FeCl 3, Fe (NO 3) 2 and the like.
[0012]
The inorganic fine particles containing Ce and Fe should be as fine as possible. For example, it is preferably 1 μm or less, more preferably 0.1 μm or less. However, if the cost for fine pulverization is high, the size may be in a range that can be stably dispersed in the fuel according to the viscosity of the fuel oil.
[0013]
The oil-soluble organic acid salt containing Ce used in the present invention is obtained by reacting Ce with an organic acid such as naphthenic acid, octylic acid, sulfonic acid, stearic acid, and palmitic acid. Specific examples include Ce naphthenic acid, Ce octylic acid, Ce sulfonic acid, Ce stearic acid, Ce palmitic acid and the like.
[0014]
The oil-soluble organic acid salt containing Fe used in the present invention is obtained by reacting Fe with an organic acid such as naphthenic acid, octylic acid, sulfonic acid, stearic acid, and palmitic acid. Specific examples include Fe naphthenic acid, Fe octylic acid, Fe sulfonic acid, Fe stearic acid, Fe stearic acid, Fe palmitic acid and the like.
[0015]
In the fuel additive of the present invention, the Ce content relative to the total amount of both Fe and Ce elements is 10 to 90% by weight, preferably 30 to 80% by weight, and more preferably 40 to 70% by weight.
When the Ce content is less than 10% by weight, the efficiency with which both elements of Ce and Fe come into contact with each other is deteriorated, and the auxiliary combustion effect is almost the same as that of Fe alone.
When the Ce content exceeds 90% by weight, the efficiency with which both elements of Ce and Fe come into contact with each other is deteriorated, and the auxiliary combustion effect is almost the same as that of Ce alone.
[0016]
The fuel additive of the present invention is an oil-soluble organic acid salt containing Fe, such as inorganic fine particles containing Ce, or an oil-soluble organic acid salt containing Ce containing inorganic fine particles containing Fe and Ce. The solvent used in the present invention is not particularly limited, and examples thereof include petroleum solvents such as kerosene, light oil, and heavy oil, and aromatic solvents such as benzene, toluene, and xylene.
[0017]
The fuel composition of the present invention is obtained by blending the fuel additive of the present invention with a fuel. The content of the fuel additive with respect to the fuel is 1 ppm by weight to 1000 ppm by weight, more preferably 5 ppm. Weight ppm to 100 ppm by weight.
If it is less than 1 ppm by weight, the amount is too small and the dust reduction effect is also small. On the other hand, if it exceeds 1000 ppm by weight, the dust reduction effect does not increase for the added amount.
[0018]
[Action]
The reason why the fuel additive of the present invention has a large dust reduction effect is that Ce oxide has an oxygen pump function for taking in and out oxygen, and it is thought that complete combustion is promoted by the function. The reaction rate may be further promoted by the presence of Fe oxide. Further, the addition of Fe suppresses the crystallization of the generated carbon, so that residual carbon that is easy to burn is formed. Combining Ce and Fe by these effects seems to increase the combustion promotion effect.
Further, Ce combines with vanadium in heavy oil to form a high melting point compound, and therefore has an advantage of suppressing high temperature corrosion caused by combustion products.
[0019]
Further, when Ce and Fe are combined, a great synergistic effect can be expected. However, both fine particles have poor dispersibility and may cause sedimentation. In addition, the probability that Ce and Fe exist in the vicinity is low, and a large synergistic effect cannot be expected. On the other hand, in the present invention, in the case of fine particles and oil-soluble compounds, it is considered that the oil-soluble compound is adsorbed on the surface of the fine particles by acting like a surfactant, so that Ce and Fe are present in the vicinity and dispersibility is good. There is almost no sedimentation, which is a drawback of the additive.
[0020]
【Example】
The present invention will be described more specifically below with reference to examples and comparative examples.
The combustion rate measurement, calculation method, dust amount measurement method, and combustion furnace conditions are as follows.
[Measurement and calculation method of burning rate]
10 mg of fuel oil with added fuel additive is heated to 500 ° C at a heating rate of 100 ° C / min using a differential thermal balance (TG8110 manufactured by Rigaku Corporation), burned and held at 500 ° C. From this, the burning rate was calculated. The air flow rate was 100 ml / min. (In this measuring device, if it is less than 100 ml / min, the diffusion value of air becomes limited and the measured value tends to fluctuate.) The calculation method uses the following formula (Notes (1) and (2)).
The combustion rate constant ks is obtained by the following equation.
[0021]
[Expression 1]
Figure 0003609119
A 1 : constant, T: temperature, m 1 , m 2 : mass at each measurement point σ: surface area, τ: time interval between measurement points
In actual measurement, if T = 500 ° C. (constant), m 1 / m 2 = 2.6 (constant), and σ = constant, the above equation is
[Expression 2]
Figure 0003609119
Therefore, the combustion rate constant can be compared at 1 / τ.
Note (1) Shibayama et al., Transactions of the Japan Society of Mechanical Engineers, 34 (260), 769 (1968)
(2) Koki et al., Transactions of the Japan Society of Mechanical Engineers, 54 (507) 3301 (1988)
[0024]
[Measurement method of dust amount]
The amount of dust was measured by a method for measuring dust concentration in exhaust gas (JIS Z 8808).
[0025]
[Combustion furnace conditions]
Combustion furnace: Boiler oil amount: 100 L / h
Exhaust gas O 2 : 1%
Steam volume: 30 kg / cm 3
[0026]
Examples 1-4
Fe naphthenate was mixed with a colloidal dispersion of CeO 2 fine particles in a toluene solvent to prepare a fuel additive at a metal composition ratio shown in Table 1. Fuel composition obtained by adding the obtained fuel additive to C heavy oil (specific gravity 0.9422, residual carbon content 5.17 wt%, sulfur content 1.94 wt%) so that the metal concentration becomes 0.03 wt% The burning rate was measured for the product. The results are shown in Table 1.
[0027]
Examples 5-6
A fuel composition was prepared in the same manner as in Example 1 except that Ce naphthenate was mixed in a colloidal dispersion of FeO 2 fine particles in a toluene solvent and a fuel additive was prepared at a metal composition ratio shown in Table 1. Prepared and measured burning rate. The results are shown in Table 1. [0028]
Comparative Example 1
A fuel composition was prepared in the same manner as in Example 1 except that a fuel additive in which CeO 2 fine particles were dispersed in a colloidal form in a toluene solvent was prepared, and the combustion rate was measured. The results are shown in Table 1.
[0029]
Comparative Example 2
A fuel composition was prepared in the same manner as in Example 1 except that a fuel additive dispersed in a colloidal form in FeO 2 fine particles and a toluene solvent was prepared, and the combustion rate was measured. The results are shown in Table 1.
[0030]
Comparative Example 3
The combustion rate was measured for the C heavy oil of Example 1 without using a fuel additive, and the results are shown in Table 1.
[0031]
Example 7
The fuel additive obtained in Example 3 was added to the C heavy oil of Example 1 so that the amount of metal was 30 ppm, to prepare a fuel composition. A combustion experiment was conducted in a combustion furnace, and the amount of dust in the combustion furnace was measured. The results are shown in Table 2.
[0032]
Example 8
Using the fuel additive obtained in Example 6, a fuel composition was prepared in the same manner as in Example 7, and the amount of dust was measured in the same manner. The results are shown in Table 2.
[0033]
Comparative Example 4
A fuel composition was prepared in the same manner as in Example 7 using the fuel additive obtained in Comparative Example 1, and the amount of dust was measured in the same manner. The results are shown in Table 2.
[0034]
Comparative Example 5
The amount of dust was measured for the C heavy oil of Example 1 in the same manner as in Example 7 without using a fuel additive. The results are shown in Table 2.
[0035]
[Table 1]
Figure 0003609119
[0036]
[Table 2]
Figure 0003609119
[0037]
The following can be said from Examples 1 to 8 and Comparative Examples 1 to 5.
(1) In Examples 1 to 6 using the fuel additive of the present invention, the combustion rate is high.
( 2 ) The fuel additive case using only CeO 2 fine particles of Comparative Example 1, the fuel additive case using only FeO 2 fine particles of Comparative Example 2, and the case of not using the fuel additive of Comparative Example 3 Both have a high burning rate.
{Circle around (3)} In Examples 5 to 6 using the fuel additive of the present invention, the effect of suppressing the dust was remarkable, and no settling of the fuel additive was observed during use.
(4) The fuel additive case using only the CeO 2 fine particles of Comparative Example 4 and the case of not using the fuel additive of Comparative Example 5 have a large amount of dust.
[0038]
【The invention's effect】
The fuel additive of the present invention is advantageous in that it is relatively inexpensive, has good dispersibility in fuel, has little corrosion on the apparatus, and has a high combustion promoting effect, so that it has a high smoke suppression effect.

Claims (4)

Ceを含む無機物の微細粒子とFeを含む油溶性有機酸塩又はFeを含む無機物の微細粒子とCeを含む油溶性有機酸塩を含むことを特徴とする燃料添加剤。A fuel additive comprising inorganic fine particles containing Ce and oil-soluble organic acid salt containing Fe or inorganic fine particles containing Fe and oil-soluble organic acid salt containing Ce. FeとCe両元素合計量に対するCe含有量が10〜90重量%であることを特徴とする請求項1記載の燃料添加剤。The fuel additive according to claim 1, wherein the Ce content is 10 to 90% by weight based on the total amount of both Fe and Ce elements. 燃料に、Ceを含む無機物の微細粒子とFeを含む油溶性有機酸塩又はFeを含む無機物の微細粒子とCeを含む油溶性有機酸塩を含む燃料添加剤が配合されていることを特徴とする燃料組成物。A fuel additive containing inorganic fine particles containing Ce and oil-soluble organic acid salt containing Fe or inorganic fine particles containing Fe and oil-soluble organic acid salt containing Ce is blended in the fuel. Fuel composition. 燃料に対する燃料添加剤の含有量は金属量で1重量ppm〜1000重量ppmであることを特徴とする請求項3記載の燃料組成物。4. The fuel composition according to claim 3, wherein the content of the fuel additive with respect to the fuel is 1 to 1000 ppm by weight in terms of metal.
JP10908394A 1994-04-25 1994-04-25 Fuel additive and fuel composition containing the same Expired - Fee Related JP3609119B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10908394A JP3609119B2 (en) 1994-04-25 1994-04-25 Fuel additive and fuel composition containing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10908394A JP3609119B2 (en) 1994-04-25 1994-04-25 Fuel additive and fuel composition containing the same

Publications (2)

Publication Number Publication Date
JPH07292373A JPH07292373A (en) 1995-11-07
JP3609119B2 true JP3609119B2 (en) 2005-01-12

Family

ID=14501174

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10908394A Expired - Fee Related JP3609119B2 (en) 1994-04-25 1994-04-25 Fuel additive and fuel composition containing the same

Country Status (1)

Country Link
JP (1) JP3609119B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2655245B2 (en) * 1994-10-25 1997-09-17 洋一 西村 Purification substance such as fuel, method for purifying fuel using the same, and fuel combustion apparatus using the same
JP2001354979A (en) * 2000-06-14 2001-12-25 Ibe:Kk Fuel modifier
JP5051564B2 (en) * 2003-10-20 2012-10-17 有限会社ユニレック Fuel oil fuel efficiency improvement method

Also Published As

Publication number Publication date
JPH07292373A (en) 1995-11-07

Similar Documents

Publication Publication Date Title
JP5119382B2 (en) Cerium oxide nanoparticles
KR100469501B1 (en) Utilization of platinum group in diesel engines
US7967876B2 (en) Nanoalloy fuel additives
NZ541393A (en) Cerium oxide nanoparticles as fuel additives
JPH064862B2 (en) Regeneration method of carbonaceous particle trap
KR100979340B1 (en) Fuel Additive
EP0663001B1 (en) Fuel additives
US4968322A (en) Fuel composition and fuel additive
CN103387857A (en) Nanometer fuel oil catalytic additive
JP2008537013A (en) Additive for hydrocarbon fuel comprising non-acidic inorganic compound containing boron and method for producing the same
JP3609119B2 (en) Fuel additive and fuel composition containing the same
JP2007521365A (en) Additives for hydrocarbon fuels and related methods
JPH0413798A (en) Fuel additive
US4080177A (en) Colloidal magnesium suspension in critical low concentration in jet fuel
CN1044916C (en) Copper-containing aromatic mannich complexes and concentrates and diesel fuels containing same
JP3011326B2 (en) Fuel additives and fuels
JPH0579117B2 (en)
JP3013980B2 (en) Fuel additives and fuels
Gadalla et al. The Influence of Nanoparticles on Diesel Engine Performance and Emissions
JPH0273889A (en) Particulate combustion improver
JPH0633387B2 (en) Combustion aid for coke-like hydrocarbon substances
JPH0417998B2 (en)
JPS6245691A (en) Method of modifying combustion dust of low quality fuel derived from petroleum
JPS62227096A (en) Method for preventing corrosion by sulfurization
JPH07208148A (en) Keeping method of duct for engine with turbocharger clean and cleaner

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040716

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040727

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041005

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041013

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081022

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091022

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101022

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111022

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111022

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121022

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131022

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees