JPH0560516B2 - - Google Patents

Info

Publication number
JPH0560516B2
JPH0560516B2 JP891986A JP891986A JPH0560516B2 JP H0560516 B2 JPH0560516 B2 JP H0560516B2 JP 891986 A JP891986 A JP 891986A JP 891986 A JP891986 A JP 891986A JP H0560516 B2 JPH0560516 B2 JP H0560516B2
Authority
JP
Japan
Prior art keywords
water
fuel
oil
solution
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP891986A
Other languages
Japanese (ja)
Other versions
JPS62167391A (en
Inventor
Takeshi Morita
Hirosuke Ookura
Shigeru Nakai
Takamasa Ishioka
Takashi Matsuo
Mitsuo Onozawa
Masaki Shoji
Akinori Yagawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiho Kogyo Co Ltd
Original Assignee
Taiho Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiho Kogyo Co Ltd filed Critical Taiho Kogyo Co Ltd
Priority to JP61008919A priority Critical patent/JPS62167391A/en
Priority to KR1019860009378A priority patent/KR930011927B1/en
Publication of JPS62167391A publication Critical patent/JPS62167391A/en
Publication of JPH0560516B2 publication Critical patent/JPH0560516B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Liquid Carbonaceous Fuels (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) この発明は、金属化合物を高濃度に含有し、し
かもデーゼルエンジン、ボイラ、加熱炉、ガスタ
ービン等の燃焼機関に使用される原油、重油、石
油コークス、石油ピツチ、灯軽油、ガソリン等の
燃料油との混合性が良好な燃料添加剤に関するも
のでのある。 (従来の技術) 従来燃料添加剤は使用目的に応じて硫黄酸化
物、窒素酸化物等の有害成分の発生抑制、スラツ
ジ分散剤、エマルジヨン破壊剤、腐食防止剤、燃
料灰類の堆積防止剤、燃焼促進剤、煤煙防止剤、
着火促進剤、セタン価向上剤、凝固点降下剤等と
して知られているが、これ等の燃料添加剤の形態
は無機金属、金属酸化物、金属水酸化物、炭酸塩
等の微粉末を界面活性剤を主成分とする分散剤と
共に水に混合してスラリー状にしたものである。 (発明が解決しようとする問題点) しかし、このような形態の燃料添加剤において
の組成中に含まれる無機物が保存中に沈殿、分離
したり、或は燃料油に添加した時、配管部分やバ
ーナ部分で沈殿して閉塞されたり、バーナノズル
部分を摩耗することがある。 更に、このような燃料添加剤においては組成中
に含まれる無機物の粒径が大きく、しかも分散性
が悪いため、燃焼火炎中、排ガス中その他に存在
する有害物質との接触効果が不十分で、添加剤と
しての十分な効果が期待できない。 一方、従来から油溶性の金属化合物を石油系溶
剤等に溶解した燃料添加剤も知られている。 これ等の燃料添加剤は燃料油と均一に混合溶解
し、それ故安定性も良好であり、燃焼中排ガス中
その他に存在する有害成分との接触効率も良好で
あるが、油溶性金属化合物の有効成分である金属
成分である金属成分の含有量が少なく、高価格で
あるという欠点がある。 そこで、この発明は金属化合物等の無機物を高
濃度に含有し、しかもデーゼルエンジン、ボイ
ラ、加熱炉、ガスタービン等の燃焼機関に使用さ
れる原油、重油、石油コークス、石油ピツチ、灯
軽油、ガソリン等の燃料油との混合性が良好な燃
料添加剤を開発することを目的とする。 (問題点を解決するための手段) 以上の問題点を解決するために、この発明では
ナフテン酸、石油スルフオン酸、アルキルリン酸
エステル、の1種又は2種以上で吸着処理したそ
の粒径が100〜600Åの微粒子からなるMg、Ca、
Al、Ba、Mn、Cu、Zn、Fe、Cr、Ti、Sn、
Mo、Coで表される2〜4価金属の水酸化物の1
種又は2種以上を、水溶性界面活性材を用いて水
に分酸させてなる組成物を有効成分とする燃料添
加剤を提案するものである。 即ち、この発明ではナフテン酸等で吸着処理し
た粒径が100〜600Åの微粒子からなる上記2〜4
価金属の水酸化物の1種又は2種以上を、水溶性
界面活性剤を用いて水に分散させてなる組成物を
燃料添加剤として使用するものであるが、この燃
料添加剤は例えばようにして作成される。 上記2〜4価の金属水溶液性塩、例えば塩化
物、硝酸塩、硫酸塩、酢酸塩等の水溶液に
NaOH、KOH、NH4OH、Ca(OH)2等のアルカ
リ剤を加え、液のPHを9〜11に上昇させた後、ナ
フテン酸、トール油脂肪酸、石油スルフオン酸、
アルキルリン酸エステル、オレイン酸、ラウリン
酸の1種又は2種以上を添加して生成した油溶性
の凝集物を濾過し、更に脱塩の目的で水洗し、脱
水して微細粒子からなる粉体を得る。 得られた粉体組成物を、水溶性界面活性剤及び
水に加えて、モーター、デイスパー、ホモジナイ
ザー等を使用して安定な、水を溶倍とした燃料添
加剤が作成される。 この場合、得られた粉体は脱水乾燥を行なわず
含水ケーキ(水分30〜40%)とし、これに水溶性
界面活性剤を添加し撹拌することにより安定な水
を溶媒とする燃料添加剤を作成することもでき
る。 上記粉体の製法についてマグネシウムを例に採
り、更に詳しく説明すると、一般にマグネシウム
化合物の水溶液にアルカリ剤を添加してPHを上げ
ると水酸化マグネシウムが生成する。生成した
Mg(OH)2はその粒子が集合して粗大粒子となつ
て存在している。 この発明ではMg(OH)2の微粒子が集合粗大化
する前に、ナフテン酸、石油スルフオン酸、アル
キルリン酸エステル、等で表面コーテイングして
粒子の粗大化を防止するとともに粒子を親油性
(油溶性)に変化させる。 即ち、水中に懸濁したMg(OH)2の微粒子はプ
ラスに帯電しており、これによりナフテン酸、石
油スルフオン酸、トール油脂肪酸、オレイン酸、
ラウリル酸等の水に不溶性のマイナス電荷を有す
る有機物を添加すると、プラスとマイナスの電荷
による吸着反応により前記のような油溶性の凝集
物が生成する。 具体的には、前記のようにマグネシウム化合物
の水溶液にアルカリ剤を加えてPHを9〜11に上昇
させ、Mg(OH)2の微粒子を生成させた後、液温
を80〜85℃に上昇させ、上記ナフテン酸を添加し
て十分加熱、撹拌してMg(OH)2微粒子表面に吸
着させ、この結果微粒子表面が親油性(水不溶
性)となり、凝集する。 なお、この場合、ナフテン酸、石油スルフオン
酸、アルキルリン酸エステルなどをそのまま添加
しても良く、また上記有機物をNa塩、K塩、
NH4塩等の塩類とし添加して良く、更に上記有
機物をケロシン、ノルマルパラフイン、イソパラ
フイン、流動パラフイン、動植物油等に溶解させ
たものを添加しても良く、この場合特に水溶性界
面活性剤を含有した水に対して分散性が非常に良
いO/W型エマルジヨンの均一なコロイド溶液に
なり、その安定性も良好となる。 この場合、上記有機物と溶剤の溶解割合は1:
0.5〜1.3の範囲が適当である。 以上のように生成した油溶性の凝集物は濾過
し、脱塩の目的で水洗し、更に脱水することによ
り油溶性のマグネシウム含有の粉体を得ることが
できる。 この粉体を水溶性界面活性剤を含む水中に加
え、デイスパー等で混合撹拌すると、水を媒体と
して上記2〜4価の金属酸化物又は水酸化物の微
粒子が安定して分散した燃料添加剤が作成され
る。なお、この発明で使用する水溶性界面活性剤
としてはアルキルスルフオン酸塩、脂肪酸石鹸、
ジアルキルスルフオン琥珀酸塩、高級アルキルリ
ン酸塩、高級脂肪酸エステルの硫酸エステル塩、
硫酸化油、ポリオキシエチレンアルキルリン酸エ
ステル塩、ポリオキシエチレンアルキルエーテル
タルボン酸塩、ポリオキシエチレンアルキル硫酸
エステル塩等のアニオン界面活性剤、ポリオキシ
エチレンアルキルアリルエーテル、ポリオキシエ
チレンアルコールエーテル、ポリオキシエチレン
脂肪酸エステル、ポリオキシエチレンアルキルフ
エノールフオルマリン縮合物、ポリオキシエチレ
ンアルキルアマイド、ポリオキシエチレンアルキ
ルアミン、ポリオキシエチレンソルビトール脂肪
酸エステル、プルロニツクタイプ、テトロニツク
タイプ等のHLB11〜15の非イオン界面活性剤が
あり、これ等の界面活性剤は単独でも、また2種
以上を組み合わせて使用してもよい。 これ等水溶性界面活性剤の添加量は少なくとも
1%必要であり、1%以下ではあると、燃料添加
剤の安定性に問題がある。 なお、この発明に係る燃料添加剤はそのまま、
或はこれを適当な溶剤に分散させた溶液を燃料油
に添加して使用することができる。 (発明の効果) この発明に係る燃料添加剤は、100〜600Å粒径
の上記2〜4価金属水酸化物がその粒子表面にナ
フテン酸、石油スルフオン酸、アルキルリン酸エ
ステルの1種又は2種以上を吸着し、更にその表
面に水溶性界面活性剤の親油基を吸着した状態で
水媒体に分散された構造であり、このため極めて
安定であり、長期管保存しても凝集したり、沈降
することがない。 また、燃料添加剤も水を媒体としてあるため、
従来の石油系溶媒を使用した添加剤に比べて安価
で、かつ取扱い易い等の利点があり、更に燃料添
加剤中に含まれる水溶性界面活性剤の作用により
燃料油中に均一に分散され、したがつて析出する
ことがなく、燃料油の配管やバーナを閉塞した
り、摩耗することがないなどの利点がある。 また、この発明に係る燃料添加剤は上記2〜4
価の金属水酸化物を高濃度に含有している。例え
ばマグネシウムについてみると、石油スルフオン
酸マグネシウム、ナフテン酸マグネシウム、オレ
イン酸マグネシウム、オクチル酸マグネシウム等
の一般の有機マグネシウム化合物に比べてマグネ
シウムの含有率が高く、MgOとして50%存在す
る。しかも、上記金属水酸化物は100〜600Å粒径
の微細粒子から構成されているため、表面積が大
きく、物理的、化学的活性が大であり、有害成分
との接触効果が良好である。 このため、この発明に係る燃料添加剤は燃料油
中に少量添加しても十分な効果が期待できる。例
えば大気汚染源であるSOx、NOxを多く含有す
る煤煙の発生を抑制することができるばかりでな
く、V、Na、Sによるスーパーヒーター等の高
温腐食、SO2、SO3の発生によるボイラの低温部
腐食を抑制することができる。 (実施例) 以下、この発明の実施例を示す。 製剤例 1 A液……15%MgCl2水溶液 620部 B液……20%NaOH水溶液 375部 C液……ナフテン酸10部、イソパラフイン13部の
混合溶解液 A液にB液を添加してPH9.5〜10に上昇させる、
Mg(OH)2の微粒子が生成した後、液温を80℃に
上昇させ、C液を加え、80〜85℃で十分加熱撹拌
を行うとマグネシウム含有の油溶性粉体が凝集し
て液が透明になつてくる。 次いで濾過水洗を行い含有されている無機塩の
除去を行う。濾過水洗後得られた粉体は水分を50
%程度含んだ状態にあるが、これをφ10mmの球状
ペレツトにして200メツシユの金網上に広げ風速
約3m/sec95℃で40分間熱風乾燥を行い含水率
を2.1%に下げる。 乾燥後の粉体50部、ドデシルベンゼンスルフオ
ン酸ナトリウム7部、ポリオキシエチレンノニル
フエノールエーテル(HLB 13.0)5部、水道水
38部を混合デイスバーで30分間撹拌し、均一な分
散液を得た。 なお、製造した粉酸液中のMgO含有量は26%
であつた。 製造例 2 A液……15%CaCl2水溶液 350部 B液……NH4OH水溶液 200部 C液……石油スルフオン酸8部、ケロシン8部の
混合溶解液 A液にB液を添加してPH9.5〜10に上昇させて
Ca(OH)2の微粒子が生成した後、液温を80℃に
上昇させ、C液を加え、80〜85℃で十分加熱撹拌
を行うとカルシウム含有の油溶性粉体が凝集して
液が透明になつてくる。 次いで濾過水洗を行い含有されている無機塩の
除去を行う。濾過水洗後得られた粉体は水分を60
%程度含んだ状態にあるが、これをφ10mmの球状
ペレツトにして200メツシユの金網上に広げ風速
約1m/sec90℃で1時間熱風乾燥を行い、含水
率2%の粉体を得た。 乾燥後の粉体45部、オレイン酸ナトリウム2
部、ポリオキシエチレンドデシル硫酸ナトリウム
塩3部、ポリオキシエチレンソルビタン脂肪酸エ
ステル(HLB 10.5)3部、水道水47部を混合デ
イスバーで撹拌し、均一な分散液を得た。製造し
た分散液中のCaO含有量は22%であつた。 作用例 製造例1、2で得られた各液をプランジヤ−ポ
ンプを使用して燃料の1000分の1の割合でボイラ
の燃料配管に強制的に混入して燃料とともにボイ
ラの火炎中に噴射させ、ボイラのエアヒータ出口
で発生するチツ素酸化物、SO2、媒塵の量を測定
し、エコノマイザー出口でSO3を測定し、またス
ーパーヒーター(JIS G3462材質 STBA−24)
及びエアヒータにてテストピース(JIS G3101材
質SS−41)をつりさげ、腐食量を測定してそれ
ぞれ無添加と比較した。その結果を下表に示す。 なお、使用したボイラは三菱CE自然循環型で
最大連続蒸発量が350T/H、最大使用圧力が125
Kg/cm2最大使用温度が540℃、燃料使用料が
21.3KI/Hである。
(Industrial Application Field) This invention is applicable to crude oil, heavy oil, petroleum coke, petroleum pit, and lamps that contain a high concentration of metal compounds and are used in combustion engines such as diesel engines, boilers, heating furnaces, and gas turbines. This invention relates to a fuel additive that has good miscibility with fuel oils such as light oil and gasoline. (Prior art) Conventional fuel additives are used to suppress the generation of harmful components such as sulfur oxides and nitrogen oxides, to suppress the generation of harmful components such as sulfur oxides and nitrogen oxides, to suppress the generation of harmful components such as sludge dispersants, emulsion breakers, corrosion inhibitors, fuel ash deposition inhibitors, Combustion accelerator, soot prevention agent,
Known as ignition accelerators, cetane number improvers, freezing point depressants, etc., these fuel additives are made by surface-activating fine powders of inorganic metals, metal oxides, metal hydroxides, carbonates, etc. It is made into a slurry by mixing it with water together with a dispersant whose main component is a dispersing agent. (Problems to be Solved by the Invention) However, inorganic substances contained in the composition of fuel additives of this type may precipitate or separate during storage, or when added to fuel oil, may cause damage to piping parts or It may precipitate and become clogged in the burner, or it may wear out the burner nozzle. Furthermore, in such fuel additives, the particle size of the inorganic substances contained in the composition is large and the dispersibility is poor, so the contact effect with harmful substances present in the combustion flame, exhaust gas, etc. is insufficient. A sufficient effect as an additive cannot be expected. On the other hand, fuel additives in which oil-soluble metal compounds are dissolved in petroleum-based solvents have also been known. These fuel additives mix and dissolve uniformly with fuel oil, and therefore have good stability and good contact efficiency with harmful components present in exhaust gas and other substances during combustion, but oil-soluble metal compounds The disadvantage is that the content of the metal component, which is an active ingredient, is low and the price is high. Therefore, this invention aims to provide crude oil, heavy oil, petroleum coke, petroleum pitch, kerosene, and gasoline that contain high concentrations of inorganic substances such as metal compounds and are used in combustion engines such as diesel engines, boilers, heating furnaces, and gas turbines. The aim is to develop fuel additives that have good miscibility with fuel oils such as (Means for Solving the Problems) In order to solve the above problems, in this invention, the particle size of naphthenic acid, petroleum sulfonic acid, and alkyl phosphoric acid ester is Mg, Ca, consisting of fine particles of 100 to 600 Å,
Al, Ba, Mn, Cu, Zn, Fe, Cr, Ti, Sn,
1 of hydroxides of di- to tetravalent metals represented by Mo and Co
The present invention proposes a fuel additive whose active ingredient is a composition obtained by acidifying a species or two or more species in water using a water-soluble surfactant. That is, in this invention, the above-mentioned materials 2 to 4 are made of fine particles with a particle size of 100 to 600 Å that have been adsorbed with naphthenic acid or the like.
A composition prepared by dispersing one or more hydroxides of valuable metals in water using a water-soluble surfactant is used as a fuel additive. Created by For aqueous solutions of the above di- to tetravalent metal aqueous salts, such as chlorides, nitrates, sulfates, acetates, etc.
After adding an alkaline agent such as NaOH, KOH, NH4OH , Ca(OH) 2 , etc. to raise the pH of the liquid to 9-11, naphthenic acid, tall oil fatty acid, petroleum sulfonic acid,
Oil-soluble aggregates produced by adding one or more of alkyl phosphate esters, oleic acid, and lauric acid are filtered, further washed with water for desalting purposes, and dehydrated to form a powder consisting of fine particles. get. The obtained powder composition is added to a water-soluble surfactant and water, and a stable fuel additive having a solubility in water is prepared using a motor, a disper, a homogenizer, etc. In this case, the obtained powder is made into a water-containing cake (30 to 40% moisture) without dehydration and drying, and a water-soluble surfactant is added to this and stirred to form a stable fuel additive using water as a solvent. You can also create one. To explain in more detail the method for producing the above powder using magnesium as an example, generally, when an alkali agent is added to an aqueous solution of a magnesium compound to raise the pH, magnesium hydroxide is produced. generated
Mg(OH) 2 exists as coarse particles that are aggregated together. In this invention, before the fine particles of Mg(OH) 2 aggregate and become coarse, the surface is coated with naphthenic acid, petroleum sulfonic acid, alkyl phosphate ester, etc. to prevent the particles from becoming coarse and to make the particles lipophilic (oil-resistant). soluble). That is, fine particles of Mg(OH) 2 suspended in water are positively charged, which causes naphthenic acid, petroleum sulfonic acid, tall oil fatty acid, oleic acid,
When a water-insoluble organic substance having a negative charge such as lauric acid is added, an oil-soluble aggregate as described above is generated due to an adsorption reaction due to the positive and negative charges. Specifically, as described above, an alkali agent is added to an aqueous solution of a magnesium compound to raise the pH to 9 to 11 to generate fine particles of Mg(OH) 2 , and then the liquid temperature is raised to 80 to 85 °C. Then, the naphthenic acid is added and sufficiently heated and stirred to be adsorbed onto the surface of the Mg(OH) 2 fine particles. As a result, the surface of the fine particles becomes lipophilic (insoluble in water) and aggregates. In this case, naphthenic acid, petroleum sulfonic acid, alkyl phosphoric acid ester, etc. may be added as is, or the above organic substances may be added as Na salt, K salt, etc.
It may be added as a salt such as NH 4 salt, and it may also be added as a solution of the above organic substance in kerosene, normal paraffin, isoparaffin, liquid paraffin, animal or vegetable oil, etc. In this case, especially a water-soluble surfactant. A uniform colloidal solution of an O/W type emulsion is formed which has very good dispersibility in water containing water, and its stability is also good. In this case, the dissolution ratio of the organic substance and solvent is 1:
A range of 0.5 to 1.3 is appropriate. The oil-soluble aggregates generated as described above are filtered, washed with water for the purpose of desalting, and further dehydrated to obtain an oil-soluble magnesium-containing powder. When this powder is added to water containing a water-soluble surfactant and mixed and stirred with a disper etc., the fine particles of the divalent to tetravalent metal oxide or hydroxide are stably dispersed using water as a medium. is created. The water-soluble surfactants used in this invention include alkyl sulfonates, fatty acid soaps,
Dialkyl sulfone succinate, higher alkyl phosphate, sulfate ester salt of higher fatty acid ester,
Sulfated oils, anionic surfactants such as polyoxyethylene alkyl phosphate salts, polyoxyethylene alkyl ether tarboxates, polyoxyethylene alkyl sulfate salts, polyoxyethylene alkyl allyl ethers, polyoxyethylene alcohol ethers, HLB11-15 such as polyoxyethylene fatty acid ester, polyoxyethylene alkylphenol formalin condensate, polyoxyethylene alkylamide, polyoxyethylene alkylamine, polyoxyethylene sorbitol fatty acid ester, Pluronic type, Tetronic type, etc. There are nonionic surfactants, and these surfactants may be used alone or in combination of two or more types. The amount of these water-soluble surfactants added must be at least 1%, and if it is less than 1%, there will be problems with the stability of the fuel additive. In addition, the fuel additive according to this invention can be used as is.
Alternatively, a solution obtained by dispersing this in a suitable solvent can be added to fuel oil for use. (Effects of the Invention) The fuel additive according to the present invention has the above divalent to tetravalent metal hydroxide having a particle size of 100 to 600 Å on the particle surface of one or two of naphthenic acid, petroleum sulfonic acid, and alkyl phosphate ester. It has a structure in which it is dispersed in an aqueous medium with the lipophilic group of a water-soluble surfactant adsorbed on its surface, and is therefore extremely stable and does not aggregate even after long-term storage. , no sedimentation. In addition, since fuel additives also use water as a medium,
Compared to additives using conventional petroleum solvents, it has the advantage of being cheaper and easier to handle, and is evenly dispersed in fuel oil by the action of the water-soluble surfactant contained in the fuel additive. Therefore, it does not precipitate and has the advantage of not clogging or abrasion of fuel oil piping or burners. Moreover, the fuel additive according to this invention is
Contains high concentrations of valent metal hydroxides. For example, regarding magnesium, the content of magnesium is higher than that of general organic magnesium compounds such as magnesium petroleum sulfonate, magnesium naphthenate, magnesium oleate, and magnesium octylate, and 50% is present as MgO. Moreover, since the metal hydroxide is composed of fine particles with a particle size of 100 to 600 Å, it has a large surface area, high physical and chemical activity, and has a good contact effect with harmful components. Therefore, even if the fuel additive according to the present invention is added in small amounts to fuel oil, sufficient effects can be expected. For example, it not only suppresses the generation of soot containing a large amount of SOx and NOx, which are sources of air pollution, but also prevents high-temperature corrosion of super heaters due to V, Na, and S, and corrosion of low-temperature parts of boilers caused by the generation of SO 2 and SO 3 . Corrosion can be suppressed. (Example) Examples of the present invention will be shown below. Formulation example 1 Solution A... 620 parts of 15% MgCl 2 aqueous solution Solution B... 375 parts of 20% NaOH solution Solution C... Mixed solution of 10 parts of naphthenic acid and 13 parts of isoparaffin Add solution B to solution A. Raise the pH to 9.5-10,
After fine particles of Mg(OH) 2 are generated, the liquid temperature is raised to 80℃, liquid C is added, and the oil-soluble powder containing magnesium is aggregated and the liquid is stirred at 80-85℃. It becomes transparent. Next, the inorganic salts contained are removed by filtering and washing with water. The powder obtained after filtration and washing with water has a moisture content of 50%.
This is made into spherical pellets with a diameter of 10 mm, spread on a 200-mesh wire mesh, and dried with hot air at a wind speed of about 3 m/sec at 95°C for 40 minutes to reduce the moisture content to 2.1%. 50 parts of dried powder, 7 parts of sodium dodecylbenzenesulfonate, 5 parts of polyoxyethylene nonylphenol ether (HLB 13.0), tap water
38 parts were stirred with a mixing device bar for 30 minutes to obtain a uniform dispersion. Furthermore, the MgO content in the produced powdered acid solution was 26%.
It was hot. Production example 2 Solution A...350 parts of 15% CaCl2 solution Solution B...200 parts of NH 4 OH solution Solution C...A mixed solution of 8 parts of petroleum sulfonic acid and 8 parts of kerosene Adding solution B to solution A. Raise the pH to 9.5-10
After fine particles of Ca(OH) 2 are generated, increase the liquid temperature to 80℃, add liquid C, and heat and stir thoroughly at 80 to 85℃. The calcium-containing oil-soluble powder will coagulate and the liquid will form. It becomes transparent. Next, the inorganic salts contained are removed by filtering and washing with water. The powder obtained after filtering and washing with water has a moisture content of 60%.
This was made into spherical pellets with a diameter of 10 mm, spread on a 200-mesh wire mesh, and dried with hot air at a wind speed of about 1 m/sec at 90° C. for 1 hour to obtain a powder with a moisture content of 2%. 45 parts of dried powder, 2 parts of sodium oleate
1 part, polyoxyethylene dodecyl sodium sulfate 3 parts, polyoxyethylene sorbitan fatty acid ester (HLB 10.5) 3 parts, and tap water 47 parts were stirred with a mixing device bar to obtain a uniform dispersion. The CaO content in the produced dispersion was 22%. Example of action: Using a plunger pump, the liquids obtained in Production Examples 1 and 2 are forcibly mixed into the fuel pipe of the boiler at a rate of 1/1000 of the fuel, and are injected together with the fuel into the flame of the boiler. , measure the amount of nitrogen oxide, SO 2 and dust generated at the outlet of the air heater of the boiler, measure SO 3 at the outlet of the economizer, and measure the amount of nitrogen oxide, SO 2 and dust generated at the outlet of the air heater of the boiler, and measure the amount of SO 3 at the outlet of the economizer.
A test piece (JIS G3101 material SS-41) was hung from an air heater, and the amount of corrosion was measured and compared with that without additives. The results are shown in the table below. The boiler used is a Mitsubishi CE natural circulation type with a maximum continuous evaporation rate of 350T/H and a maximum working pressure of 125
Kg/ cm2 Maximum operating temperature is 540℃, fuel usage fee is
It is 21.3KI/H.

【表】 ある。
[Table] Yes.

Claims (1)

【特許請求の範囲】[Claims] 1 ナフテン酸、石油スルフォン酸、アルキルリ
ン酸エステルの1種又は2種以上で吸着処理した
その流径が100〜600Åの微粒子からなるMg、
Ca、Al、Ba、Mn、Cu、Zn、Fe、Cr、Ti、Sn、
Mo、Coで表される2〜4価金属の水酸化物の1
種又は2種以上を、水溶性界面活性剤を用いて水
に分散させてなる組成物を有効成分とすることを
特徴とする燃料添加剤。
1 Mg consisting of fine particles with a flow diameter of 100 to 600 Å that has been adsorbed with one or more of naphthenic acid, petroleum sulfonic acid, and alkyl phosphate ester,
Ca, Al, Ba, Mn, Cu, Zn, Fe, Cr, Ti, Sn,
1 of hydroxides of di- to tetravalent metals represented by Mo and Co
A fuel additive characterized in that its active ingredient is a composition obtained by dispersing one or more species in water using a water-soluble surfactant.
JP61008919A 1986-01-21 1986-01-21 Fuel additive Granted JPS62167391A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP61008919A JPS62167391A (en) 1986-01-21 1986-01-21 Fuel additive
KR1019860009378A KR930011927B1 (en) 1986-01-21 1986-11-06 Fuel additives

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61008919A JPS62167391A (en) 1986-01-21 1986-01-21 Fuel additive

Publications (2)

Publication Number Publication Date
JPS62167391A JPS62167391A (en) 1987-07-23
JPH0560516B2 true JPH0560516B2 (en) 1993-09-02

Family

ID=11706062

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61008919A Granted JPS62167391A (en) 1986-01-21 1986-01-21 Fuel additive

Country Status (1)

Country Link
JP (1) JPS62167391A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5499587A (en) * 1986-06-17 1996-03-19 Intevep, S.A. Sulfur-sorbent promoter for use in a process for the in-situ production of a sorbent-oxide aerosol used for removing effluents from a gaseous combustion stream
JPS6312691A (en) * 1986-07-04 1988-01-20 Taiho Ind Co Ltd Method for preventing combustion disturbance in combustion apparatus
JPH02225594A (en) * 1989-02-27 1990-09-07 Mitsubishi Heavy Ind Ltd Additive for fuel oil
JPH11273827A (en) 1998-03-18 1999-10-08 Ngk Spark Plug Co Ltd Spark plug
JP3745973B2 (en) * 2001-03-23 2006-02-15 タイホー工業株式会社 Coal additive for preventing slagging and coal combustion method
JP4975154B2 (en) * 2010-09-24 2012-07-11 株式会社マリネックス Water-mixed fuel and method for producing the same
JP5850070B2 (en) 2014-02-12 2016-02-03 栗田工業株式会社 Method for preventing contamination of exhaust gas flow path of combustion apparatus, and method for removing ammonium hydrogen sulfate contained in exhaust gas of combustion apparatus

Also Published As

Publication number Publication date
JPS62167391A (en) 1987-07-23

Similar Documents

Publication Publication Date Title
US3332755A (en) Fuel additive
MXPA04004253A (en) Cerium oxide nanoparticles.
JPH01115996A (en) Method for controlling formation and discharge of sulfur oxide in combustion of combustible fuel produced from sulfur-containing hydrocarbon
US8088184B2 (en) High flash point additives for treating carbon-based fuels
JP2005154757A (en) Mixed metal catalyst additive and method for using it in hydrocarbon fuel burning system
JPH0560516B2 (en)
CN101270311B (en) Grinding burning-rate accelerator for coal, preparation method and application thereof
CN107513450B (en) A kind of coke-removing agent, the system and preparation method for preparing coke-removing agent
JPH0413798A (en) Fuel additive
CN1067593A (en) Multifunctiuonal emulsifying agent for adding water in heavy oil
JPH0560517B2 (en)
JPS5824478B2 (en) How to burn fuel
DK152925B (en) ADDITIVE TO LIQUID FUEL
JPH039959B2 (en)
JPS5828319B2 (en) How to suppress harmful components
CN108034475B (en) Oil-soluble coal ash remover and preparation method thereof
KR930011927B1 (en) Fuel additives
WO1985004895A1 (en) Mixed fuel or coal dust or the like and heavy fuel oil
JPH0377237B2 (en)
JPS5925121B2 (en) How to burn solid oil
TW524848B (en) Fuel additive for bituminous heavy oil-water emulsion fuel and method of combustion
JPH03244692A (en) Fuel additive
JPH0798953B2 (en) Combustion method of ultra heavy oil-water emulsion fuel
JPH0470357B2 (en)
US3523767A (en) Fuel oil additive and method of making the same

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees