JPS6099920A - Agent for raising melting point of combustion ash - Google Patents

Agent for raising melting point of combustion ash

Info

Publication number
JPS6099920A
JPS6099920A JP20601283A JP20601283A JPS6099920A JP S6099920 A JPS6099920 A JP S6099920A JP 20601283 A JP20601283 A JP 20601283A JP 20601283 A JP20601283 A JP 20601283A JP S6099920 A JPS6099920 A JP S6099920A
Authority
JP
Japan
Prior art keywords
melting point
ash
compound
compounds
agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20601283A
Other languages
Japanese (ja)
Inventor
Yoshio Harada
良夫 原田
Yasushi Nakajima
中嶋 靖史
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP20601283A priority Critical patent/JPS6099920A/en
Publication of JPS6099920A publication Critical patent/JPS6099920A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J9/00Preventing premature solidification of molten combustion residues
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J7/00Arrangement of devices for supplying chemicals to fire

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Gasification And Melting Of Waste (AREA)
  • Solid Fuels And Fuel-Associated Substances (AREA)

Abstract

PURPOSE:To absorb melted ash, raise a melting point of melting ash and to restrict its hindering item by a method wherein additive composed of a specific compound is formed to a ball shape with gloiopeltis glne, casein, Arabian rubber or solidifying agent of high molecule and then is fed at the peep hole in a boiler. CONSTITUTION:Additive agent composed of more than one Mg compound, Ca compound and Al compound or additive agent composed of more than one of these compounds and Si compound is formed to a ball shape with gloiopeltis glne, casein, Arabian rubber or solidifying agent of high molecule. Then, the additive agent is fed from the peep holes 12 arranged in the combustion chamber wall 11 of the boiler toward the melting ash 13 accumulated at the furnace bottom. With this arrangement, the material of the container is reached to the furnace bottom while it is being ignited, the melting ash is absorbed there and a chemical reaction is occurred with it.

Description

【発明の詳細な説明】 本発明は、燃焼灰の融点上昇剤に関する。[Detailed description of the invention] The present invention relates to an agent for increasing the melting point of combustion ash.

石油系の燃料を使用するホイラでは、燃料中に不純物と
して含まれているバナジウム(V)。
In wheelers that use petroleum-based fuel, vanadium (V) is contained as an impurity in the fuel.

ナトリウム(Na)及び硫黄(S)などを主成分と伝熱
障害や腐食を誘発することが知られている。
It is known that sodium (Na) and sulfur (S) are the main components and cause heat transfer problems and corrosion.

ことに過熱器管、再熱器管などの所謂ボイラ高温部では
燃料灰による腐食障害がしばしば経験されており、その
原因が燃料灰中に含まれているV化合物の加速酸化作用
に起因していることからバナジウムアタックとも呼ばノ
tている。しかし、■化合物単体では、融点もそれほど
低くなく (VtOsで約660℃)、この温度以下に
保持されているボイラチューブでは激しい腐食を受ける
ことは少なく、通常燃料灰中にNaやS化合物が共存す
ると融点は500〜550℃程度に低下すると共に、そ
の腐食性も非常に激しくなってくる。このように燃料灰
に起因する腐食障害はバナジウムアタックと呼称されて
いるが、Na ’p S化合物も重要な役割を果してい
る。
In particular, corrosion damage caused by fuel ash is often experienced in the so-called high-temperature parts of boilers such as superheater tubes and reheater tubes, and the cause is the accelerated oxidation effect of V compounds contained in the fuel ash. Because of this, it is also called vanadium attack. However, the melting point of the single compound is not so low (approximately 660°C for VtOs), and boiler tubes kept below this temperature are unlikely to suffer severe corrosion, and Na and S compounds usually coexist in fuel ash. Then, the melting point decreases to about 500 to 550°C, and the corrosivity becomes extremely severe. Corrosion damage caused by fuel ash is called vanadium attack, and Na'pS compounds also play an important role.

一般にV、Na、S 化合物を生成物とする燃料灰の融
点は低いが、これが付着しているボイラチューブの表面
では、管内を流れる水や水蒸気の冷却効果によって、固
体状となっている。
Generally, fuel ash, which is a product of V, Na, and S compounds, has a low melting point, but on the surface of the boiler tube to which it is attached, it becomes solid due to the cooling effect of water and steam flowing inside the tube.

強く受けるところでは融体となって流動するめで、火炉
蒸発管を伝って、ボイラ底部へ流下したり、滴下してく
る。
Where it is strongly affected, it becomes a molten material and flows, flowing down the furnace evaporation tube or dripping to the bottom of the boiler.

このような現象が連続して長時間続くと、炉底部に溶融
状の燃料灰が溜るようになる。ボイラの炉底部は蒸発管
によって構成されているので、溶融状の燃料灰(以下、
溶融灰)の上層部は、燃焼ガスやその輻射熱に直接曝さ
れるが、下層部は比較的管壁温度の低い蒸発管(660
〜400℃)と接触しているため、これを腐食損耗させ
るようなことはなかった。
If this phenomenon continues for a long time, molten fuel ash will accumulate at the bottom of the reactor. The bottom of the boiler is made up of evaporation tubes, so molten fuel ash (hereinafter referred to as
The upper layer (molten ash) is directly exposed to the combustion gas and its radiant heat, but the lower layer is exposed to the evaporator tube (660
~400°C), so there was no corrosion or wear.

しかるに、最近は燃料事情の悪化により、良質の燃料が
得られにくくなったことや、低質燃料の使用は、排ガス
処理設備(公害対策上)を必要とするものの燃料費が安
いこともあって、低質燃料を使用するボイラも少なくな
い。このようなボイラでは、燃料灰の融点は、さらに低
下して500℃以下となると共に、炉底に滞留している
溶融灰が燃焼炎の影響を受けて流動しやすくなり、激し
い場合は渦潮状に流動することがある。
However, recently, due to the deterioration of the fuel situation, it has become difficult to obtain high-quality fuel, and although the use of low-quality fuel requires exhaust gas treatment equipment (for pollution prevention purposes), the fuel cost is low. Many boilers use low-quality fuel. In such a boiler, the melting point of the fuel ash further decreases to below 500°C, and the molten ash that remains at the bottom of the furnace becomes more fluid due to the influence of the combustion flame, and in severe cases, it becomes like a whirlpool. It may flow.

この結果、従来溶融灰が滞留しても異常が認められなか
った炉底を形成した蒸発管の一部には、腐食損耗現象が
散見されるようにな9、このまま放置すれば重大な事故
を誘発する惧れもある。
As a result, some parts of the evaporator tubes forming the bottom of the furnace, where no abnormality was previously observed even when molten ash remained, are now showing signs of corrosion and wear and tear.9 If left untreated, serious accidents could occur. There is also a risk that it may be triggered.

この対策として燃料中にMg、Ca などの化合物を添
加し、燃料の燃焼時に、V、Na、8化合物と化学反応
させることによって、燃料灰の融点を上昇させて、その
腐食性を抑制(燃料灰が溶融状態では非常に強い化学反
応性を示すが固体状態では反応性はなくなる。)すると
ともに、ボイラチューブから剥離しやすぐして伝達障害
を防止する方法が採用されている。
As a countermeasure, compounds such as Mg and Ca are added to the fuel, and when the fuel is burned, they are chemically reacted with V, Na, and 8 compounds to raise the melting point of the fuel ash and suppress its corrosivity (fuel Ash exhibits very strong chemical reactivity when it is in a molten state, but has no reactivity when it is in a solid state.

この方法はそれなりの効果を発揮するが、Mg、Ca化
合物(以下単に添加剤)を多量に添加すると、運転経費
の増加を招くと共に、ボイラの運転上にも好ましくない
現象が現われてぐる。すなわち火炉蒸発管に添加剤が多
量に付着すると、これらは白色を呈しているため蒸発管
の熱吸収が低下し、その分燃焼ガス温度の低下が抑えら
れ、そのまま下流側へ移行することとなる。このため、
ボイラ全般の熱吸収バランスが崩れ、正常な運転ができ
なくなる現象が顕在化してくる。
Although this method exhibits certain effects, adding large amounts of Mg and Ca compounds (hereinafter simply referred to as additives) increases operating costs and causes undesirable phenomena in boiler operation. In other words, when a large amount of additives adheres to the furnace evaporation tube, the white color of these additives reduces the heat absorption of the evaporation tube, which suppresses the decrease in combustion gas temperature and causes the additive to move downstream. . For this reason,
The heat absorption balance of the boiler as a whole is disrupted, and the phenomenon that normal operation becomes impossible becomes apparent.

したがって、添加剤の注入は、燃料灰の腐食対策を目的
とした場合でも、常にボイラの運転状態の良否も十分に
考慮する必要があるため、余り多量に使用することがで
きず、この結果、炉底への溶融灰の滞留を完全に防止す
ることはできない。
Therefore, when injecting additives, even when the purpose is to prevent corrosion of fuel ash, it is necessary to take into account the operating condition of the boiler at all times, and as a result, it is not possible to use a large amount of additives. It is not possible to completely prevent molten ash from accumulating at the bottom of the furnace.

発明者の一人は、さきに、このような1障害の対策とし
て、炉底を耐火材とアルカリ土類金属化合物によって被
覆する方法を提案した。(実願昭53−03υ178)
 この方法は、前記溶融灰が炉底に滞留する場合には十
分な効果を発揮するが、粗悪燃料を使用しても、ボイラ
の構造、燃焼方法などによって、必らずしも溶融灰が滞
留するとは限らないので、このような場合に予め炉底に
該先願技術のよう方1IJL着を施すことは経費の増加
を招くことが避けられない。
One of the inventors previously proposed a method of coating the bottom of the furnace with a refractory material and an alkaline earth metal compound as a countermeasure to one such problem. (Jitsugan 53-03υ178)
This method is sufficiently effective when the molten ash remains at the bottom of the furnace, but even if inferior fuel is used, molten ash may not necessarily remain due to the boiler structure, combustion method, etc. Therefore, in such a case, it is inevitable that applying the method 1IJL coating of the prior art to the hearth bottom in advance will lead to an increase in costs.

本発明は、以上のような現状に鑑み、ボイラ運転後、炉
底に溶融灰が滞留しはじめたことをビープホールから確
認した後、炉底に物理的吸着性能を有する高融点化合物
を内蔵したボール状容器を投入することによって、溶融
灰を吸収すると共に、溶融灰の融点を上昇させて、その
障害を抑制するものである。この高融点化合物は、粉体
で投入するよジも、これを内蔵したボール状容器とした
方が、炉底に達しゃすく、又効果も高い。
In view of the above-mentioned current situation, the present invention has developed a system that incorporates a high melting point compound with physical adsorption performance in the bottom of the furnace after confirming from the beep hole that molten ash has started to accumulate at the bottom of the furnace after the boiler is operated. By introducing the ball-shaped container, the molten ash is absorbed and the melting point of the molten ash is raised to suppress the damage caused by the molten ash. Although this high melting point compound can be introduced in the form of powder, it is easier to reach the bottom of the furnace and more effective if it is contained in a ball-shaped container.

本発明は、上記の点KN目してなされたもので、Mg化
合物、 Ca化合物、11化合物の1種以上からなる添
加剤、あるいはこれら化合物の1種以上とSi化合物と
からなる添加剤を、布海苔、カゼイン、アラビヤゴム又
は高分子の固着剤でボール状に成形したことを特徴とす
る燃焼灰の融点上昇剤に関するものである。
The present invention has been made in view of the above point KN, and includes an additive consisting of one or more of Mg compounds, Ca compounds, and 11 compounds, or an additive consisting of one or more of these compounds and a Si compound. The present invention relates to an agent for increasing the melting point of combustion ash, which is formed into a ball shape using cloth seaweed, casein, gum arabic, or a polymeric fixing agent.

上記S1化合物は多孔質ものでも、無孔質のものでもよ
い。
The S1 compound may be porous or nonporous.

以下に、本発明の特徴につき説明する。The features of the present invention will be explained below.

(1)高融点化合物としてM g (OH)2 r M
g O+ Mg cOsCab、Ca(OH)t * 
A 120Bなどを使用する点は、基本的には従来の知
見と同様であるが、これを粉体状で運転中の炉底に投入
すると、燃焼ガス、燃焼ガス用の空気などの流れによっ
てボイラ炉内へ群上ジ、目的とする炉底へは到達しない
。本発明はこれを固着剤でボール状に成形して、ビープ
ホールから投入するので、容器の材料が燃焼しつつ炉底
に達し、その部分で、溶融灰を吸収すると共に化学反応
することができる。
(1) M g (OH)2 r M as a high melting point compound
g O+ Mg cOsCab, Ca(OH)t *
The point of using A 120B is basically the same as conventional knowledge, but if it is put into the bottom of an operating furnace in powder form, the flow of combustion gas and air for combustion gas will cause the boiler to burn. The group moves into the furnace, but does not reach the desired bottom of the furnace. In the present invention, the ash is formed into a ball shape using a binding agent and then introduced through the beep hole, so the material in the container burns and reaches the bottom of the furnace, where it absorbs the molten ash and undergoes a chemical reaction. .

(2)高融点化合物はすべて使用でき、それぞれ単独で
も効果はあシ、混合しても差支えないが、混合する場合
には、好ましくは炭酸塩(MgCOs)を含ませておく
と溶融灰と接触した場合、とり、が分解する際に発生す
るCo、ガスの圧力によって高融点化合物の溶融灰との
混合がよくなる。
(2) All high-melting point compounds can be used, each alone is effective, and there is no harm in mixing them, but when mixing, it is preferable to include carbonate (MgCOs) so that they come into contact with the molten ash. In this case, the high melting point compounds are better mixed with the molten ash due to the pressure of Co and gas generated when the tori decomposes.

(3) 高融点化合物をボール状に成形しているので、
使用しない場合でも、空気中の水分との! 接触がなく
、したがって、粉末が凝集したp、Mg(OH)zがM
gC0,に変化することがないので、品質は安定してい
るばがりが、CaOなどを内蔵している場合は安全上か
らも好都合である。
(3) Since the high melting point compound is formed into a ball shape,
With moisture in the air even when not in use! There is no contact, therefore the powder is agglomerated p, Mg(OH)z is M
Since there is no change in gC0, the quality is stable, but if CaO or the like is contained, it is advantageous from a safety standpoint.

(4)取扱いが容易であり、必要なとき、必要な量だけ
使用できる。
(4) It is easy to handle and can be used when and in the required amount.

(5) ボール状に成形する固着材としては、布海苔、
カゼイン、アラビヤゴムや高分子固着剤(例えば、アク
リル樹脂、醋酸ビニル等の市販の水溶性高分子固着剤)
が使用される。
(5) As the fixing material for forming into a ball shape, funoori,
Casein, gum arabic and polymeric adhesives (e.g. commercially available water-soluble polymeric adhesives such as acrylic resin and vinyl acetate)
is used.

(6)高融点化合物の形状は、粉状、塊状1粒状でもよ
く、形状に制約を受けない。また、ボール状も球状のみ
ならず、鶏卵状やジグビーボール状のものでも支障ない
(6) The shape of the high melting point compound may be a powder, a lump, or a single grain, and there are no restrictions on the shape. In addition, the ball shape is not limited to a spherical shape, but may also be a chicken egg shape or a Zigbee ball shape.

(7)上記(1)の高融点化合物に81化合物を混合す
ることもできる。多孔質なSi化合物(例えば、シリカ
ゲル、素焼など)は、一般に溶融灰と化学反応すること
はないが、溶融灰を物理的に吸着するので、自己の体積
の数倍に達する溶融灰を補足し、その障害を妨げる作用
を有する。しかも、比較的高温に耐えるため、溶融灰中
に投入されてもその機能を消失することはない。なお、
Si化合物の添加量は高融点化合物中20〜50 vr
t%を占めるようにすることが好ましい。
(7) Compound 81 can also be mixed with the high melting point compound of (1) above. Porous Si compounds (for example, silica gel, bisque, etc.) generally do not chemically react with molten ash, but they physically adsorb molten ash, so they can capture molten ash that is several times its own volume. , has the effect of preventing the disorder. Moreover, since it can withstand relatively high temperatures, it will not lose its function even if it is thrown into molten ash. In addition,
The amount of Si compound added is 20 to 50 vr in the high melting point compound.
It is preferable to make it account for t%.

(8)本発明のボール状に成形された添加剤の溶融灰に
対する作用を大別すると ■ Mg、 Ca、 Al化合物は溶融灰成分と化学反
応を起して高融点化合物を生成し ■ 多孔質なS1化合物は、溶融灰を多量に物理的に吸
着して、固定化させる(吸着きれた溶融灰は悪影響を与
え々いので、Mg。
(8) The effects of the ball-shaped additive of the present invention on molten ash can be broadly classified as follows: ■ Mg, Ca, and Al compounds cause a chemical reaction with the molten ash components to produce a high-melting point compound; ■ Porous. The S1 compound physically adsorbs a large amount of molten ash and immobilizes it (adsorbed molten ash has no adverse effect, so Mg.

Ca化合物が少なくて済む)。(requires less Ca compounds).

ことに分かれ、との両件用によって、目的を達成せんと
するものである。
It aims to achieve its purpose by dividing it into two parts.

また本発明では無孔質なSi化合物(例えば810! 
)も使用でき、該無孔質なsio、は上記■■の作用は
ないが、ボイラ停止後、溶融灰を炉外へ排出する際、非
常に脆弱にする作用があり、取り出しを容易にする効果
がある。
In addition, in the present invention, a non-porous Si compound (for example, 810!
) can also be used, and the non-porous sio, does not have the effect of ■■ above, but it has the effect of making the molten ash extremely brittle and making it easier to take out when discharging the molten ash outside the furnace after the boiler has stopped. effective.

本発明は、重油燃焼ボイラ等に有利に適用しうる。The present invention can be advantageously applied to heavy oil combustion boilers and the like.

本発明剤を第1図に示すボイラの燃焼室壁11に設けら
れているビープホール(覗窓)12から炉底に滞留して
いる溶融灰15に向けて投入する。尚、14及び15は
過熱器で、16は燃焼ガスの流れを示す。投入には、圧
縮空気を利用し、鋼管の内部に本発明剤を詰め、吹出す
ようにすればよい。投入された本発明剤は炉内の熱によ
って燃焼しながら溶融灰上に達し、多孔性8102 は
溶融灰を吸着すると共に、高融点化合物は溶融灰と接触
して化学反応を起し、その融点を上昇させる。例えば、
本発明剤としてMg化合物(MgO,Mg(OH)t 
+ MgCO5)を用いている場合は、溶融灰中の■化
合物と反応し、2Mg0・V、O,(融点865℃)、
5Mg0・Vt0Il(融点1.191℃)を生成し、
Ca化合物(Cab。
The agent of the present invention is introduced into the molten ash 15 remaining at the bottom of the furnace through a beep hole 12 provided in the combustion chamber wall 11 of the boiler shown in FIG. In addition, 14 and 15 are superheaters, and 16 shows the flow of combustion gas. For charging, compressed air may be used to fill the inside of a steel pipe with the agent of the present invention and blow it out. The introduced agent of the present invention burns due to the heat in the furnace and reaches the molten ash, and the porous 8102 adsorbs the molten ash, and the high melting point compound comes into contact with the molten ash and causes a chemical reaction, reducing its melting point. to rise. for example,
Mg compounds (MgO, Mg(OH)t
+ MgCO5), it reacts with the compound (■) in the molten ash, producing 2Mg0・V,O, (melting point 865℃),
5Mg0・Vt0Il (melting point 1.191°C) is produced,
Ca compound (Cab.

ca(OH)、、 caco3)の場合は、2CaO−
V2O5(融点778℃) 3CaO−V20s(融点
1.016℃)を生成し、■、0.単独の融点(約66
0℃)よりはるかに高くなυ、炉底で溶融する現象がな
くなる。その上、ボイラが停止したとき、炉底部の灰は
、非常に軟質で炉外へ排出することが容易となる。なお
、多孔質な5in1、例えばシリカゲル11は5〜10
Fの溶融灰を吸着する能力を有している。
ca(OH),, caco3), 2CaO-
V2O5 (melting point 778°C) produces 3CaO-V20s (melting point 1.016°C), ■, 0. Single melting point (approximately 66
When the temperature is much higher than 0℃), the phenomenon of melting at the bottom of the furnace disappears. Moreover, when the boiler is stopped, the ash at the bottom of the furnace is very soft and can be easily discharged from the furnace. In addition, porous 5 in 1, for example, silica gel 11 is 5 to 10
It has the ability to adsorb F molten ash.

実験例1 下記添加剤(1)〜(4)ヲ用い、布海苔、カゼイン。Experimental example 1 Use the following additives (1) to (4), funoori, and casein.

アラビヤゴム又は市販の水溶性の高分子固着剤(アクリ
ル樹脂、醋酸ビニルの微粒子を含んだエマルジョンタイ
プンを加えてよく攪拌し、ボール状の形状とし、自然放
置した。
Gum arabic or a commercially available water-soluble polymeric adhesive (acrylic resin, emulsion type containing fine particles of vinyl acetate) was added, stirred well, formed into a ball shape, and allowed to stand.

(1)多孔性S1O,(シリカゲル)を含むものMg0
70wt% 、5i02(多孔性) 30 wt%(2
ン 素焼(多孔性うを含むもの Mg050wt%、 A11035vrt%。
(1) Porous S1O, containing (silica gel) Mg0
70 wt%, 5i02 (porous) 30 wt% (2
Unglazed (including porous porosity Mg050wt%, A11035vrt%.

素焼45wtチ (3) 多孔性810.を含まないもの MgO100
wtチ(4)多孔性S10.を含まないもの CaCO350wt%、 Mg(OH)、 50wt%
水分の大気中への放出とその後の乾燥によってボール状
の塊は固くなシ、その取扱いは極めて容易である。特に
、高分子固着剤を用いたものは、ポールの外面に薄い高
分子の膜を形成するので、防水作用もある。
Unglazed 45wt (3) Porosity 810. Does not contain MgO100
wt Chi (4) Porous S10. CaCO350wt%, Mg(OH), 50wt%
Due to the release of moisture into the atmosphere and subsequent drying, the ball-shaped mass becomes hard and is extremely easy to handle. In particular, those using a polymer adhesive form a thin polymer film on the outer surface of the pole, which also has a waterproof effect.

溶融灰1kgに上記(1)〜(4)の添加剤を1002
添加し、その融点上昇を測定した。その結果は次の通り
であシ、多孔質な5102. 素焼を含む添加剤の融点
上昇が最も高くなった。
Add the additives (1) to (4) above to 1 kg of molten ash.
The increase in melting point was measured. The results are as follows: 5102. Additives containing bisque had the highest increase in melting point.

固着剤の種類 (融点) 添力0剤 布海苔 カゼイン アラビヤゴム 高分子固
着剤の種類 (1) a2o s1!5 s05’ 821(2) 
802 800 795 810(3) 745 74
1 745 740(4) 770 76.0 761
 766(注)溶融灰の融点(添加剤注入前)は548
℃である。
Type of fixing agent (melting point) Additive 0 agent Funori Casein Gum arabic Type of polymeric fixing agent (1) a2o s1!5 s05' 821 (2)
802 800 795 810(3) 745 74
1 745 740 (4) 770 76.0 761
766 (Note) The melting point of molten ash (before additive injection) is 548
It is ℃.

また、多孔質な5102.素焼などは水分や固着剤を入
れた際、これらも吸着するが、高温状態では、これら(
水分、固着剤)などはすべて揮散し、元の多孔質な状態
となつで、本来の機能を果すものと考えらiする。更に
、多孔質な5iO1゜素焼は、溶融灰と化学反応するよ
シ、これを多量に吸着するため、同時に添加している高
融点化合物の化学作用が同等であっても、よυ多くの溶
融灰の障害を抑える仁ととなる。試験後調査すると12
の多孔性sio、(シリカゲル)の溶融灰吸着量は5〜
ior、素焼1fの吸着量は3〜5fであった。
In addition, porous 5102. When unglazed ceramics and other materials are added with moisture or a fixing agent, they also adsorb them, but at high temperatures, these (
It is thought that all moisture, adhesives, etc. will evaporate, and the material will return to its original porous state and perform its original function. Furthermore, the porous 5iO1° bisque reacts chemically with the molten ash and adsorbs a large amount of it, so even if the chemical action of the high melting point compound added at the same time is the same, a much larger amount of molten ash will be absorbed. It becomes the benevolent that suppresses the hindrance of ash. After the test, 12
The adsorption amount of molten ash of porous sio, (silica gel) is 5~
ior, the adsorption amount of bisque 1f was 3 to 5f.

実験例2 布海苔を用いて、MgC0,とCaCO5の粒状(直径
3〜5叫)添加剤を調製し、これを重油燃焼炉の炉底に
滞留している溶融灰に向けて200個投入した。その結
果、投入前には流動状態を呈していた溶融灰が動かなく
な9、炉外からも融点の上昇が観察された。念のため投
入よ4イQzl七でll+1)、EkFjhn丁ハJj
J−441イ!Uしdb’t−a−ZL’R1表の事例
1に示す通りでアク、投入の効果が認められた。
Experimental Example 2 A granular additive (3 to 5 mm in diameter) of MgC0 and CaCO5 was prepared using Funori, and 200 pieces of this were poured into the molten ash staying at the bottom of a heavy oil combustion furnace. As a result, the molten ash, which had been in a fluid state before being added, stopped moving9, and an increase in the melting point was observed even from outside the furnace. Just in case, put it in 4 i Qzl 7 ll + 1), EkFjhn ding ha Jj
J-441! As shown in Case 1 of the Ushidb't-a-ZL'R1 table, the effect of adding lye and water was observed.

同じような実験を別のボイラを用いて行なった。この場
合の高融点化合物としては、M、gO25wt%+ A
l2O3S wtチ、無孔性Sin!!50wt%。
A similar experiment was conducted using a different boiler. In this case, the high melting point compound is M, gO25wt% + A
l2O3S wt Chi, non-porous Sin! ! 50wt%.

Ca (OH)、 20wt%を用いたが、この場合に
も融点の上昇効果が認められた(第1表の事例2参照)
Ca (OH), 20 wt% was used, and the effect of increasing the melting point was also observed in this case (see Case 2 in Table 1).
.

実験例3 実験例1に使用したものを用いたが、高融点化合物とし
ては下記のように炭酸塩を混在させたものと、そうでな
いものを別々に作製した。
Experimental Example 3 The same one used in Experimental Example 1 was used, but high-melting point compounds with and without carbonate were prepared separately as shown below.

(1)炭酸塩を混在したもの MgC0,50wt%、 Mg(OH)、 50wt%
(1) Mixed carbonate MgCO, 50wt%, Mg(OH), 50wt%
.

51ot(多孔性)20wt% (2)炭酸塩を入れないもの Mg(OH)280wt%、5i02(無孔性) 20
 wt%尚、添加剤の粒度は1〜3WRのものである。
51ot (porous) 20wt% (2) No carbonate Mg(OH) 280wt%, 5i02 (nonporous) 20
wt% The particle size of the additive is 1 to 3 WR.

上記添加剤を第1表事例(1)の溶融灰の中央に向けて
投入し、ボイラ停止後、添加剤の分布を調査した。投入
後、炭酸塩を含む添加剤は溶融灰と接触した後上昇し、
炭酸ガスを発生しつつ分解するが、その際微粉末状にな
るとともに、溶融灰中に広く分散することができる。
The above additive was introduced toward the center of the molten ash in Example (1) in Table 1, and after the boiler was stopped, the distribution of the additive was investigated. After charging, additives containing carbonate rise after contact with molten ash,
It decomposes while producing carbon dioxide gas, but at the same time it becomes a fine powder and can be widely dispersed in the molten ash.

例えば、MgCO3は540℃、CaCO3は898℃
、CaMg(C03)2は730−760℃で分解する
For example, MgCO3 is 540℃, CaCO3 is 898℃
, CaMg(C03)2 decomposes at 730-760°C.

ボイラ停止後、溶融灰を採取して添加剤成分の分布を調
査した結果、(1)の炭酸塩を混在させた添加剤は、投
入点からtsmも離れた場所からでもその成分が検出さ
れたのに対し、(2)の炭酸塩を入れないものでは、そ
の成分の分布は投入点の35cm以内にとどまっていた
After the boiler was stopped, we collected molten ash and investigated the distribution of additive components. As a result, the additive containing carbonate (1) was detected even from a location tsm away from the point of injection. On the other hand, in the case (2) in which no carbonate was added, the distribution of the components remained within 35 cm of the injection point.

尚、炭酸塩とし¥CaCO3を用いても同じような効果
が得られたので、炭酸塩としてはM’gCO3のみなら
ずCaCO3及びその両者から構成されている複塩Ca
Mg(COs)tも使用可能である。
Incidentally, similar effects were obtained using ¥CaCO3 as a carbonate, so not only M'gCO3 but also CaCO3 and the double salt Ca made of both of them can be used as a carbonate.
Mg(COs)t can also be used.

以上詳述したように、本発明は、従来の添加剤に加え、
多孔質な物体を混在させ、溶融灰を物理的に吸着させる
作用を共存させるところにも特徴がある。したがって、
この作用を有するものは必らずしも溶融灰と反応せずと
もよいが、溶融灰と接した際、その温度に耐えるだけの
性能をもっておるものであれば、シリカゲルや素焼以外
のものでも、例えば各種の素焼状の耐火レンガ、成分と
してはFe103 、S 102 、 A1403 。
As detailed above, the present invention, in addition to conventional additives,
It is also characterized by the fact that porous materials are mixed in and the molten ash is physically adsorbed. therefore,
Materials that have this effect do not necessarily have to react with molten ash, but materials other than silica gel and unglazed ceramics can be used as long as they have the ability to withstand the temperature when they come into contact with molten ash. For example, various types of unglazed refractory bricks include Fe103, S102, and A1403.

ZrO2などが使用できる。ZrO2 etc. can be used.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明剤が使用されるボイラの例を示す図であ
る。 復代理人 内 1) 明 復代理人 萩 原 亮 −
FIG. 1 is a diagram showing an example of a boiler in which the agent of the present invention is used. Sub-agents 1) Meifuku agent Ryo Hagiwara -

Claims (2)

【特許請求の範囲】[Claims] (1) Mg化合物、 Ca化合物、Al化合物の1種
以上からなる添加剤を布海苔、カゼイン。 アラビヤゴム又は高分子の固着剤でボール状に成形した
こと1c%徴とする燃料灰の融点上昇剤。
(1) Additives consisting of one or more of Mg compounds, Ca compounds, and Al compounds to funoori and casein. An agent for increasing the melting point of fuel ash, which is formed into a ball shape using gum arabic or a polymer binder and has a concentration of 1 c%.
(2) Mg化合物、 Ca 化合物、 Al化合物の
1種以上とSi化合物とからなる添加剤を布海苔、カゼ
イン、アラビヤゴム又は高分子の固着剤でボール状に成
形したことを特徴とする燃料灰の融点上昇剤。
(2) Melting point of fuel ash characterized by forming an additive consisting of one or more of Mg compounds, Ca compounds, and Al compounds and a Si compound into a ball shape with funoori, casein, gum arabic, or a polymeric binding agent. elevating agent.
JP20601283A 1983-11-04 1983-11-04 Agent for raising melting point of combustion ash Pending JPS6099920A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20601283A JPS6099920A (en) 1983-11-04 1983-11-04 Agent for raising melting point of combustion ash

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20601283A JPS6099920A (en) 1983-11-04 1983-11-04 Agent for raising melting point of combustion ash

Publications (1)

Publication Number Publication Date
JPS6099920A true JPS6099920A (en) 1985-06-03

Family

ID=16516442

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20601283A Pending JPS6099920A (en) 1983-11-04 1983-11-04 Agent for raising melting point of combustion ash

Country Status (1)

Country Link
JP (1) JPS6099920A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62227096A (en) * 1986-03-29 1987-10-06 Taiho Ind Co Ltd Method for preventing corrosion by sulfurization
JPS62261802A (en) * 1986-05-07 1987-11-14 Taiho Ind Co Ltd Method of inhibiting adherence of slags to petroleum coke combustion furnace
JPS6315008A (en) * 1986-07-04 1988-01-22 Taiho Ind Co Ltd Protecting method for boiler furnace material
JP2010235822A (en) * 2009-03-31 2010-10-21 Taihokohzai:Kk Slagging inhibitor for coal and method for burning coal

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51133827A (en) * 1975-05-15 1976-11-19 Katayama Chem Works Co Ltd Purifying method of combustion oven
JPS58153572A (en) * 1982-03-10 1983-09-12 Kubota Ltd Method for treating flying ash in incinerator of waste

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51133827A (en) * 1975-05-15 1976-11-19 Katayama Chem Works Co Ltd Purifying method of combustion oven
JPS58153572A (en) * 1982-03-10 1983-09-12 Kubota Ltd Method for treating flying ash in incinerator of waste

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62227096A (en) * 1986-03-29 1987-10-06 Taiho Ind Co Ltd Method for preventing corrosion by sulfurization
JPS62261802A (en) * 1986-05-07 1987-11-14 Taiho Ind Co Ltd Method of inhibiting adherence of slags to petroleum coke combustion furnace
JPH0527002B2 (en) * 1986-05-07 1993-04-19 Taiho Kogyo Co Ltd
JPS6315008A (en) * 1986-07-04 1988-01-22 Taiho Ind Co Ltd Protecting method for boiler furnace material
JP2010235822A (en) * 2009-03-31 2010-10-21 Taihokohzai:Kk Slagging inhibitor for coal and method for burning coal

Similar Documents

Publication Publication Date Title
JP2003500221A (en) Fever feeder
CN105642850B (en) A kind of ASP medium carbon steel continuous crystallizer protecting slag and preparation method thereof
BE1023752B1 (en) LIME BASED SORBENT COMPOSITION FOR REMOVAL OF MERCURY AND METHOD FOR MANUFACTURING THE SAME
JPH02286179A (en) Fire extinguishing agent for metal fire and fire extinguishing method using this agent
CN102373361A (en) Method for extending initiation time of nodulizer, environment-friendly nodulizer and preparation method thereof
JPS6099920A (en) Agent for raising melting point of combustion ash
KR20180135941A (en) Vanadium corrosion inhibitor in gas turbine applications
TW201022449A (en) Porous magnesia-containing clinker, production method and use thereof as a flux for treating steel slags
KR20070071889A (en) Deoxidizing refractory composition for preparing steel with high purity and preparing method thereof
KR102332238B1 (en) Fluidized-bed boiler interior and tube surface slagging or fouling combustion additives using lime and biomass as fuel
CN1970197A (en) High basicity tundish cover agent and its production method
CN103173592A (en) Ladle covering agent prepared through utilizing blast furnace slag
JP3985471B2 (en) Method for producing slag after refining treatment
WO2007093176A2 (en) Modified coke lumps for mineral melting furnaces
JPS6338606B2 (en)
CN113337670A (en) Molten steel heat-preservation covering agent capable of supplementing heat
JP6390826B1 (en) Method for producing exothermic spray granule mold powder
JPH0377237B2 (en)
US3615175A (en) Preventing physical explosion due to the interaction of liquid water and molten chemical compounds
JP3746111B2 (en) Method for producing sodium silicate cullet
CN113773708A (en) Tundish multifunctional lining and preparation method and application thereof
US10799943B2 (en) Method of producing exothermic mold powder in form of sprayed granules
JPS6035407B2 (en) Desulfurization agent for hot metal and its manufacturing method
JP3648505B2 (en) Regeneration method of carbon dioxide absorbent
CN101553301A (en) Mercury adsorbents compatible as cement additives