JP2772156B2 - Fuel additive for high temperature oxidation and high temperature corrosion prevention - Google Patents

Fuel additive for high temperature oxidation and high temperature corrosion prevention

Info

Publication number
JP2772156B2
JP2772156B2 JP3120315A JP12031591A JP2772156B2 JP 2772156 B2 JP2772156 B2 JP 2772156B2 JP 3120315 A JP3120315 A JP 3120315A JP 12031591 A JP12031591 A JP 12031591A JP 2772156 B2 JP2772156 B2 JP 2772156B2
Authority
JP
Japan
Prior art keywords
additive
corrosion
temperature
mgo
high temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3120315A
Other languages
Japanese (ja)
Other versions
JPH04345688A (en
Inventor
正治 中森
敬三 塚越
孝二 高橋
春生 大塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP3120315A priority Critical patent/JP2772156B2/en
Publication of JPH04345688A publication Critical patent/JPH04345688A/en
Application granted granted Critical
Publication of JP2772156B2 publication Critical patent/JP2772156B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Liquid Carbonaceous Fuels (AREA)
  • Solid Fuels And Fuel-Associated Substances (AREA)
  • Anti-Oxidant Or Stabilizer Compositions (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明はガスタービンの燃焼ガス
と接触する燃焼器や動・静翼の高温酸化や高温腐食を防
止するために適用される燃料添加剤に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fuel additive for preventing high-temperature oxidation and high-temperature corrosion of a combustor or a moving / static blade contacting a combustion gas of a gas turbine.

【0002】[0002]

【従来の技術】コンバインドサイクルプラントに代表さ
れる高効率化された最近の産業用ガスタービンのタービ
ン入口ガス温度の上昇は著しく1300℃以上となって
いる。ガスタービンに使用される耐熱合金は精力的な研
究開発が行なわれ、その許容使用温度も年々上昇してい
るが、実用合金では850〜900℃程度である。この
ため実機ガスタービンでは薄肉化した空気冷却翼が用い
られている。
2. Description of the Related Art The temperature of a gas at the inlet of a recent industrial gas turbine of high efficiency represented by a combined cycle plant has risen significantly to 1300 ° C. or more. The heat-resistant alloys used in gas turbines have been vigorously researched and developed, and the allowable service temperature thereof has been increasing year by year. For this reason, thin air cooling blades are used in actual gas turbines.

【0003】一方、使用される燃料はLNG、副生ガス
や重油におよび、最近では石炭を液化又はガス化して利
用することも研究されているため、空気冷却翼の高温酸
化や高温腐食防止を目的として低圧プラズマ溶射法によ
りNiCoCrAlYやCoCrAlYなどの合金のコ
ーティングが行なわれている(中森正治、“腐食防食”
1989予稿集)。
On the other hand, the fuels used are LNG, by-product gas, and heavy oil. Recently, studies have been made to utilize coal by liquefaction or gasification. Therefore, it is necessary to prevent high-temperature oxidation and high-temperature corrosion of air cooling blades. For the purpose, coating of alloys such as NiCoCrAlY and CoCrAlY is performed by low-pressure plasma spraying method (Shoji Nakamori, "Corrosion protection")
1989 Proceedings).

【0004】また、空気冷却翼の表層温度低減のため、
TBC(Thermal Barrier Coating遮熱コーティング)
の応用も研究されている。
Further, in order to reduce the surface temperature of the air cooling blade,
TBC (Thermal Barrier Coating Thermal Barrier Coating)
The application of is also being studied.

【0005】また、S、Na、V等を多量に含む重油燃
焼に際しては融点が低く加速酸化腐食(バナジウムアタ
ック)の原因となるNa−V−O系化合物(例えば5N
2 O・V2 4 ・11V2 5 、mp 535℃)の
形成を防止するためMgO又はMg(OH)2 を主成分
とする燃料添加剤が用いられることがある。
[0005] Further, when burning heavy oil containing a large amount of S, Na, V, etc., a Na-VO compound (eg, 5N) which has a low melting point and causes accelerated oxidative corrosion (vanadium attack).
a 2 O · V 2 O 4 · 11V 2 O 5, mp 535 ℃) fuel additive mainly composed of MgO or Mg (OH) 2 in order to prevent the formation of sometimes used.

【0006】[0006]

【発明が解決しようとする課題】高温化されたガスター
ビンにおいて、直接燃焼ガスと接触する動・静翼はガス
温度の上昇にともなって酸化速度や腐食速度が増加し、
前記の耐食コーティングを行った場合でも燃料や燃焼空
気よりS、NaK、Clなどの腐食性成分が微量持込ま
れることによって著しい腐食損傷を受ける事態が出現し
ている。
In a high temperature gas turbine, the moving and stationary blades that come into direct contact with the combustion gas increase in oxidation rate and corrosion rate as the gas temperature increases.
Even when the above-mentioned corrosion-resistant coating is performed, a situation has appeared in which a very small amount of corrosive components such as S, NaK, and Cl are introduced into the fuel or combustion air to cause significant corrosion damage.

【0007】さらに、TBCの利用もセラミックコーテ
ィング層が剥離しやすい欠点があり実用化に対しては問
題が多い。
Further, the use of TBC has a drawback that the ceramic coating layer is easily peeled off, and there are many problems for practical use.

【0008】また、Mg系添加剤もNa−V−O系化合
物の形成を防止するものであるが、高温化と微量のS、
Na、K、ClなどがNa2 SO4 やK2 SO4 を形成
することに原因する高温腐食を防止する効果はない。
[0008] Mg-based additives also prevent the formation of Na-V-O-based compounds.
There is no effect of preventing high-temperature corrosion caused by formation of Na 2 SO 4 and K 2 SO 4 by Na, K, Cl and the like.

【0009】本発明は上記技術水準に鑑み、従来技術に
おけるような不具合のない高温酸化及び高温腐食防止用
燃料添加剤を提供しようとするものである。
The present invention has been made in view of the above-mentioned state of the art, and aims to provide a fuel additive for preventing high-temperature oxidation and high-temperature corrosion, which is free from the problems as in the prior art.

【0010】[0010]

【課題を解決するための手段】本発明は (1)Al2 3 、MgO、CaO及びFe2 3 より
なる混合物に、イットリア安定化ジルコニア、イットリ
ア部分安定化ジルコニア、CeO2 及びHfO2 よりな
る群から選ばれた1種以上の成分を添加混合してなるこ
とを特徴とする高温酸化及び高温腐食防止用燃料添加
剤。
According to the present invention, there is provided (1) a method comprising mixing a mixture of Al 2 O 3 , MgO, CaO and Fe 2 O 3 with yttria-stabilized zirconia, yttria partially-stabilized zirconia, CeO 2 and HfO 2 . A fuel additive for preventing high-temperature oxidation and high-temperature corrosion, which is obtained by adding and mixing one or more components selected from the group consisting of:

【0011】(2)Al(OH)3 、Mg(OH)2
Ca(OH)2 及びFe2 3 よりなる混合物に、イッ
トリア安定化ジルコニア、イットリア部分安定化ジルコ
ニア、CeO2 及びHfO2 よりなる群から選ばれた1
種以上の成分を添加混合してなることを特徴とする高温
酸化及び高温腐食防止用燃料添加剤。
(2) Al (OH) 3 , Mg (OH) 2 ,
A mixture of Ca (OH) 2 and Fe 2 O 3 is mixed with yttria-stabilized zirconia, yttria partially stabilized zirconia, CeO 2 and HfO 2.
A fuel additive for preventing high-temperature oxidation and high-temperature corrosion, comprising a mixture of at least two or more kinds of components.

【0012】(3)Al(R−COO)3 、Mg(R−
COO)2 、Ca(R−COO)2 (但し、R:鎖状炭
化水素残基)及びFe2 3 よりなる混合物に、イット
リア安定化ジルコニア、イットリア部分安定化ジルコニ
ア、CeO2 及びHfO2よりなる群から選ばれた1種
以上の成分を添加混合してなることを特徴とする高温酸
化及び高温腐食防止用燃料添加剤。である。
(3) Al (R-COO) 3 , Mg (R-
COO) 2 , Ca (R—COO) 2 (where R is a chain hydrocarbon residue) and a mixture of Fe 2 O 3 , a mixture of yttria-stabilized zirconia, yttria partially-stabilized zirconia, CeO 2 and HfO 2 A fuel additive for preventing high-temperature oxidation and high-temperature corrosion, which is obtained by adding and mixing one or more components selected from the group consisting of: It is.

【0013】本発明の燃料添加剤はAl2 3 、Mg
O、CaO及びFe2 3 又はAl(OH)3 、Mg
(OH)2 、Ca(OH)2 及びFe2 3 又はAl
(R−COO)3 、Mg(R−COO)2 、Ca(R−
COO)2 (但し、R:鎖状炭化水素残基)及びFe2
3 の混合物へ、イットリア安定化ジルコニア(以下、
YSZという)、イットリア部分安定化ジルコニア(以
下、PSZという)、CeO 2 及びHfO2 を添加混合
した後、軽油などの油性成分又は水分に界面活性剤を利
用して分散させることによって得られる。
[0013] The fuel additive of the present invention is AlTwoOThree, Mg
O, CaO and FeTwoOThreeOr Al (OH)Three, Mg
(OH)Two, Ca (OH)TwoAnd FeTwoOThreeOr Al
(R-COO)Three, Mg (R-COO)Two, Ca (R-
COO)Two(However, R is a chain hydrocarbon residue) and FeTwo
OThreeInto a mixture of yttria-stabilized zirconia (hereinafter, referred to as
YSZ), yttria partially stabilized zirconia (hereinafter referred to as YSZ)
Below, PSZ), CeO TwoAnd HfOTwoAdd and mix
After that, use a surfactant for oily components such as light oil or water.
Obtained by dispersing using

【0014】Al2 3 、MgO、CaO及びFe2
3 の混合物とYSZ、PSZ、CeO2 及びHfO2
りなる群から選ばれた1種以上の成分の割合を代表的に
採りあげて説明すると、前者:後者は90〜97重量
%:10〜3重量%の範囲にするのが好ましく、前者の
混合物中、Al2 3 、MgO、CaO及びFe2 3
の割合はAl2 3 :40〜50重量%、MgO:10
〜25重量%、CaO:20〜35重量%、Fe
2 3 :2〜5重量%の範囲が好ましい。
Al 2 O 3 , MgO, CaO and Fe 2 O
A mixture of 3 and YSZ, PSZ, when the proportion of one or more components selected from the group consisting of CeO 2 and HfO 2 representatively taken up and explained, the former: the latter is 90 to 97 wt%: 10-3 %, Preferably in the former mixture, Al 2 O 3 , MgO, CaO and Fe 2 O 3
Of Al 2 O 3 : 40 to 50% by weight, MgO: 10
-25% by weight, CaO: 20-35% by weight, Fe
2 O 3 : The range of 2 to 5% by weight is preferred.

【0015】Al2 3 、MgO、CaO及びFe2
3 の代りに、Al(OH)3 、Mg(OH)2 、Ca
(OH)2 、Fe2 3 又はAl(R−COO)3 、M
g(R−COO)2 、Ca(R−COO)2 、Fe2
3 を使用する場合も、それぞれ酸化物換算で上記の範囲
になるようにするのが好ましい。
Al 2 O 3 , MgO, CaO and Fe 2 O
Instead of 3 , Al (OH) 3 , Mg (OH) 2 , Ca
(OH) 2, Fe 2 O 3 or Al (R-COO) 3, M
g (R-COO) 2, Ca (R-COO) 2, Fe 2 O
Also when 3 is used, it is preferable that each of them is in the above range in terms of oxide.

【0016】[0016]

【作用】Al2 3 、MgO、CaO、Fe2 3 より
なる混合物に、YSZ、PSZ、CeO2 及びHfO2
よりなる群から選ばれた1種以上の成分を添加混合して
なる混合物は高温燃焼ガス気流とともに冷却された動・
静翼へ衝突し、燃焼ガス中のNa2 SO4 等とともに付
着する。
The mixture of Al 2 O 3 , MgO, CaO and Fe 2 O 3 is mixed with YSZ, PSZ, CeO 2 and HfO 2
The mixture obtained by adding and mixing one or more components selected from the group consisting of
It collides with the stationary blade and adheres together with Na 2 SO 4 in the combustion gas.

【0017】Al2 3 、MgO、CaO、Fe2 3
の融点は、それぞれ2050℃、2800℃、2600
℃、1550℃といずれも高く、ガスタービン翼は90
0℃以下に冷却されているため固化し、燃焼ガスと翼表
面が接触することを防げてTBCと同様の効果を発揮
し、翼表面の温度を50〜100℃低減することができ
る。(この結果、被曝温度に依存する腐食速度は大幅に
減少する。)
Al 2 O 3 , MgO, CaO, Fe 2 O 3
Melting points of 2050 ° C., 2800 ° C., and 2600 ° C., respectively.
℃, 1550 ℃, gas turbine blades are 90
Since it is cooled to 0 ° C. or less, it solidifies, prevents contact between the combustion gas and the blade surface, exhibits the same effect as TBC, and can reduce the temperature of the blade surface by 50 to 100 ° C. (As a result, the corrosion rate depending on the exposure temperature is greatly reduced.)

【0018】付着物中のNa2 SO4 は通常下記の
(1)〜(3)式のような反応(高温硫化反応)により
翼材の腐食を進行させるが、付着物の大部分がAl2
3 、MgO、CaO、Fe2 3 、YSZ、PSZ、C
eO2 、HfO2 などの酸化物であるため、Na2 SO
4 が直接翼材と接触することを防げ、腐食の進行を防止
する。 Na2 SO4 +3M → Na2 O+3MO+S (1) M + S → MS (2) Na2 SO4 +3MS → Na2 O+3MO+4S (3) (ただし、MはFe、Ni等の金属を示す。)
[0018] By proceeding corrosion of blade material by deposits in Na 2 SO 4 are usually the following (1) to (3) reactions such as formulas (hot sulfurization reaction), the majority of the deposits Al 2 O
3, MgO, CaO, Fe 2 O 3, YSZ, PSZ, C
Since it is an oxide such as eO 2 or HfO 2 , Na 2 SO
4 prevents direct contact with the wing material, preventing the progress of corrosion. Na 2 SO 4 + 3M → Na 2 O + 3MO + S (1) M + S → MS (2) Na 2 SO 4 + 3MS → Na 2 O + 3MO + 4S (3) ( however, M represents Fe, a metal such as Ni.)

【0019】付着物中のNa2 SO4 が局所的に翼材と
接触し、(1)式によりSが発生した場合や付着物中に
SOx等燃焼ガス中の硫黄化合物が進入しS分圧が高く
なった場合でも、YSZ、PSZ中のY2 3 やCeO
2 、HfO2 はSと次式のごとく反応し、Sと翼材とが
直接反応することを防止する。 Y2 3 + 1/2(S)+ 2/3(Cr)→ Y2 2 0.5 + 1/3(Cr2 3 ) (4) CeO2 + 1/2(S)+ 2/3(Cr)→ CeOS0.5 + 1/3(Cr2 3 ) (5) HfO2 + 1/2(S)+ 2/3(Cr)→ HfOS0.5 + 1/3(Cr2 3 ) (6)
When Na 2 SO 4 in the deposit is locally in contact with the wing material and S is generated according to the formula (1), or when sulfur compounds in the combustion gas such as SOx enter the deposit and the S partial pressure is increased. Is higher, Y 2 O 3 and CeO in YSZ and PSZ
2 , HfO 2 reacts with S as in the following formula, and prevents S from reacting directly with the wing material. Y 2 O 3 +1/2 (S) +2/3 (Cr) → Y 2 O 2 S 0.5 + 1/3 (Cr 2 O 3 ) (4) CeO 2 +1/2 (S) + 2 / 3 (Cr) → CeOS 0.5 + 1/3 (Cr 2 O 3 ) (5) HfO 2 + 1/2 (S) + 2/3 (Cr) → HfOS 0.5 + 1/3 (Cr 2 O 3 ) ( 6)

【0020】翼表面に付着した付着物層が温度変化やそ
の他の原因で剥離した場合でも、燃焼ガス中に含まれる
新たな添加剤成分が付着し、付着物層を修復する。
[0020] Even when the deposit layer adhered to the blade surface is peeled off due to a temperature change or other causes, a new additive component contained in the combustion gas adheres and repairs the deposit layer.

【0021】以上、基本混合物がAl2 3 、MgO、
CaO、Fe2 3 である場合について、その作用を説
明したが基本混合物がAl(OH)3 、Mg(O
H)2 、Ca(OH)2 、Fe2 3 又はAl(R−C
OO)3 、Mg(R−COO)2 、Ca(R−COO)
2 、Fe2 3 の場合も、該混合物中の水酸化物、有機
化合物は高温下で酸化物になるので、その作用は同じで
ある。
As described above, the basic mixture is composed of Al 2 O 3 , MgO,
The operation of CaO and Fe 2 O 3 has been described, but the basic mixture is Al (OH) 3 , Mg (O
H) 2, Ca (OH) 2, Fe 2 O 3 or Al (R-C
OO) 3 , Mg (R-COO) 2 , Ca (R-COO)
In the case of 2 and Fe 2 O 3 , hydroxides and organic compounds in the mixture become oxides at high temperatures, so that their actions are the same.

【0022】[0022]

【実施例】【Example】

(例1)Al2 3 :40%、MgO:25%、Ca
O:20%、Fe2 3 :5%、YSZ:10%混合物
を粉砕器にて粒径1μ程度まで微細化した後、非イオン
系界面活性剤を用いて灯油中へ分散させ添加剤とした。
(混合物/灯油の重量比は35/65とした。)この添
加剤を用いて表1に示した条件で空冷式試験片による燃
焼式腐食試験を実施した。試験方法は下記のようにして
行った。
(Example 1) Al 2 O 3 : 40%, MgO: 25%, Ca
O: 20%, Fe 2 O 3: 5%, YSZ: After miniaturized to a particle size of about 1μ in 10% mixture grinder using a non-ionic surface active agent is dispersed into kerosene additive and did.
(The weight ratio of the mixture / kerosene was 35/65.) Using this additive, a combustion corrosion test was performed with an air-cooled test piece under the conditions shown in Table 1. The test method was performed as follows.

【0023】燃焼式腐食試験装置により空冷試験片を用
い、重油燃焼ガスを模擬した環境で腐食試験を実施し
た。試験部におけるガス温度は1200℃を目標に設定
するとともに、試験片のメタル温度はいずれも830℃
に調整した。試験時間は2度の起動・停止(約100時
間毎)を含む300時間とした。腐食性成分であるS、
Na、VはSO2 ガス、0.5%NaVO3 水溶液、
0.5%VOSO4 水溶液を用いて燃料灯油量に対して
S=0.5%、Na=1ppm相当量を目標にバーナ先
端部より注入した。また、本発明による添加剤を燃料と
した灯油に対して1/100000の割合で添加した。
その結果を、後述の表1に示す。
Using an air-cooled test piece by a combustion type corrosion test apparatus, a corrosion test was conducted in an environment simulating heavy oil combustion gas. The gas temperature in the test section was set at 1200 ° C as a target, and the metal temperature of each test piece was 830 ° C.
Was adjusted. The test time was 300 hours including two start-ups and stoppages (every 100 hours). S which is a corrosive component,
Na and V are SO 2 gas, 0.5% NaVO 3 aqueous solution,
A 0.5% VOSO 4 aqueous solution was used to inject S = 0.5% and Na = 1 ppm corresponding to the amount of fuel kerosene from the tip of the burner. Further, the additive according to the present invention was added at a ratio of 1/100000 to kerosene using fuel as a fuel.
The results are shown in Table 1 below.

【0024】(例2)Al2 3 :50%、MgO:1
0%、CaO:30%、Fe2 3 :5%、PSZ:5
%混合物を例1と同様の方法で製作し、同様の腐食試験
を実施し、その結果を表1に併せて示す。
Example 2 Al 2 O 3 : 50%, MgO: 1
0%, CaO: 30%, Fe 2 O 3: 5%, PSZ: 5
% Mixture was prepared in the same manner as in Example 1, and the same corrosion test was performed. The results are shown in Table 1.

【0025】(例3)Al2 3 :40%、MgO:2
0%、CaO:30%、Fe2 3 :5%、CeO2
5%混合物を例1と同様の方法で製作し、同様の腐食試
験を行い、その結果を表1に併せて示す。
(Example 3) Al 2 O 3 : 40%, MgO: 2
0%, CaO: 30%, Fe 2 O 3: 5%, CeO 2:
A 5% mixture was prepared in the same manner as in Example 1 and subjected to the same corrosion test. The results are shown in Table 1.

【0026】さらに、Al2 3 、MgO、CaO及び
Fe2 3 に代えて、それぞれの水酸化物例えばAl
(OH)3 、Mg(OH)2 、Ca(OH)2 及びFe
2 3 、有機化合物、例えばAl(R−COO)3、M
g(R−COO)2 、Ca(R−COO)2 及びFe2
3 を使用し、酸化物の換算値がAl2 3 :40〜5
0重量%、MgO:10〜25重量%、CaO:20〜
30重量%、Fe2 3 :2〜5重量%を満足する添加
剤としても、これら水酸化物、有機化合物は燃焼により
それぞれの酸化物に変化するため、上記各例の酸化物を
使用した場合と同等の効果を有する。
Further, in place of Al 2 O 3 , MgO, CaO and Fe 2 O 3 , respective hydroxides such as Al
(OH) 3 , Mg (OH) 2 , Ca (OH) 2 and Fe
2 O 3 , organic compound such as Al (R—COO) 3 , M
g (R-COO) 2, Ca (R-COO) 2 and Fe 2
Using O 3 , the converted value of oxide is Al 2 O 3 : 40 to 5
0% by weight, MgO: 10 to 25% by weight, CaO: 20 to
Even as an additive that satisfies 30% by weight and Fe 2 O 3 : 2 to 5% by weight, these hydroxides and organic compounds are changed into respective oxides by combustion, so the oxides of the above examples were used. It has the same effect as in the case.

【0027】以上の実施例の結果、下記のような効果が
奏された。 (1)腐食量の減少 表1に本発明による添加剤を使用した腐食試験と比較の
ために実施した添加剤無注入試験及び市販のマグネシウ
ム系添加剤(主成分:MgO 35%)注入試験の結果
を示したが、市販添加剤では添加剤なしに比較し、腐食
量は増加する傾向にあるのに対して、本発明では腐食減
量を1/10以下に低下させることができた。
As a result of the above embodiment, the following effects were obtained. (1) Reduction of corrosion amount Table 1 shows a corrosion test using the additive according to the present invention and a test of no additive injection and a test of injection of a commercially available magnesium-based additive (main component: 35% MgO) performed for comparison. Although the results are shown, the amount of corrosion tends to increase with the commercially available additive as compared with the case without the additive, whereas in the present invention, the corrosion weight loss can be reduced to 1/10 or less.

【表1】 注1)供試材:IN738LC(Ni−8.3Co−1
6Cr−2.5W−3.4Al−3.4Ti−1.7T
a−1.7Mo−0.1C) 注2)腐食減量、最大浸食深さは添加剤なしの値を10
0とした相対値で示した。
[Table 1] Note 1) Test material: IN738LC (Ni-8.3Co-1)
6Cr-2.5W-3.4Al-3.4Ti-1.7T
a-1.7Mo-0.1C) Note 2) Corrosion weight loss and maximum erosion depth are 10 without additive.
The relative values were set to 0.

【0028】(2)添加剤成分の付着 本発明では試験片であるIN738LC表面に0.5〜
1.0mm程度の淡褐色の付着物が付着していたのに対
し、市販添加剤では白色付着物の大半が脱落しており、
本発明による付着物の密着性がすぐれていることが確か
められた。また添加剤なしでは黒色から黒緑色の付着物
が付着しており試験中は溶融している様子がうかがえ
た。
(2) Attachment of additive components In the present invention, 0.5-0.5
While a light brown deposit of about 1.0 mm was attached, most of the white deposits were dropped off with commercial additives,
It was confirmed that the adhesion of the deposit according to the present invention was excellent. In addition, black to black-green deposits were attached without additives, indicating that the deposits were molten during the test.

【0029】(3)付着物によるS分の吸収効果 試験片に付着した付着物を上層(ガス側)と下層(試験
片側)に分けて採取し、化学分析を行うとともに、試験
片断面の元素分布をX線マイクロアナライザーにて調査
した。付着物の化学分析結果より本発明による付着物は
上・下層いずれも1〜2%S(SO3 として)であった
のに対し、市販添加剤による付着物は上層0.5%S
(SO3 として)、下層5%S(SO3 として)と下層
でS分が濃縮していた。
(3) Absorbing effect of S by the attached matter The attached matter attached to the test piece is separately collected into an upper layer (gas side) and a lower layer (test piece side), and a chemical analysis is performed. The distribution was examined with an X-ray microanalyzer. From the results of chemical analysis of the deposit, the deposit of the present invention was 1-2% S (as SO 3 ) in both the upper and lower layers, whereas the deposit with the commercial additive was 0.5% S in the upper layer.
(As SO 3 ), the lower layer 5% S (as SO 3 ) and the lower layer had concentrated S content.

【0030】また、断面の元素分析結果より市販の添加
剤では添加剤なしの場合と同様、合金中へS分が侵入し
腐食反応が生じていることが認められた。一方、本発明
では合金表層に酸化物の形成は認められるもののS分は
検出されず、本発明による添加剤付着物によりS分が吸
収され、合金へS分が到達することを防止していること
が確認された。
Further, from the results of elemental analysis of the cross section, it was confirmed that the S component penetrated into the alloy and a corrosion reaction occurred with the commercially available additive as in the case without the additive. On the other hand, in the present invention, although the formation of oxide is recognized on the alloy surface layer, the S component is not detected, and the S component is absorbed by the additive attached to the present invention, thereby preventing the S component from reaching the alloy. It was confirmed that.

【0031】(4)試験片表面温度の低下 前記のように試験片表面には0.5〜1.0mmの付着
物が付着し、その断熱効果を計算すると試験片の表面温
度は付着物なしに比べて50〜100℃低下する。高温
での腐食速度は通常温度の上昇とともに指数関数的に増
加するため、この試験片表面温度の低下は腐食速度の低
減に大きな効果を発揮する。
(4) Decrease in test piece surface temperature As described above, a deposit of 0.5 to 1.0 mm adheres to the test piece surface, and when the heat insulating effect is calculated, the test piece surface temperature shows no deposit. Lower by 50 to 100 ° C. Since the corrosion rate at a high temperature usually increases exponentially with an increase in temperature, this decrease in the specimen surface temperature has a great effect on reducing the corrosion rate.

【0032】(5)なお、付着物の密着性についてAl
2 3 /MgO/CaOの割合について検討した結果、
図1のような結果が得られた。図1は(MgO+Ca
O)/Al2 3 比=0(すなわち、Al2 3 :10
0%)の燃焼試験後の付着物の剥離面積を100とし
て、MgO/CaO、(MgO+CaO)/Al2 3
比の時の剥離度をその相当面積で示したものである。
(5) Adhesion of attached matter
As a result of examining the ratio of 2 O 3 / MgO / CaO,
The result as shown in FIG. 1 was obtained. FIG. 1 shows (MgO + Ca
O) / Al 2 O 3 ratio = 0 (that is, Al 2 O 3 : 10
MgO / CaO, (MgO + CaO) / Al 2 O 3
The peeling degree at the time of the ratio is shown by the corresponding area.

【0033】図1よりMgO/CaO比は0.7〜1.
4程度で剥離度が少なく、一方(MgO+CaO)/A
2 3 比は0.5〜1.5程度で剥離度が少ないこと
が判る。これよりAl2 3 :MgO:CaOの割合
は、ほぼ2:1:1近傍が好ましいことが判る。
FIG. 1 shows that the MgO / CaO ratio is 0.7-1.
The degree of peeling is small at about 4, while (MgO + CaO) / A
l 2 O 3 ratio is found to be less peeling degree of about 0.5 to 1.5. This indicates that the ratio of Al 2 O 3 : MgO: CaO is preferably about 2: 1: 1.

【0034】一方、Fe2 3 の含有量は図2に示した
ように含有量の増加とともに密着性が増加し、2%程度
でほぼ許容(剥離度が20%以上では極端に密着性は低
下する)できる程度になり、5%まではゆるやかに密着
性は増加し、5%Fe2 3 でほぼ飽和することが確認
された。これよりFe2 3 の添加割合は2〜5重量%
が好ましいことが判る。なお、図2のデータはFe2
3 含有量0%添加剤の燃焼試験後の付着物剥離面積を1
00としてその相対値で示した図表である。
On the other hand, the content of Fe 2 O 3 is adhesion increases with increase in the content as shown in FIG. 2, approximately allowable at about 2% (extreme adhesion in degrees peeling 20% or more It was confirmed that the adhesion was gradually increased up to 5% and almost saturated with 5% Fe 2 O 3 . From this, the addition ratio of Fe 2 O 3 is 2 to 5% by weight.
Is preferable. The data in Figure 2 Fe 2 O
(3 ) The area of adhering matter peeling after burning test of 0% content additive is 1
It is a chart showing the relative values as 00.

【0035】(6)また、図3にYSZ、PSZ、Ce
2 、HfO2 の添加量とS分の合金への到達程度との
関係を示したが、いずれも3%以下の添加量ではガス中
のS分が短時間で合金に達する可能性を示していた。一
方、10%以上ではS分と合金の反応は全く認められな
かった。したがって、YSZ又はPSZ又はCeO2
はHfO2 等の混合割合は3〜10重量%とした。な
お、図3はEPMAによりS原子を検出し、付着物全体
の厚さを100とし、S分の検出された位置を相対的に
示したものである。(誤差5〜10%)
(6) FIG. 3 shows YSZ, PSZ and Ce.
The relationship between the added amount of O 2 and HfO 2 and the extent to which S reaches the alloy is shown. In any case, the added amount of 3% or less indicates that the S in the gas may reach the alloy in a short time. I was On the other hand, at 10% or more, no reaction between the S component and the alloy was observed. Therefore, the mixing ratio of YSZ, PSZ, CeO 2, HfO 2, or the like is 3 to 10% by weight. FIG. 3 shows the relative positions of detected S atoms, where S atoms are detected by EPMA and the total thickness of the attached matter is 100. (Error 5-10%)

【0036】[0036]

【発明の効果】本発明の燃料添加剤によれば高温下にお
ける酸化、腐食を防止できる添加剤が提供され、その工
業的効果は顕著なものである。
According to the fuel additive of the present invention, an additive capable of preventing oxidation and corrosion at high temperatures is provided, and its industrial effect is remarkable.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明添加剤の(MgO+CaO)/Al2
3 比及びMgO/CaO比と剥離度の関係を示す図表。
FIG. 1 shows the additive of the present invention (MgO + CaO) / Al 2 O
3 is a chart showing the relationship between the ratio 3 and the MgO / CaO ratio and the degree of peeling.

【図2】本発明添加剤のFe2 3 含有量と剥離度の関
係を示す図表。
FIG. 2 is a table showing the relationship between the Fe 2 O 3 content of the additive of the present invention and the degree of peeling.

【図3】本発明添加剤のYSZ、PSZ、CeO2 、H
fO2 の添加量と付着物(及び合金)中へのS分侵入度
の関係を示す図表。
FIG. 3 YSZ, PSZ, CeO 2 , H of additives of the present invention
4 is a chart showing the relationship between the amount of fO 2 added and the degree of penetration of S into deposits (and alloys).

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI C10L 10/04 C10L 10/04 (72)発明者 大塚 春生 兵庫県高砂市荒井町新浜二丁目1番1号 三菱重工業株式会社 高砂製作所内 (56)参考文献 特開 昭62−227096(JP,A) 特公 昭26−6084(JP,B1) 特公 昭47−8452(JP,B1) (58)調査した分野(Int.Cl.6,DB名) C10L 1/12,1/18,1/30,10/04────────────────────────────────────────────────── ─── Continued on the front page (51) Int.Cl. 6 Identification code FI C10L 10/04 C10L 10/04 (72) Inventor Haruo Otsuka 2-1-1 Shinhama, Arai-cho, Takasago-shi, Hyogo Prefecture Mitsubishi Heavy Industries, Ltd. Takasago In-house (56) References JP-A-62-227096 (JP, A) JP-B-26-6084 (JP, B1) JP-B-47-8452 (JP, B1) (58) Fields investigated (Int. . 6, DB name) C10L 1 / 12,1 / 18,1 / 30,10 / 04

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 Al2 3 、MgO、CaO及びFe2
3 よりなる混合物に、イットリア安定化ジルコニア、
イットリア部分安定化ジルコニア、CeO2 及びHfO
2 よりなる群から選ばれた1種以上の成分を添加混合し
てなることを特徴とする高温酸化及び高温腐食防止用燃
料添加剤。
1. An Al 2 O 3 , MgO, CaO and Fe 2
A mixture of O 3 , yttria-stabilized zirconia,
Yttria partially stabilized zirconia, CeO 2 and HfO
2. A fuel additive for preventing high-temperature oxidation and high-temperature corrosion, wherein one or more components selected from the group consisting of 2 are added and mixed.
【請求項2】 Al(OH)3 、Mg(OH)2 、Ca
(OH)2 及びFe 2 3 よりなる混合物に、イットリ
ア安定化ジルコニア、イットリア部分安定化ジルコニ
ア、CeO2 及びHfO2 よりなる群から選ばれた1種
以上の成分を添加混合してなることを特徴とする高温酸
化及び高温腐食防止用燃料添加剤。
2. Al (OH)Three, Mg (OH)Two, Ca
(OH)TwoAnd Fe TwoOThreeA mixture of
A stabilized zirconia, yttria partially stabilized zirconia
A, CeOTwoAnd HfOTwoOne selected from the group consisting of
High temperature acid characterized by adding and mixing the above components
Additive for high temperature corrosion prevention.
【請求項3】 Al(R−COO)3 、Mg(R−CO
O)2 、Ca(R−COO)2 (但し、R:鎖状炭化水
素残基)及びFe2 3 よりなる混合物に、イットリア
安定化ジルコニア、イットリア部分安定化ジルコニア、
CeO2 及びHfO2 よりなる群から選ばれた1種以上
の成分を添加混合してなることを特徴とする高温酸化及
び高温腐食防止用燃料添加剤。
3. Al (R-COO) 3 , Mg (R-COO)
O) 2 , Ca (R—COO) 2 (where R: chain hydrocarbon residue) and Fe 2 O 3 are mixed with yttria-stabilized zirconia, yttria partially stabilized zirconia,
A fuel additive for preventing high-temperature oxidation and high-temperature corrosion, wherein one or more components selected from the group consisting of CeO 2 and HfO 2 are added and mixed.
JP3120315A 1991-05-24 1991-05-24 Fuel additive for high temperature oxidation and high temperature corrosion prevention Expired - Lifetime JP2772156B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3120315A JP2772156B2 (en) 1991-05-24 1991-05-24 Fuel additive for high temperature oxidation and high temperature corrosion prevention

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3120315A JP2772156B2 (en) 1991-05-24 1991-05-24 Fuel additive for high temperature oxidation and high temperature corrosion prevention

Publications (2)

Publication Number Publication Date
JPH04345688A JPH04345688A (en) 1992-12-01
JP2772156B2 true JP2772156B2 (en) 1998-07-02

Family

ID=14783201

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3120315A Expired - Lifetime JP2772156B2 (en) 1991-05-24 1991-05-24 Fuel additive for high temperature oxidation and high temperature corrosion prevention

Country Status (1)

Country Link
JP (1) JP2772156B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATA208793A (en) * 1993-10-18 1998-03-15 Ica Innoconsult Ag CORROSION PROTECTION PROCEDURE
FR2731009B1 (en) * 1995-02-24 1997-04-04 Rhone Poulenc Chimie METHOD FOR PROTECTING INTERNAL COMBUSTION ENGINES AND APPLICATION OF A CERIUM-BASED COMPOUND TO PROTECT ENGINES AGAINST WEAR AND OXIDATION

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62227096A (en) * 1986-03-29 1987-10-06 Taiho Ind Co Ltd Method for preventing corrosion by sulfurization

Also Published As

Publication number Publication date
JPH04345688A (en) 1992-12-01

Similar Documents

Publication Publication Date Title
Stringer High-temperature corrosion of superalloys
Sidhu et al. Hot corrosion of some superalloys and role of high-velocity oxy-fuel spray coatings—a review
Mohan et al. Degradation of yttria‐stabilized zirconia thermal barrier coatings by vanadium pentoxide, phosphorous pentoxide, and sodium sulfate
Kosieniak et al. Corrosion failures in gas turbine hot components
Marple et al. Hot corrosion of lanthanum zirconate and partially stabilized zirconia thermal barrier coatings
JPH04295102A (en) Corrosion-resistant magnesium titanate coating for gas turbine
Mahesh et al. Evaluation of hot corrosion behaviour of HVOF sprayed NiCrAl coating on superalloys at 900 C
US5532057A (en) India-stabilized ziroconia coating for composites
Yin et al. Hot corrosion behavior of the La2 (Zr0. 7Ce0. 3) 2O7 ceramic in molten V2O5 and a Na2SO4+ V2O5 salt mixture
Marple et al. Corrosion of thermal barrier coatings by vanadium and sulfur compounds
Shifler The increasing complexity of hot corrosion
EP2455513A2 (en) Vanadium attack resistant coating system
US5637118A (en) Vanadium corrosion inhibitor
Singh et al. Hot corrosion resistance of CeO2-doped Cr3C2–NiCr coatings on austenite steel against molten salt (Na2SO4–60% V2O5) environment
JP2772156B2 (en) Fuel additive for high temperature oxidation and high temperature corrosion prevention
Tiwari et al. Literature review Magnesiumoxide as inhibitor of hot oil ash corrosion
Bajpai et al. Hot corrosion of stabilized zirconia thermal barrier coatings and the role of Mg inhibitor
JP2007046163A (en) Product including protective means to high temperature corrosion, and reciprocating piston combustion engine, turbine or incineration plant comprising the product
US5312585A (en) Corrosion inhibition in high temperature environment
Montero et al. Inhibitors and coatings against vanadate-containing oil ash corrosion of boilers
Kamal et al. Thermal spray coatings for hot corrosion resistance
Jones Vanadate-sulfate melt thermochemistry relating to hot corrosion of thermal barrier coatings
Jones ‘Hot Corrosion in Gas Turbines
US20170253821A1 (en) Processes, gas turbine processes, and fuel compositions
Shifler The increasing complexity of corrosion in gas turbines

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19980317

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080417

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090417

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100417

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110417

Year of fee payment: 13

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120417

Year of fee payment: 14