JPS62225292A - Device for decomposing dissolved ozone - Google Patents

Device for decomposing dissolved ozone

Info

Publication number
JPS62225292A
JPS62225292A JP6780086A JP6780086A JPS62225292A JP S62225292 A JPS62225292 A JP S62225292A JP 6780086 A JP6780086 A JP 6780086A JP 6780086 A JP6780086 A JP 6780086A JP S62225292 A JPS62225292 A JP S62225292A
Authority
JP
Japan
Prior art keywords
ozone
dissolved
flow path
ultrasonic
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6780086A
Other languages
Japanese (ja)
Inventor
Hiroichi Shioda
博一 塩田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chiyoda R & D kk
Sapporo Breweries Ltd
Original Assignee
Chiyoda R & D kk
Sapporo Breweries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chiyoda R & D kk, Sapporo Breweries Ltd filed Critical Chiyoda R & D kk
Priority to JP6780086A priority Critical patent/JPS62225292A/en
Publication of JPS62225292A publication Critical patent/JPS62225292A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Water Treatments (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Abstract

PURPOSE:To quickly decompose ozone dissolved in liquid to oxygen with small- sized installation by providing an ultrasonic wave generating source which generates ultrasonic waves toward the inside of a flow passage to transport the liquid such water in which the ozone is dissolved to said flow passage. CONSTITUTION:The ultrasonic wave generating source 2 which generates the ultrasonic waves toward the inside of the flow passage 1 for transporting the liquid such as water in which the ozone is dissolved is disposed to said flow passage 1. The ozone dissolved in the liquid is quickly decomposed to oxygen by using such small-sized device.

Description

【発明の詳細な説明】 「産業上の利用分野j 本発明は、水等の液体に溶解しているオゾンを酸素に分
解する溶解オゾンの分解装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a dissolved ozone decomposition device for decomposing ozone dissolved in a liquid such as water into oxygen.

r従来の技術」 水中に溶解したオゾンは、殺菌、漂白等に顕著な効果が
あることは広く知られており、特に、この溶解オゾンは
時間が経過すると分解して酸素となることは、塩素殺菌
及び塩素漂白に比べて残存毒性のない点で大きな特徴を
有するものである。
rConventional Technology It is widely known that ozone dissolved in water has a remarkable effect on sterilization, bleaching, etc. In particular, it is known that dissolved ozone decomposes into oxygen over time, and that chlorine Compared to sterilization and chlorine bleaching, this method has a major feature in that it has no residual toxicity.

しかし、溶解オゾンを残存させたままの流体を飲食用に
使用することは人体に有害であり、また溶解オゾンが残
存する原料流体を次工程プロセスに送るとこの次工程プ
ロセスにおいて所期の反応を得ることができなくなる。
However, using fluid with residual dissolved ozone for food and drink is harmful to the human body, and if raw material fluid with residual dissolved ozone is sent to the next process, the desired reaction will not occur in the next process. you won't be able to get it.

したがって、液体の殺菌・漂白等の処理を済ませた溶解
オゾンは所望時に分解する必要が有る。
Therefore, dissolved ozone that has undergone liquid sterilization, bleaching, and other treatments must be decomposed at a desired time.

そこで、この種の溶解オゾンの分解装置としては従来活
性炭を使用したものが一般に使用されている。この活性
炭を使用した従来の溶解オゾンの分解装置は、活性炭充
填槽内をオゾンが溶解した液体が通過するようになして
あり、活性炭とオゾン溶解液体とが接触し、該活性炭が
一種の触媒作用を呈して溶解オゾンを酸素に分解するも
のである。
Therefore, as this type of dissolved ozone decomposition device, one using activated carbon has generally been used. In conventional dissolved ozone decomposition equipment using activated carbon, a liquid in which ozone is dissolved passes through an activated carbon-filled tank, and the activated carbon and the ozone-dissolved liquid come into contact, causing the activated carbon to act as a kind of catalyst. It decomposes dissolved ozone into oxygen.

「発明が解決しようとする問題点J しかし、上記従来の溶解オゾンの分解装置は、処理量に
応した大型な活性炭充填槽を必要とする欠点を有し、ま
た活性炭の一部はオゾンと化学反応して徐々に滅失する
から頻繁な保守、点検を行なわないと安定した処理を継
続できないという欠点を有していた。
``Problem to be Solved by the Invention J'' However, the conventional dissolved ozone decomposition equipment described above has the disadvantage of requiring a large activated carbon-filled tank corresponding to the amount of treatment, and a part of the activated carbon is chemically mixed with ozone. Since it reacts and gradually disappears, it has the disadvantage that stable processing cannot be continued without frequent maintenance and inspection.

特に、大型な活性炭槽は、その設置場所が限定されるた
め、オゾン処理した液体の使用場所(以下、ユースポイ
ントという)直前で溶解オゾンを分解できるとは限らず
、また液体が通過するのに一定の時間を必要とするため
、すでにオゾンが分解してしまった下流側(オゾン槽内
の場合も含む)で微生物が発生する恐れもあるという欠
点を有していた。
In particular, large activated carbon tanks have limited installation locations, so it is not always possible to decompose dissolved ozone just before the point of use of the ozonated liquid (hereinafter referred to as the point of use), and the liquid passes through it. Since this method requires a certain amount of time, it has the disadvantage that microorganisms may be generated downstream (including in the ozone tank) where ozone has already been decomposed.

そこで、本発明は上記欠点に鑑みなされたもので、でき
るだけ小型の設備で、短時間に液体中に溶解するオゾン
を酸素に分解することのできる溶解オゾンの分解装置を
提供することを目的としたものである。
Therefore, the present invention was made in view of the above drawbacks, and an object of the present invention is to provide a dissolved ozone decomposition device that can decompose ozone dissolved in a liquid into oxygen in a short time using as small a facility as possible. It is something.

r間層点を解決するための手段J 上記の目的に沿い、先述特許請求の範囲を要旨とする本
発明の構成は前述問題点を解決するために、オゾンを溶
解した水等の液体を流送する流路に、該流路の内側に向
けて超音波を発生する超音波発生源を配してなる技術的
手段を講じたものである。
Means for solving the interlayer point A technical measure is taken in which an ultrasonic generation source that generates ultrasonic waves toward the inside of the flow path is arranged in the flow path.

r作用」 それ故、本発明溶解オゾンの分解装置は、超音波発生源
により流路内に超音波音場が惹起せしめられる。そして
、この流路内を流送される液体は超音波音場を通過する
際に、超音波照射を受けることになる。この超音波照射
により流路内の液体は激しい振動エネルギーを受け、液
中に無数の高圧部と減圧部とが生じて微気泡の発生と解
裂を繰返す冷沸騰とも称されるキャビテーション現象を
起す。
r effect" Therefore, in the dissolved ozone decomposition apparatus of the present invention, an ultrasonic sound field is induced in the flow path by the ultrasonic generation source. The liquid flowing through this channel is irradiated with ultrasonic waves when passing through the ultrasonic sound field. Due to this ultrasonic irradiation, the liquid in the channel receives intense vibrational energy, creating numerous high-pressure areas and low-pressure areas in the liquid, causing a cavitation phenomenon, also known as cold boiling, in which microbubbles are repeatedly generated and burst. .

オゾン、特に気相のオゾンは1元来安定性の良い分子で
はないため、外部よりエネルギーが加わるとPIl素に
分解する。そして、上記キャビテーション現象は溶解オ
ゾンを気相と液相とに交互にその性状を変化させ、その
際に、オゾンは熱エネルギー等のエネルギー交喚が行な
われるため、短時間で効率的に分解されるものである。
Ozone, especially gas phase ozone, is not a stable molecule by nature, so it decomposes into PIl elements when external energy is applied to it. The above-mentioned cavitation phenomenon causes the dissolved ozone to change its properties alternately into a gas phase and a liquid phase, and at this time, the ozone is decomposed efficiently in a short period of time due to the exchange of energy such as thermal energy. It is something that

「実施例J 次に、本発明の実施例を第1図乃至第6図に従って説明
すれば以下の通りである。
Embodiment J Next, an embodiment of the present invention will be described below with reference to FIGS. 1 to 6.

第1図は本発明溶解オゾンの分解装置!Oを、水の殺菌
プロセスに使用した実施例で、図中、3がオゾン発生機
、4がオゾン殺菌タンクである。
Figure 1 shows the dissolved ozone decomposition device of the present invention! This is an example in which O was used in the water sterilization process. In the figure, 3 is an ozone generator and 4 is an ozone sterilization tank.

F記オゾン殺菌タンク4には原料水供送管5が連結され
、この原料水供送管5には水位計によって開閉する電磁
弁を配し、該オゾン殺菌タンク4内には一定の水位の原
料水が常に滞留するようになしている。
A raw water supply pipe 5 is connected to the ozone sterilization tank 4 described in F. This raw water supply pipe 5 is equipped with a solenoid valve that is opened and closed by a water level gauge. Raw water is always retained.

また、上記オゾン殺菌タンク4の底部には散気板9が収
納され、該散気板9にはオゾン発生JII3のオゾン吐
出し管8が連結され、原料水中にオゾンを微泡として供
送するようになしである。このオゾン殺菌タンク4に供
送されるオゾンは純粋のオゾンを使用してもよいが、本
実施例のオゾン発生機3を使用した場合は、該オゾン発
生機3の原料気体に空気を使用した場合は実際にはオゾ
ン含有空気が、酸素を原料気体として使用した場合はオ
ゾン含有酸素が使用される。そして、上記散気板9より
原料水中に供送されたオゾンは原料水中に溶解吸収され
るか、吸収されなかった酸素またはオゾンを含む気体は
回収・脱湿され、再びオゾン発生機3の原料気体として
使用されるが、そのフローは図示を省略しである。
Further, an aeration plate 9 is housed at the bottom of the ozone sterilization tank 4, and an ozone discharge pipe 8 of an ozone generator JII 3 is connected to the aeration plate 9, and ozone is supplied in the form of microbubbles into the raw water. There is no such thing. Pure ozone may be used as the ozone supplied to the ozone sterilization tank 4, but when the ozone generator 3 of this embodiment is used, air may be used as the raw material gas for the ozone generator 3. In this case, ozone-containing air is actually used, and when oxygen is used as the raw material gas, ozone-containing oxygen is actually used. Then, the ozone supplied into the raw material water from the aeration plate 9 is dissolved and absorbed into the raw material water, or the gas containing oxygen or ozone that is not absorbed is recovered and dehumidified, and the raw material of the ozone generator 3 is again used. Although it is used as a gas, its flow is not shown.

また、上記オゾン殺菌タンク4には流出ロアaを付し、
該オゾン殺菌タンク4内でオゾン殺菌された水は該流出
ロアaよりフィルター6を介した流路1で無菌水を使用
する場所(以下ユースポイントと言う)に導かれる。
Further, the ozone sterilization tank 4 is provided with an outflow lower a,
The water sterilized by ozone in the ozone sterilization tank 4 is led from the outflow lower a to a place where the sterile water is used (hereinafter referred to as a use point) through a flow path 1 via a filter 6.

本発明溶解オゾンの分解装置10は、上記流路1のド流
側ユースポイントの直前に配されるもので、この流路1
の周部に該流路の内側に向けて超音波を発生ずる超音波
発生源2を配してなる。なぉ、図では必ずしも明示して
いないが、該超音波発生源2の撮動子を流路lの内面に
露出せしめている。
The dissolved ozone decomposition device 10 of the present invention is disposed immediately before the use point on the downstream side of the flow path 1.
An ultrasonic generation source 2 that generates ultrasonic waves toward the inside of the flow path is arranged around the periphery of the flow path. Although it is not necessarily shown clearly in the figure, the sensor of the ultrasonic wave generation source 2 is exposed to the inner surface of the flow path l.

そして、上記超音波発生源2は、流路1の所定部(qの
片側に一個配するか、または、第2図に示すごとく複数
個を対設してもよく、さらには、流路1の流れ方向に複
数設配してもよいことは無論である。
The ultrasonic wave generation source 2 may be placed one on one side of the flow path 1 (q), or a plurality of ultrasonic wave sources 2 may be placed opposite each other as shown in FIG. Of course, a plurality of them may be provided in the flow direction.

上記、超音波発生源2.2.2・・・を一箇所に複数個
対設する場合は、各超音波発生源2の撮動子面が流路1
の中心に向くように、該流路1の周面の放射位置に配し
、さらに、各超音波発生源2の振動子と流路1の中心ま
での距離は、各超音波発生源2により発生した超音波の
服(超音波の最も波高値が高い尖頭部)が該流路1の中
心に位置するように設定すると、夫々の超音波発生FA
2.2.2・・・よりの各超音波どうしが重なりより大
きなキャビテーラ5ン現象が得られるものである。逆に
、夫々の超音波発生源2,2.2・・・の位置関係を一
方向の超音波の腹と他方向の超音波の節(超音波の波高
値が低い部分)とが重なると相互の超音波を打ち消しあ
って期待するキャビテーション現象を得られない。そこ
で、複数の超音波発生源2.2.2・・・の超音波発生
方向、位置関係を調整して希望の位置に最も大きなキャ
ビテーション現象を得るようになすことをrMi音波の
焦点を合せるJとπうこととし、この焦点を流路1の中
心に位置させるのが最も効率的である。
When a plurality of ultrasonic generation sources 2, 2, 2, etc. mentioned above are installed in one place, the imager surface of each ultrasonic generation source 2 is connected to the flow path 1.
The distance between the transducer of each ultrasonic generation source 2 and the center of the flow path 1 is determined by each ultrasonic generation source 2. When the position of the generated ultrasonic wave (the point with the highest wave peak value of the ultrasonic wave) is set to be located at the center of the flow path 1, each ultrasonic wave generating FA
2.2.2... each ultrasonic wave overlaps with another, resulting in a larger cavity phenomenon. On the other hand, the positional relationship of the ultrasonic sources 2, 2, 2... is such that the antinode of the ultrasonic wave in one direction overlaps the node of the ultrasonic wave in the other direction (the part where the peak value of the ultrasonic wave is low). The expected cavitation phenomenon cannot be obtained because the ultrasonic waves cancel each other out. Therefore, the focus of rMi sound waves is adjusted to obtain the largest cavitation phenomenon at the desired position by adjusting the ultrasonic generation direction and positional relationship of multiple ultrasonic generation sources 2.2.2... π, and it is most efficient to locate this focal point at the center of the flow path 1.

第3図乃至第6図は、第1図及び第2図に比較して大型
の超音波発生源2を、流路1の一箇所に複数個対設して
使用する実施例である。第2図例において、超音波は流
路1内を直進するものとすると、該流路1の断面の一部
に超音波の照射が行なゎわない場所が生ずる。これを解
決するには、各超音波発生源2を小さくして流路1の周
面にできるだけ多数配置すればよいが、流路1が細管で
ある場合超音波発生源2を小型化して多数台をその周面
に配することは経済的ではないし、小型にともない各超
音波発生源2の出力が制限されることにより効率低下を
来すことになる。
FIGS. 3 to 6 show an embodiment in which a plurality of ultrasonic generation sources 2, which are larger than those in FIGS. 1 and 2, are disposed opposite each other at one location in the flow path 1. In the example shown in FIG. 2, if it is assumed that the ultrasonic waves travel straight through the flow path 1, there will be a portion of the cross section of the flow path 1 where the ultrasonic waves are not irradiated. To solve this problem, each ultrasonic generation source 2 should be made smaller and arranged as many as possible on the circumferential surface of the flow path 1, but if the flow path 1 is a thin tube, the ultrasonic generation sources 2 should be made smaller and more It is not economical to arrange the pedestal around the periphery of the pedestal, and as the pedestal becomes smaller, the output of each ultrasonic generation source 2 is limited, resulting in a decrease in efficiency.

そこで、第3図以降の実施例は、流路!の径に比して大
型の超音波発生源2を複数対設可能となしたもので、流
路1にその一部を覆う大径容器20を配し、この大径容
器20内には媒質として充分に脱気した水を充填しであ
る。
Therefore, the embodiments shown in Figure 3 and later are based on the flow path! A plurality of ultrasonic generation sources 2, which are larger than the diameter of Fill with water that has been thoroughly deaerated.

該大径容器20は、断面正多角形乃至円形に形成され、
その各面(断面円形の場合は周面放射位置)に超音波発
生源2を夫々配し、各超音波発生源2は該大径容器20
の中心を貫通する流路1内に焦点を合せるようになしで
ある。
The large diameter container 20 is formed to have a regular polygonal or circular cross section,
An ultrasonic generation source 2 is disposed on each surface (in the case of a circular cross section, the radiation position on the circumferential surface), and each ultrasonic generation source 2 is connected to the large diameter container 2.
The focus is on the channel 1 passing through the center of the channel.

「発明の効果1 本発明溶解オゾンの分解装置は上記のごときであり、第
3図例の断面正方形の大径容器20の一辺を75mmと
し、流路lに直径30mmのパイレックス・ガラス管を
使用し、大径容器20の各面にはrIう出力50Wの3
8にHzランジュバン式県動子を存する超音波発生源2
を焦点を該流路1内に合せて配し、オゾン2ppmを含
んだ水を流路1内を1500cc/分の割合用通過せし
めたところ、流入側オゾン濃度2ρρmに対し流出側オ
ゾン濃度は0.6ppmと約1/3に減少し、さらに、
上記超音波発生源2群を流路1に沿って3段配したとこ
ろ最終段部を通過した流出側のオゾン濃度は通常検出限
界イ直(0,01ppm)以下の低濃度であり充分なオ
ゾン分解効果が得られた。
"Effect of the invention 1 The dissolved ozone decomposition apparatus of the present invention is as described above. One side of the large-diameter container 20 with a square cross section as shown in FIG. On each side of the large-diameter container 20, there is a
Ultrasonic source 2 with 8 Hz Langevin type prefecture
When water containing 2 ppm of ozone was passed through the flow path 1 at a rate of 1500 cc/min, the ozone concentration on the inflow side was 2ρρm, while the ozone concentration on the outflow side was 0. .6ppm, about 1/3 reduction, and furthermore,
When the above two groups of ultrasonic generators are arranged in three stages along the flow path 1, the ozone concentration on the outflow side that has passed through the final stage is a low concentration below the normal detection limit (0.01 ppm), and there is sufficient ozone. A decomposition effect was obtained.

そして、上記効果を従来の活性炭槽を使用した例で得る
には、オゾン溶解液体が約20分間活性炭と接触する容
量の活性炭槽を用意しなくてはならず、その設置場所に
はおのずと限定されるが、本発明溶解オゾンの分解装置
は、流路1に超音波発生源2を配するのみの簡易、コン
パクトな構成で、上述のごとく短時間で大容量の処理が
でき、その設置場所を任意に設定することができる。し
たがって、第1図実施例のごときプロセスにおいて、本
発明溶解オゾンの分解装置をユースポイントのm前に配
することができ、その結果オゾン殺菌タンク4より下流
側の流路1内でもオゾンの殺菌性を維持することができ
る溶解オゾンの分解装置を提供することができるもので
ある。
In order to obtain the above effect in an example using a conventional activated carbon tank, it is necessary to prepare an activated carbon tank with a capacity that allows the ozone-dissolving liquid to come into contact with the activated carbon for about 20 minutes, and the installation location is naturally limited. However, the dissolved ozone decomposition device of the present invention has a simple and compact configuration that only includes the ultrasonic generation source 2 in the flow path 1, and as mentioned above, can process a large amount in a short time and saves space for installation. Can be set arbitrarily. Therefore, in the process shown in the embodiment shown in FIG. 1, the dissolved ozone decomposition device of the present invention can be placed m in front of the point of use, and as a result, ozone sterilization can also be performed in the flow path 1 downstream of the ozone sterilization tank 4. Therefore, it is possible to provide a device for decomposing dissolved ozone that can maintain its properties.

また、従来の活性炭槽方式では活性炭の消耗・目詰まり
・活性炭槽内のチャンネリング現象発生等により経時的
に安定した処理が困難であったが、本発明溶解オゾンの
分解装置は活性炭等の消耗品がなく、オゾン分解時に流
路1の径を変更しなくてよいためチャンネリング現象の
発生の恐れもないため、常に安定したオゾン分解性能発
揮することができるものである。
In addition, with the conventional activated carbon tank method, it was difficult to perform stable treatment over time due to consumption of activated carbon, clogging, and occurrence of channeling phenomenon in the activated carbon tank, but the dissolved ozone decomposition device of the present invention Since there is no need to change the diameter of the flow path 1 during ozone decomposition and there is no fear of channeling, stable ozone decomposition performance can always be achieved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明溶解オゾンの分解装置を水の殺菌プロセ
スに便用した実施例正面図、第2図はA−A線拡大断面
図、第3図乃至第6図は夫々別の実施例要部断面図を示
すものである。 1〜流路   2〜Mi音波発生源   20〜大径容
器 1−2fB p 3 m
Fig. 1 is a front view of an embodiment in which the dissolved ozone decomposition device of the present invention is conveniently used in a water sterilization process, Fig. 2 is an enlarged sectional view taken along line A-A, and Figs. 3 to 6 are different embodiments. It shows a cross-sectional view of main parts. 1~Flow path 2~Mi sound wave generation source 20~Large diameter container 1-2 fB p 3 m

Claims (1)

【特許請求の範囲】[Claims] オゾンを溶解した水等の液体を流送する流路に、該流路
の内側に向けて超音波を発生する超音波発生源を配して
なる溶解オゾンの分解装置。
A device for decomposing dissolved ozone, which includes an ultrasonic generation source that generates ultrasonic waves directed toward the inside of the flow path, in a flow path through which a liquid such as water containing dissolved ozone flows.
JP6780086A 1986-03-26 1986-03-26 Device for decomposing dissolved ozone Pending JPS62225292A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6780086A JPS62225292A (en) 1986-03-26 1986-03-26 Device for decomposing dissolved ozone

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6780086A JPS62225292A (en) 1986-03-26 1986-03-26 Device for decomposing dissolved ozone

Publications (1)

Publication Number Publication Date
JPS62225292A true JPS62225292A (en) 1987-10-03

Family

ID=13355383

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6780086A Pending JPS62225292A (en) 1986-03-26 1986-03-26 Device for decomposing dissolved ozone

Country Status (1)

Country Link
JP (1) JPS62225292A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5734040A (en) * 1980-08-06 1982-02-24 Okawara Mfg Co Ltd Apparatus for opening chopped strand

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5734040A (en) * 1980-08-06 1982-02-24 Okawara Mfg Co Ltd Apparatus for opening chopped strand

Similar Documents

Publication Publication Date Title
JP4261955B2 (en) Water purification method and apparatus
US4076617A (en) Sonic cavitation and ozonation of waste material
US4906387A (en) Method for removing oxidizable contaminants in cooling water used in conjunction with a cooling tower
JP4355315B2 (en) Fluid purification device
US5417852A (en) Apparatus for removing contaminants from waste fluids
JP2006272232A (en) Method for forming superfine bubble, its device and sterilizing or disinfecting facility using it
CN101397156A (en) Method for disinfecting and purifying liquids and gasses
Wu et al. Decomposition of chloroform and succinic acid by ozonation in a suction-cavitation system: effects of gas flow
JP2002172389A (en) Ultrasonic treatment apparatus for organic waste liquid
JP3954647B2 (en) Method and apparatus for purifying gas and liquid
ES2088825A1 (en) Procedure, formula and equipment for the treatment and sterilization of biological, solid, liquid, iron-based metallic, non iron-based metallic, toxic and dangerous hospital residuals
JP2001187326A (en) Device for mixing gas and water
JPH06277660A (en) Water treatment apparatus
JPS62225292A (en) Device for decomposing dissolved ozone
KR100348413B1 (en) Uv and ozone producing aop chamber and water-cleaning apparatus using same
US5512253A (en) Irradiator apparatus
JP2000325702A (en) Device for sterilizing and degassing
RU179223U1 (en) Hydrodynamic cavitator for liquid disinfection
US5124050A (en) Method and apparatus for removing hypochlorous acid components from apparatus for processing tap water
JP4357316B2 (en) Wastewater treatment equipment
JPH09155160A (en) Apparatus for decomposing and removing volatile organic compound and method therefor
Kidak et al. Degradation of atrazine by advanced oxidation processes
JP2004223345A (en) Method and apparatus for purifying fluid
JPH1085731A (en) Water treatment ceramic spherical body and water treatment device using ceramic spherical body
JP2007144340A (en) Method and apparatus for decomposing diluted organic substance in waste water