JPS6245691A - Method of modifying combustion dust of low quality fuel derived from petroleum - Google Patents
Method of modifying combustion dust of low quality fuel derived from petroleumInfo
- Publication number
- JPS6245691A JPS6245691A JP18462085A JP18462085A JPS6245691A JP S6245691 A JPS6245691 A JP S6245691A JP 18462085 A JP18462085 A JP 18462085A JP 18462085 A JP18462085 A JP 18462085A JP S6245691 A JPS6245691 A JP S6245691A
- Authority
- JP
- Japan
- Prior art keywords
- iron
- dust
- furnace
- boiler
- petroleum
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Liquid Carbonaceous Fuels (AREA)
Abstract
Description
【発明の詳細な説明】
産業上の利用分野
本発明は、石油系低質燃料を使用するボイラ等の炉にお
ける燃焼ダスト改質方法に関し、特に電気集塵器の集塵
効率の向上、未燃カーボンの減少と同時にボイラ等の伝
熱管に対するスラグの付着を抑制する方法に関する。DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for reforming combustion dust in a furnace such as a boiler that uses petroleum-based low-quality fuel, and in particular to improving the dust collection efficiency of an electrostatic precipitator and reducing the amount of unburned carbon. The present invention relates to a method for reducing slag and at the same time suppressing the adhesion of slag to heat exchanger tubes such as boilers.
従来技術
石油ショック以来、重油の高騰に伴って、エネルギーコ
ストに大きなウエートを占める・燃料コストに大きな注
目が当てられ、オイルコークスやアスファルトが脚光を
あびて米7と。(4油に比べ安価で発熱量も高く、既設
設備の簡単な改造で転用出来るなどこれから大きく伸び
る事が予想される。Conventional technology Since the oil crisis, fuel costs, which account for a large portion of energy costs, have received a lot of attention as the price of heavy oil has skyrocketed, and oil coke and asphalt have come into the spotlight, making them the world's top 7. (Compared to 4 oils, it is cheaper and has a higher calorific value, and can be used by simply modifying existing equipment, so it is expected to grow significantly in the future.
しかし、同じ石油系でもオイルコークスとアスファルト
では若干性状1工違う。先づオイルコークスについて考
えると、(1) 固定炭ぶが多く揮発分が少ないので
、バーナ燃焼させた場合、石火速度が遅くなり、安定し
た燃焼が得らCず、未燃カーボンが多くなる。However, even though they are petroleum-based, oil coke and asphalt have slightly different properties. First, considering oil coke, (1) it contains a lot of fixed carbon and has little volatile content, so when it is burnt in a burner, the speed of the stone fire is slow, stable combustion cannot be achieved, and there is a lot of unburned carbon.
これらの燃焼性を改善する為には、(v 02を増加す
る。■ オイルコークスをさらに粉砕、微細化し、02
との接触面8tを大きくする。■ 雰囲気温度を)−
肩させる。■ バーナの改善等が考えられる。■はボイ
ラ効率の低下及びNOx%S03の増加につながる。■
については、粉砕機の能力(200メツシュ95φ以上
)が限られておシ、さらに微粉砕するには多大の設備費
用を要する。In order to improve these combustibility, (increase v 02.■ Oil coke is further crushed and finely divided,
Increase the contact surface 8t with the ■ Atmosphere temperature) -
Shoulder. ■ Improvements to the burner can be considered. (2) leads to a decrease in boiler efficiency and an increase in NOx%S03. ■
However, the capacity of the pulverizer (200 mesh 95φ or more) is limited, and further pulverization requires a large amount of equipment cost.
■について言えば、雰囲気温度をアップすれば、NOx
、SOx の増大、ボイラスラグの溶融、チューブの腐
食につながる為、むしろ温度を低下させる方向で検討さ
れている。■についてもいろいろ工夫がされているが、
これだけで燃焼性の改善を行うことは出来ない。いずれ
にしてもまだ十分な解決策は見出されていないのが現状
である。Regarding ■, if the ambient temperature is increased, NOx
, which leads to an increase in SOx, melting of the boiler slag, and corrosion of the tubes.Instead, efforts are being made to lower the temperature. Although various efforts have been made regarding ■,
This alone cannot improve flammability. In any case, the current situation is that a sufficient solution has not yet been found.
次に、(2)重油に比べると灰分含量が10倍程度多く
、灰の融点が比較的高いにも拘らず灰は溶融し、チュー
ブに過大に付着する。このスラグはスートプロアで除去
出来ない様な粘着性のあるスラグで、特にスクリーンチ
ューブ等にどんどん付着していき、最後には炉内ドラフ
トが急増し運転が不可能となる。又付着が増大すると炉
内の熱吸収が悪くなり、排ガス温度の上昇、NOx1S
oxの上昇等の問題が起きてくる。Next, (2) the ash content is about 10 times higher than that of heavy oil, and although the melting point of the ash is relatively high, the ash melts and adheres excessively to the tube. This slag is a sticky slag that cannot be removed with a soot blower, and it will continue to adhere to the screen tube, etc., and eventually the draft inside the furnace will increase rapidly, making operation impossible. In addition, as the amount of adhesion increases, heat absorption inside the furnace deteriorates, leading to an increase in exhaust gas temperature and NOx1S.
Problems such as an increase in OX occur.
これらの問題に対して、従来から良い方法がない為、重
油に対するオイルコークスの量を減らしたり、ボイラの
負荷を落して運転するなどの対策がとられていたが、い
ずれも経済面ではマイナスの要素が大きかった。Conventionally, there is no good way to deal with these problems, so countermeasures have been taken such as reducing the amount of oil coke relative to heavy oil and operating the boiler at a lower load, but all of these measures have a negative economic impact. The elements were huge.
次に(3)とし7て、(1)に関連してばいじんが多く
なると、集塵器(以下EFという)での処理が難しくな
p、EP処理能力をアップさせなければなら率として最
も良い値とされている10〜10’ΩC1nよシ低い値
の場合があり、この様な場合集塵効率(工下がってしま
う、又オイルコークスは、重油焚に比ベダスト平均粒径
が15〜30μ(ffi油焚1〜3μ)と石炭焚ボイラ
ーの様に重油焚に比べ1ケタ火4Σ\、従って、オイル
コークスでは燃料や燃焼条件によって、その電気抵抗率
と粒径が変わるので、集塵性ピ2がそれらによって大き
く左右される。Next, as for (3) and 7, when the amount of soot and dust increases in relation to (1), it becomes difficult to treat with a dust collector (hereinafter referred to as EF), and the EP processing capacity must be increased to achieve the best rate. In some cases, the value is lower than the standard value of 10 to 10'ΩC1n, and in such cases, the dust collection efficiency decreases. ffi oil-fired boilers (1 to 3 μ) and coal-fired boilers, which have a single-digit fire rate of 4Σ\ compared to heavy oil-fired boilers. Therefore, oil coke has a lower dust collection performance because its electrical resistivity and particle size change depending on the fuel and combustion conditions. 2 is greatly influenced by them.
又アスファルトについては、バナジウム、硫黄分、残留
炭素、灰分も多いことから燃焼性、伝熱面の汚れと共に
高温低温腐食が大きな問題になってくる。しかしいずれ
の燃料においても、燃焼性の悪化及伝熱面の汚れについ
ては共通している。Furthermore, asphalt has a high content of vanadium, sulfur, residual carbon, and ash, so high and low temperature corrosion becomes a major problem as well as combustibility and staining of heat transfer surfaces. However, all fuels have the same deterioration in combustibility and dirt on the heat transfer surface.
以上の様に安い燃料であるにもかかわらず、これらの大
きな問題をかかえている為に十分な活用が妨げられてい
る現状である。Despite being a cheap fuel as mentioned above, the current situation is that it is being hindered from being fully utilized due to these major problems.
従来助燃剤としてバリウム、マンガン、セリウム、銅、
コバルト等が用いられていたが、これらは高価であった
シ、燃焼後白色化し火炉の熱吸収を悪くしたり、公害面
で問題があったりで問題が多かつ′fca又、エマルジ
ョン燃焼はC重油では実施されているが、オイルコーク
スやアスファルトでは油温の関係やコスト面で実現化さ
れていない。Conventional combustion improvers include barium, manganese, cerium, copper,
Cobalt and other materials were used, but these were expensive, turned white after combustion, impeded heat absorption in the furnace, and were problematic in terms of pollution. Although this method has been implemented for heavy oil, it has not been realized for oil coke or asphalt due to oil temperature and cost issues.
煙道での腐食防止の為にEP入口にNH3を注入する方
法が広く行われている。NH3ガスはSO3と反応しく
Nf(4)2So4となる。EP甲の灰も(NH4)
2so、の混入によシ固有抵抗が上昇する、(10Ω1
から10 Ω箔1;)@Lかしこれらアンモニアは■
劇物扱いであシ、扱いも不便である。■ 酸性硫安等
によシ、NH3/sOのモル比の管理が難しい、■ 経
済的でないなどの問題があシ、使用を減少する傾向とな
っている。現在Mgなどがその腐食防止効果とともに併
用されているが炉内が白色化し、熱吸収が悪くなるとい
う欠点がある。A widely used method is to inject NH3 into the EP inlet to prevent corrosion in the flue. NH3 gas reacts with SO3 to form Nf(4)2So4. EP Ko's ash also (NH4)
2so, the specific resistance increases due to the mixing of (10Ω1
From 10 Ω foil 1 ;) @L but these ammonia ■
It is treated as a deleterious property and is inconvenient to handle. There are problems such as: ■ It is difficult to control the molar ratio of NH3/sO due to acidic ammonium sulfate, etc., and ■ It is not economical, so there is a tendency to reduce its use. Currently, Mg and the like are used together with their anti-corrosion effects, but they have the drawback of whitening the inside of the furnace and poor heat absorption.
発明の横殴
本発明者等は、上記の問題点を解決する手段につき鋭意
研究の結果、石油系低質燃料を使用するボイラ等の炉に
おいて、燃料に対して微量の、微粒子の鉄又は鉄化合物
を炉に供給することにより電気集塵器の集塵効率の向上
、未燃カーボンの減少及び炉内伝熱管上のスラグの飛散
性の向上によりスラブの付着を抑制する燃焼ダスト改質
方法を開発した。As a result of intensive research into means for solving the above-mentioned problems, the present inventors have found that in furnaces such as boilers that use low-quality petroleum fuel, a trace amount of fine particles of iron or iron compounds relative to the fuel can be used. Developed a combustion dust reforming method that improves the dust collection efficiency of the electrostatic precipitator, reduces unburned carbon, and improves the scattering of slag on the heat exchanger tubes in the furnace, thereby suppressing slab adhesion. did.
本発明において、石油系低質燃料としてはオイルコーク
ス、アスファルト等があり、これらの燃料を使用するボ
イラ、加熱炉、キルン等の炉が対F’ e 203、F
’e304(FeO1Fe20g)等の鉄酸化物;硫酸
鉄、塩化鉄、硝酸鉄等の無機鉄化合物;およびオクチル
酸鉄、ナフテン酸鉄、ステアリン酸鉄、酢酸鉄、ギ酸鉄
、メタクリル酸鉄等の有機酸鉄塩を含む。換言すれば炉
内の燃焼後F’e 203となる鉄化合物はいずれも使
用可能である。鉄又は鉄化合物の使用量は、燃料に対し
て10〜10009F(Fe203換算で)の範囲で燃
料の種類、燃焼条件により適宜に選択される。10pp
lIよ)少量では効果があまシ期待できず、100Op
plよシ多量で1工炉内のト9う7トが上昇する傾向が
あると同時に経済的にも不利となる。鉄又は鉄化合物の
粒径は、ダスト粒径よシ大きいとその効果が減少するの
で。In the present invention, petroleum-based low-quality fuels include oil coke, asphalt, etc., and furnaces such as boilers, heating furnaces, and kilns that use these fuels are classified as F' e 203, F
Iron oxides such as 'e304 (FeO1Fe20g); inorganic iron compounds such as iron sulfate, iron chloride, iron nitrate; and organic iron compounds such as iron octylate, iron naphthenate, iron stearate, iron acetate, iron formate, iron methacrylate, etc. Contains iron acid salts. In other words, any iron compound that becomes F'e 203 after combustion in the furnace can be used. The amount of iron or iron compound used is appropriately selected in the range of 10 to 10009 F (in terms of Fe203) based on the fuel type and combustion conditions. 10pp
lI) You cannot expect much effect with a small amount, 100 Op.
If the amount of PL is large, the amount of metal in one furnace tends to increase, and at the same time, it is economically disadvantageous. If the particle size of iron or iron compounds is larger than the particle size of dust, its effectiveness will decrease.
ダスト粒径よりも小さいことが必要である。従って、オ
イルコークスの場合、ダスト粒径は15〜30μ程度で
あるので、使用する鉄又は鉄化合物の粒径は平均粒径3
0μ以下でなくてはならない。It needs to be smaller than the dust particle size. Therefore, in the case of oil coke, the dust particle size is about 15 to 30μ, so the particle size of the iron or iron compound used is 3.
It must be less than 0μ.
その粒径は出来る丈小さい方が総面積が大きくなるため
、その効果も大きくなる。又、アスファルトについても
同様のことが云える。The smaller the grain size, the larger the total area, and therefore the greater the effect. The same can be said about asphalt.
本発明によシスラグの付着が抑制される理由を考察する
に、オイルコークスの様な低買燃料ダストは、5102
、Al2O3等の高融点物質が多量に存在しているにも
かかわらず、そのスラグは溶融し、肥大化して行く。し
かし、Fe 203が存するとスラグ中ノv205ト反
応し、Pe 203 ・V2O5(860℃)、F’e
203・2v20s (855℃)等の高融点化合物
を形成する几め炉内に設置しであるスτドブロアーによ
り飛散しやすいダストとなシ、付着性が抑制されるもの
と考えられる。電気集塵器の集1謙効呆が向上する理由
としては、Fe2O3の共存によりEP灰の固有電気抵
抗値が10〜109m に変質されることによるもので
ある。その理論的理由は明らかでないが1元来電気抵抗
値の高いFe2O3がダストの甲へ混入することにより
ダスト全体の抵抗値を上昇させ、集塵器の捕集適正値に
変化させたものと考えられる。又、未燃カーボンが減少
することの理論的理由も明らかでないが、これらの効果
は実験的に確認されている。Considering the reason why syslag adhesion is suppressed by the present invention, low-purchase fuel dust such as oil coke is 5102
Despite the presence of a large amount of high melting point substances such as , Al2O3, etc., the slag melts and enlarges. However, if Fe 203 is present, V205 reacts in the slag, producing Pe 203 ・V2O5 (860°C), F'e
It is thought that the adhesion of the dust, which is easily scattered, is suppressed by the dust blower installed in the furnace for forming high melting point compounds such as 203.2v20s (855°C). The reason why the collection efficiency of the electrostatic precipitator is improved is that the coexistence of Fe2O3 modifies the specific electrical resistance value of EP ash to 10 to 109 m2. The theoretical reason for this is not clear, but it is thought that Fe2O3, which originally has a high electrical resistance, mixes into the dust shell, increasing the overall resistance of the dust and changing the value to the appropriate value for collection by the dust collector. It will be done. Furthermore, although the theoretical reason for the reduction in unburned carbon is not clear, these effects have been experimentally confirmed.
次に、本発明を図示の一実施例を参照しながら説明する
。第4図はオイルコークスを燃料にたくボイラーの例で
ある。燃料のオイルコークスはホッパー1で計1され死
後、ミル2で粉砕される。Next, the present invention will be explained with reference to an illustrated embodiment. Figure 4 shows an example of a boiler that uses oil coke as fuel. A total of 1 oil coke as fuel is collected in hopper 1 and crushed in mill 2 after death.
ライン3を通るエアーで搬送され、バーナー11よシボ
イラー10内で燃焼される。又、一方補助添加剤タンク
4からの鉄又は鉄化合物の添加剤を定量ポンプ5によシ
ライン8を通り、ライン9のC重油と混合される。混合
された燃料と添加剤はバーナー12で着火され、ボイラ
ーlo内で、バーナー11より着火されたオイルコーク
スと共に燃焼し、排ガスとなる。It is transported by air through line 3 and burned in burner 11 and boiler 10. On the other hand, the iron or iron compound additive from the auxiliary additive tank 4 is passed through the metering pump 5 through the cylinder line 8 and mixed with C heavy oil in the line 9. The mixed fuel and additives are ignited by the burner 12, and burnt in the boiler lo together with the oil coke ignited by the burner 11 to become exhaust gas.
ボイラー内で発生したダスト(灰分十未燃カーボン)は
、エアーヒーター15t−通り、EP13でダストが捕
集される。又、伝熱面に付着し九ダストもス廿−トブロ
アー16で吹き飛ばされて、下流に飛んで行く、捕集し
きれないダストは煙突14を通って大気中に放出される
。アスファルトの場合は、上記1,2.3.11の装置
を使用せず、重油タンク6にアスファルトを貯蔵し、加
熱器(図示せず)を経て噴燃ポンプに導き、後の工程は
上記と同じである。The dust (unburned carbon with a sufficient ash content) generated in the boiler passes through a 15-ton air heater and is collected by an EP 13. Further, the dust adhering to the heat transfer surface is also blown away by the street blower 16, and the dust that cannot be collected, which flies downstream, is discharged into the atmosphere through the chimney 14. In the case of asphalt, the equipment described in 1, 2.3.11 above is not used, and the asphalt is stored in the heavy oil tank 6 and guided to the injection pump via a heater (not shown), and the subsequent steps are the same as above. It's the same.
第2図はオクチル酸鉄添加(70−/オイルコークス基
準、Fe2O3として)前後の火炉ドラフト及び蒸発器
吸熱の変化を示す、この図からもわかる様に鉄無添加で
は20日間経過した後、急激に火炉出ロドラフトが急増
している。又蒸発器の熱吸収がダストの過大な付着の為
に著しく減少している。一方鉄りし儒庵=紐i、添加後
は、50日程度たってもト0う7トはほぼ一定で、初期
値とほとんど変わらない。熱吸収も70℃で横ばいであ
る。つまり、はとんどスラグが付着していないと云える
。おのおの炉内でスラグの付着値を観察すると後者は前
者に比べ″/3以下の付N虚であった。Figure 2 shows the changes in furnace draft and evaporator endotherm before and after addition of iron octylate (70-/oil coke standard, as Fe2O3).As can be seen from this figure, without iron addition, after 20 days, Furnace drafts are rapidly increasing. Also, the heat absorption of the evaporator is significantly reduced due to excessive dust deposition. On the other hand, after the addition of Tetsurishi-Yuan=Hitoi, the value of 0-7 remains almost constant even after about 50 days, and is almost unchanged from the initial value. Heat absorption also remains flat at 70°C. In other words, it can be said that almost no slag is attached. Observing the slag adhesion value in each furnace, the latter was found to have a value of N/3 or less compared to the former.
下記の第1表はC重油、アスファルト、オイルコークス
の性状比較である。Q 4油と比ベオイルコークスでは
灰分が非常に多いことがわかる。Table 1 below compares the properties of heavy oil C, asphalt, and oil coke. It can be seen that compared to Q4 oil, oil coke has a very high ash content.
第1表
次の第2表は、オイルコークスに、オクチル酸鉄添加(
’yopps、’オイルコークス基準、Fe2O2とし
て)前後のばいじん濃度変化と集塵効率の変化を示して
いる。Table 2 following Table 1 shows the addition of iron octylate to oil coke (
'yopps,' oil coke standard, Fe2O2) shows the change in soot and dust concentration before and after and the change in dust collection efficiency.
添加前では、蒸発量、02共はぼ同じ条件で、オイルコ
ークスのftk変化させるとばいじんa度も10.8
j! / Nm”から3.5g/N−に減少し、集塵効
率も81.5%から9413%に上昇している。Before addition, when the evaporation amount and 02 were under the same conditions, and the ftk of oil coke was changed, the soot and dust a degree was 10.8.
j! / Nm" to 3.5 g/N-, and the dust collection efficiency also increased from 81.5% to 9413%.
添加前と同条件で鉄を添加する。オイルコークス5.7
T/Hで比較・、するとEP人口ばいじん量ヲ10.8
Ji’ / Nm3から4.6.?/Nm3にオイル
コークス2〜3T/Hでは、3.57i/Nm から
3.4g/Nm”と減少し集塵効率はそれぞれ81.5
%が98.1%、94.3%が98.8%に増加してい
る。この集塵効率の増加理由は補集したEP灰の固有抵
抗(11t−調べれば良くわかる。Add iron under the same conditions as before addition. oil coke 5.7
Comparing with T/H, the EP population dust amount is 10.8
Ji'/Nm3 to 4.6. ? /Nm3 and oil coke 2-3T/H, the dust collection efficiency decreased from 3.57i/Nm to 3.4g/Nm", and the dust collection efficiency was 81.5, respectively.
% increased from 98.1% and 94.3% to 98.8%. The reason for this increase in dust collection efficiency can be easily understood by examining the specific resistance (11t) of the collected EP ash.
第2表
* いずし% E PM% 150 mA次の第3表は
、アスファルトにオクチル酸鉄添加(50pp/アスフ
アルト基準、F e 203として)前後のばいじん9
度変化と集塵効率の変化を示している。Table 2 * Izushi% E PM% 150 mA The following Table 3 shows soot and dust9 before and after addition of iron octylate to asphalt (50pp/asphalt standard, as Fe 203)
It shows the change in temperature and dust collection efficiency.
第3表
第3図の■は電導時、■はオイルコークスと重油混焼時
(4:1)のもので103〜104Ωcmとなっている
。重油専焼に比べると1ケタ多きいが、EPの捕集適正
値105〜106Ω傭に比べると低い為で、オクチル酸
鉄が添加されるとライン3の様に105〜106Ω薗
に上昇し、集塵効率がアップしたものである。粒子径も
添加前の15〜30μに比べ、6割小さくなっているこ
とが認められた。ライン4は参考例で、酸化鉄のみの場
合の抵抗値は1010〜1011Ω傭 と高い値を示し
ている。In Table 3, Figure 3, ``■'' indicates when conducting, and ``■'' indicates when oil coke and heavy oil are co-fired (4:1), which is 103 to 104 Ωcm. Although it is one digit higher than heavy oil-only combustion, it is lower than the EP's appropriate collection value of 105 to 106 Ω, and when iron octylate is added, it increases to 105 to 106 Ω as in line 3.
This has increased the dust collection efficiency. The particle size was also found to be 60% smaller than the 15-30μ before addition. Line 4 is a reference example, and the resistance value in the case of only iron oxide is as high as 1010 to 1011Ω.
次の第4表はオイルコークスにオクチル酸鉄添加(70
P1ml/オイルコークス基準、 Fe2O3として)
とアスファルトにオクチル酸鉄添加(50[)1111
/アスフアルト基準、F’e203として)前後のEP
灰性状の変化を、夫々示している。鉄添加前後で鉄分が
2−1チから6.5%に、又0.5%から1.6%に夫
々増加し、未燃カーボンは88.0%から58.0%に
、又42.8%から32.2%に夫々著しく減少してい
る。The following Table 4 shows the addition of iron octylate to oil coke (70
P1ml/oil coke standard, as Fe2O3)
and addition of iron octylate to asphalt (50 [) 1111
/ Asphalt standard, as F'e203) EP before and after
Each shows changes in ash properties. Before and after adding iron, the iron content increased from 2-1% to 6.5% and from 0.5% to 1.6%, and the unburned carbon increased from 88.0% to 58.0%, and 42%. This has decreased significantly from 8% to 32.2%.
第4表
上記例では、油溶性有機酸鉄塩であるオクチル酸鉄を使
用したが、金属鉄、Fed、 F’eQOH,P’e2
03F’e304 (FeO−Fe203)等の鉄酸化
物、硫酸鉄、塩化鉄、硝酸鉄等の無機鉄化合物、および
ナフテン酸鉄、ステアリン酸鉄、酢酸鉄、ギ酸法、メタ
クリル酸鉄等の有機酸鉄塩についても燃焼後はFe20
3となるため、本発明の使用条件を満足すれば同様の結
果が得られる。Table 4 In the above example, iron octylate, which is an oil-soluble organic acid iron salt, was used, but metallic iron, Fed, F'eQOH, P'e2
Iron oxides such as 03F'e304 (FeO-Fe203), inorganic iron compounds such as iron sulfate, iron chloride, iron nitrate, and organic acids such as iron naphthenate, iron stearate, iron acetate, formic acid method, iron methacrylate, etc. Regarding iron salts, after combustion, Fe20
3, and therefore, similar results can be obtained if the usage conditions of the present invention are satisfied.
第1図は本発明の一実施態様を説明するための70−シ
ートであυ、第2図はオイルコークスに対し、70 p
p (Fe203として) の鉄函加前後の火炉ドう7
ト及び蒸発器吸熱の変化を示し、第3図は各種EP灰(
参考としてEP灰を含まない酸化鉄のみの場合=4)に
ついてEP甲の排ガス温度とEP灰固有電気抵抗値(Ω
−(1))との関係を示す。
1ニオイルコークスホツパー、2:ミル、3.8.9ニ
ライン、4:添加剤タンク、5:定量ポンプ、6:重油
タンク、7:噴燃ポンプ、10:ボイラー、11.12
:バーナー、13:電気集塵器(EP)、14:煙突、
15:エアーヒーター、16:スートプロア−。
(外4名)
第1図Figure 1 is a 70-sheet for explaining one embodiment of the present invention, and Figure 2 is a 70-sheet for oil coke.
P (as Fe203) Furnace Dou 7 before and after iron boxing
Figure 3 shows the changes in heat absorption and evaporator heat absorption for various EP ash (
For reference, in the case of only iron oxide without EP ash = 4), the exhaust gas temperature of EP A and the specific electrical resistance value of EP ash (Ω
-(1)). 1 Ni oil coke hopper, 2: Mill, 3.8.9 Ni line, 4: Additive tank, 5: Metering pump, 6: Heavy oil tank, 7: Injection pump, 10: Boiler, 11.12
: Burner, 13: Electrostatic precipitator (EP), 14: Chimney,
15: Air heater, 16: Soot prower. (4 other people) Figure 1
Claims (1)
に対して10〜1000ppm(Fe_2O_3換算で
)に相当する量の、30μ以下の平均粒径を有する鉄又
は鉄化合物の少なくとも一種以上を炉に供給することを
特徴とする、電気集塵器の集塵効率の向上、未燃カーボ
ンの減少及びスラグの付着を抑制する燃料ダスト改質方
法。In a furnace such as a boiler that uses petroleum-based low-quality fuel, at least one type of iron or iron compound having an average particle size of 30 μ or less is added to the furnace in an amount equivalent to 10 to 1000 ppm (in terms of Fe_2O_3) based on the fuel. A fuel dust reforming method that improves the dust collection efficiency of an electrostatic precipitator, reduces unburned carbon, and suppresses slag adhesion.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18462085A JPS6245691A (en) | 1985-08-22 | 1985-08-22 | Method of modifying combustion dust of low quality fuel derived from petroleum |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18462085A JPS6245691A (en) | 1985-08-22 | 1985-08-22 | Method of modifying combustion dust of low quality fuel derived from petroleum |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6245691A true JPS6245691A (en) | 1987-02-27 |
JPH0362754B2 JPH0362754B2 (en) | 1991-09-26 |
Family
ID=16156419
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP18462085A Granted JPS6245691A (en) | 1985-08-22 | 1985-08-22 | Method of modifying combustion dust of low quality fuel derived from petroleum |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6245691A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02225594A (en) * | 1989-02-27 | 1990-09-07 | Mitsubishi Heavy Ind Ltd | Additive for fuel oil |
WO2001096502A1 (en) * | 2000-06-14 | 2001-12-20 | I.B.E. Co., Ltd. | Fuel modifier |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4829283A (en) * | 1971-07-07 | 1973-04-18 | ||
JPS5236883A (en) * | 1975-09-19 | 1977-03-22 | Shiyouzou Yoshimura | Device for screening cardiac sound |
JPS52151304A (en) * | 1976-06-12 | 1977-12-15 | Taiho Kogyo Co Ltd | Combustion method of fuel and fuel additive |
JPS5615756A (en) * | 1979-07-19 | 1981-02-16 | Nissho Kk | Filling method of blood flow path for artificial internal organ |
JPS5615758A (en) * | 1979-07-20 | 1981-02-16 | Yoshiyuki Izawa | Method of projecting and molding resin product with small tube |
JPS5652951A (en) * | 1979-10-08 | 1981-05-12 | Japanese National Railways<Jnr> | Data transmission system |
JPS59145403A (en) * | 1983-02-07 | 1984-08-20 | Toa Kagaku Kk | Method of burning coke powder |
JPS59197492A (en) * | 1983-04-26 | 1984-11-09 | Seiki Kagaku Kk | Combustion promoter for gasoline and diesel engines |
-
1985
- 1985-08-22 JP JP18462085A patent/JPS6245691A/en active Granted
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4829283A (en) * | 1971-07-07 | 1973-04-18 | ||
JPS5236883A (en) * | 1975-09-19 | 1977-03-22 | Shiyouzou Yoshimura | Device for screening cardiac sound |
JPS52151304A (en) * | 1976-06-12 | 1977-12-15 | Taiho Kogyo Co Ltd | Combustion method of fuel and fuel additive |
JPS5615756A (en) * | 1979-07-19 | 1981-02-16 | Nissho Kk | Filling method of blood flow path for artificial internal organ |
JPS5615758A (en) * | 1979-07-20 | 1981-02-16 | Yoshiyuki Izawa | Method of projecting and molding resin product with small tube |
JPS5652951A (en) * | 1979-10-08 | 1981-05-12 | Japanese National Railways<Jnr> | Data transmission system |
JPS59145403A (en) * | 1983-02-07 | 1984-08-20 | Toa Kagaku Kk | Method of burning coke powder |
JPS59197492A (en) * | 1983-04-26 | 1984-11-09 | Seiki Kagaku Kk | Combustion promoter for gasoline and diesel engines |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02225594A (en) * | 1989-02-27 | 1990-09-07 | Mitsubishi Heavy Ind Ltd | Additive for fuel oil |
WO2001096502A1 (en) * | 2000-06-14 | 2001-12-20 | I.B.E. Co., Ltd. | Fuel modifier |
JP2001354979A (en) * | 2000-06-14 | 2001-12-25 | Ibe:Kk | Fuel modifier |
Also Published As
Publication number | Publication date |
---|---|
JPH0362754B2 (en) | 1991-09-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3837820A (en) | Combustion control by additives introduced in both hot and cold zones | |
US8124036B1 (en) | Additives for mercury oxidation in coal-fired power plants | |
CN100503013C (en) | Method and system for combinedly removing SO2, NOx and Hg in coal smoke gas by using recombustion of biomass | |
US4842617A (en) | Combustion control by addition of magnesium compounds of particular particle sizes | |
CN107236580B (en) | High-efficiency sulfur fixation catalytic composition for coal | |
CN105567375B (en) | Compound additive | |
CN105567365B (en) | Modified coal and its manufacturing method | |
CN107398156B (en) | System and process for comprehensive emission reduction of sintering flue gas pollutants | |
CN104053487A (en) | Control of combustion system emissions | |
CN1508235A (en) | Use of maganese compounds to inhibit both low and high temp. corrosion in utility and industrial farnance system | |
CN107573980A (en) | A kind of coal supply chain combustion adjuvant and preparation method thereof | |
CN104449943A (en) | Fire coal combustion-supporting desulfurization powder for flue gas desulfurization and preparation method thereof | |
CN110699150A (en) | Environment-friendly decoking agent and preparation method thereof | |
JPS6245691A (en) | Method of modifying combustion dust of low quality fuel derived from petroleum | |
CN100455885C (en) | Method for burning of low nitrogen oxides in coal-burning boiler | |
CN105670716A (en) | Oxygenation decoking agent | |
CN106318515A (en) | In-furnace denitrification method and device | |
US8048243B2 (en) | Combustion catalyst | |
EP0149664B1 (en) | A composition and a method of capturing sulphur | |
CN114061321B (en) | Pellet flue gas treatment system based on rotary kiln primary circulation air inlet and flue gas treatment process thereof | |
Rhoads et al. | Overview of industrial source control for nitrogen oxides | |
JPH0768533B2 (en) | Solid fuel combustion method | |
JPH0579117B2 (en) | ||
US20120006239A1 (en) | Process for operating a coal-fired utility boiler | |
JP2002273159A (en) | Method for neutralizing combustion exhaust gas of fossil fuel containing sulfur |