JP2000325702A - Device for sterilizing and degassing - Google Patents

Device for sterilizing and degassing

Info

Publication number
JP2000325702A
JP2000325702A JP11135590A JP13559099A JP2000325702A JP 2000325702 A JP2000325702 A JP 2000325702A JP 11135590 A JP11135590 A JP 11135590A JP 13559099 A JP13559099 A JP 13559099A JP 2000325702 A JP2000325702 A JP 2000325702A
Authority
JP
Japan
Prior art keywords
water
deaeration
chamber
circulation
degassing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11135590A
Other languages
Japanese (ja)
Other versions
JP3464626B2 (en
Inventor
Hideyuki Tabuchi
秀幸 田淵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP13559099A priority Critical patent/JP3464626B2/en
Publication of JP2000325702A publication Critical patent/JP2000325702A/en
Application granted granted Critical
Publication of JP3464626B2 publication Critical patent/JP3464626B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To excellently degas and sterilize water without using chemicals, a filter membrane or an ion exchange membrane by installing a vacuum degassing device in which water to treat is boiled at a low temperature with the aid of ultrasonic wave energy and a circulation-type degassing device in which the degassed water is pressurized and expanded adiabatically in a reduced pressure chamber. SOLUTION: Water is taken into an introducing cylinder 3 after being descaled in an electrode cylinder 1 when a stop valve 23 and a inlet solenoid valve 24 is opened with a degassing chamber 8 kept in a high vacuum state by a vacuum pump 22. Gases in the water are separated as bubbles from ultrasonic wave vibration elements 31 by radiating ultrasonic waves onto the water in the introducing cylinder 3. Such degassed water is stored in a water storing space which is interconnected with an inner circumferential chamber 8a and an outer circumferential chamber 8b at the respective bottoms in the degassing chamber 8, and the water is overflowed into a circulating degassing tank 19 when the level of the water is over an overflow outlet 9. After the degassed water is fed by pressure to an injection nozzle 18 by a circulating pump 13, the degassed water is expanded adiabatically by colliding against the inner wall surface of a circulating degassing tank 19, resulting in sterilization to break down microorganism in the water.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、水中に溶存する揮
発性気体成分を高度に脱気し且つ水中の微生物を高度に
滅菌するための脱気殺菌装置に関するものであり、例え
ば給水配管の腐食防止をはじめ、食中毒を誘発する細菌
類の殺菌、給食産業における食品腐敗の防止、酒造にお
けるむれ香の防止、機関および機械の冷却系の腐食防
止、半導体ウエハおよび半導体装置製造における洗浄水
汚染の防止、各種処理水の無薬注化など、種々の用途に
有用な水の脱気殺菌装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a degassing / sterilizing apparatus for highly degassing volatile gas components dissolved in water and highly sterilizing microorganisms in water. Prevention, sterilization of bacteria that induce food poisoning, prevention of food spoilage in the catering industry, prevention of unpleasant smell in sake brewing, prevention of corrosion of cooling systems of engines and machines, prevention of washing water contamination in semiconductor wafer and semiconductor device manufacturing TECHNICAL FIELD The present invention relates to a deaeration / sterilization device for water useful for various uses such as non-chemical injection of various treated waters.

【0002】[0002]

【従来の技術】イオン交換樹脂筒に水を通すことにより
炭酸塩硬度を下げて軟水化することは例えばボイラ給水
設備などでよく知られている。この場合、溶存酸化物が
存在するとイオン交換樹脂が酸化によって劣化するの
で、通水に際して水中に酸化物が存在する恐れがある場
合にはイオン交換樹脂に通水する前に水に脱スケールお
よび腐食防止などの目的で前処理を施すことが常識的に
行なわれている。
2. Description of the Related Art It is well known that water is passed through an ion-exchange resin cylinder to reduce carbonate hardness and soften water, for example, in a boiler water supply system. In this case, if dissolved oxides are present, the ion-exchange resin will be degraded by oxidation.If there is a possibility that oxides may be present in the water when passing water, descaling and corrosion will occur in the water before passing through the ion-exchange resin. It is common sense to perform pretreatment for the purpose of prevention or the like.

【0003】最も一般的なこの種の前処理は、溶存酸素
除去用の毒性の強いヒドラジンなどの脱酸剤とpHを高
めるための清缶剤とを配合した薬品を水に投入する薬注
方式である。また、薬注によらない方式として、水中に
溶存している酸素・炭酸ガス・遊離塩素などを高真空度
の容器内で脱気する真空脱気方式も知られており、バッ
チ処理方式だけでなく、大量処理のためにエジェクター
とサイクロンを組み合わせた多段連続真空脱気方式も知
られている。
[0003] The most common pretreatment of this type is a chemical injection method in which a chemical compounding a deoxidizing agent such as hydrazine, which is highly toxic for removing dissolved oxygen, and a cleaning agent for increasing pH, is added to water. It is. In addition, as a method that does not depend on chemical injection, a vacuum degassing method that degass oxygen, carbon dioxide, free chlorine, etc. dissolved in water in a container with a high vacuum degree is also known. There is also known a multi-stage continuous vacuum degassing method combining an ejector and a cyclone for mass processing.

【0004】この他、中空糸膜脱気方式や超音波振動脱
気方式も知られており、更には例えば特公平2−113
19号、特公平2−12640号あるいは特公平6−3
8959号公報に開示されているように、静電場または
振動電場を与えるタンク中で水中のミネラル成分をイオ
ン解離させて浮遊スケールとして析出除去する際にタン
ク内を減圧して脱気することも知られている。
[0004] In addition, a hollow fiber membrane deaeration system and an ultrasonic vibration deaeration system are also known.
No. 19, Japanese Patent Publication No. 2-1640 or Japanese Patent Publication No. 6-3
As disclosed in Japanese Patent No. 8959, it is also known that when a mineral component in water is ion-dissociated in a tank that applies an electrostatic field or an oscillating electric field to precipitate and remove as a floating scale, the tank is depressurized and degassed. Have been.

【0005】[0005]

【発明が解決しようとする課題】薬注方式は、脱酸剤の
毒性の問題から病院や食品工場での採用には適さないこ
とは勿論、イオン交換樹脂筒の上流で薬注を行なうとそ
の分だけ水中の不純物が増加し、イオン交換樹脂にとっ
ては負荷の増加となるばかりでなく、自然と薬注量が増
加する傾向があり、適正な薬品投入量の監視には管理面
で困難を伴うことや、薬品使用量がかさむなどの諸問題
があるので、薬剤使用に付加価値が見込まれる厳正に管
理された工場などでの用途以外には一般的ではない。
The chemical injection method is not suitable for use in hospitals and food factories because of the toxicity of the deoxidizing agent. Due to the increased amount of impurities in water, not only increases the load on ion-exchange resins, but also the tendency to naturally increase the amount of chemical injection, monitoring the appropriate amount of chemical input involves management difficulties. In addition, it is not common except for uses in strictly controlled factories or the like where added value is expected for use of drugs because of problems such as increased amount of used drugs.

【0006】真空脱気方式は衛生面からは問題ない方式
であるが、生活給水の水処理やビル建物等での赤水対策
としては真空度の管理に難点があり、例えば、水中の溶
存酸素は大気圧と水温又は気温などが季節によって大き
く変化するため、常に一定の脱気圧性能を維持させるに
は、真空圧力の調整だけでは管理ができない。このた
め、真空脱気方式は未だ広く普及するには至っていない
が、比較的容易に扱えるのはバッチ処理方式の真空脱気
装置である。しかしながら、バッチ処理方式の真空脱気
装置は、処理が非連続であるので処理量が限られ、多量
の水を処理する必要がある場合には大規模な設備としな
ければならず、設備維持費用が多額となるので一般的で
はない。
[0006] The vacuum degassing method is a method that does not pose a problem from a sanitary point of view. However, there are difficulties in controlling the degree of vacuum as a treatment of domestic water supply and a measure against red water in a building or the like. Since the atmospheric pressure and the water temperature or the temperature greatly change depending on the season, it is not possible to maintain a constant deaeration performance only by adjusting the vacuum pressure. For this reason, the vacuum deaeration system has not yet become widespread, but a batch processing type vacuum deaerator can be relatively easily handled. However, the batch processing type vacuum deaerator has a limited amount of processing because the processing is discontinuous, and when a large amount of water needs to be processed, it must be a large-scale equipment, and equipment maintenance cost is required. It is not common because it is expensive.

【0007】一方、例えば食品工場などのように連続多
量処理が要求される場合には、運転操作および保守に専
門的な煩雑さが要求されるエジェクターとサイクロンを
組み合わせた多段連続真空脱気方式が採用され、時間当
たりの処理量も充分な設備が実用化されているが、設置
面積が大きく、設備費用及び維持費用が大きいので、処
理による付加価値が見込める産業用途向きであり、一般
の共同住宅やオフィスビルなどにおける水処理設備の脱
気装置としては管理面も含めて経済的に引き合わず、採
用は現実的ではない。
On the other hand, when continuous large-volume treatment is required, for example, in a food factory, a multistage continuous vacuum degassing system combining an ejector and a cyclone, which requires specialized complicated operation and maintenance, is used. Equipment that has been adopted and has a sufficient amount of processing per hour has been put to practical use.However, since the installation area is large, the equipment cost and maintenance cost are large, it is suitable for industrial use where added value can be expected by processing, and it is suitable for general apartments. As a deaerator for water treatment facilities in offices and office buildings, etc., it is not practical to adopt it economically, including in terms of management.

【0008】また中空糸膜脱気法をイオン交換樹脂筒の
上流で実行する方式も知られているが、この場合は、水
中の金属イオンが中空糸膜の表面で酸化され、この酸化
物が膜に付着して脱気通路の閉塞により機能不全に陥
り、膜の頻繁な交換を余儀なくされる結果、付加価値の
高い用途以外ではランニングコストが嵩んで経済的に引
き合わないという欠点がある。
It is also known to carry out a hollow fiber membrane deaeration method upstream of an ion exchange resin cylinder. In this case, metal ions in water are oxidized on the surface of the hollow fiber membrane, and this oxide is removed. As a result, the membrane adheres to the membrane and malfunctions due to obstruction of the deaeration passage, and frequent replacement of the membrane is required. As a result, running costs are high except for high value-added applications, and there is a drawback that it cannot be economically justified.

【0009】また、中空糸膜をイオン交換樹脂の下流で
使用することも単に溶存酸素の除去には効果があるが、
1パス処理における脱気後の溶存気体濃度は平均値でた
かだか0.9〜0.6ppm程度までであり、これを例
えば0.1ppm以下の極低濃度まで下げるには複数の
装置を直列に組み合わせる必要があり、設備コストおよ
び保守コストが膨大となる欠点がある。
The use of a hollow fiber membrane downstream of an ion exchange resin is also effective for simply removing dissolved oxygen.
The dissolved gas concentration after degassing in the one-pass treatment is an average value of at most about 0.9 to 0.6 ppm, and a plurality of devices are connected in series to reduce this to an extremely low concentration of, for example, 0.1 ppm or less. However, there is a disadvantage that the equipment cost and the maintenance cost are enormous.

【0010】更に処理水に超音波振動を付与することに
よって脱気を促進すると或る程度の殺菌も行われること
が知られているが、この原理は振動エネルギーが水の圧
力や温度を上昇させて細菌を破壊することに基づいてお
り、マイクロ波に比べて超音波は波動エネルギーレベル
が低いため、発生する熱エネルギーによって充分な殺菌
効果は得られない。
[0010] It is also known that a certain degree of sterilization is carried out when the deaeration is promoted by applying ultrasonic vibration to the treated water, but this principle is based on the principle that the vibration energy increases the pressure and temperature of the water. Ultrasonic waves have a lower wave energy level than microwaves, and thus cannot provide a sufficient bactericidal effect due to the generated thermal energy.

【0011】近年、脱気・脱スケールと共に水中の各種
微生物の滅菌又は殺菌、特にサルモネラ菌や毒性大腸菌
および腸炎ビブリオ菌などの食中毒原因細菌の殺菌をも
可能とする水処理設備が地下水を多く利用している食品
産業や精密電子部品産業をはじめ観光業界および学校給
食などからも強く要望されているが、比較的構成及び操
作が簡略で経費および環境対策のいずれもクリヤーでき
るものは未だ知られていない。
[0011] In recent years, water treatment facilities that can sterilize or sterilize various microorganisms in the water as well as degassing and descaling, particularly sterilization of food-causing bacteria such as Salmonella, toxic Escherichia coli, and Vibrio parahaemolyticus use a lot of groundwater. The food industry, precision electronic parts industry, tourism industry, school lunches, etc. are strongly demanded, but there is still no known structure and operation that is relatively simple and can clear both cost and environmental measures. .

【0012】尚、真空脱気処理に併用して処理水を加熱
沸騰することにより、水中のトリハロメタンやトリクロ
ロエチレン等の塩化物による発癌性物質またはO−15
7をはじめとする有害菌を同時に除去することも知られ
ているが、給湯系での煮沸は可能であっても、冷水を供
給する給水系では煮沸・冷却のエネルギー消費を考える
と現実性に乏しい。
By heating and boiling the treated water in combination with the vacuum degassing treatment, a carcinogenic substance such as trihalomethane or trichlorethylene in the water or O-15 is produced.
It is also known that harmful bacteria such as 7 can be removed at the same time. However, even if boiling in a hot water supply system is possible, in a water supply system that supplies cold water, considering the energy consumption of boiling and cooling, it is realistic. poor.

【0013】従って本発明の課題は、薬注処理は勿論、
中空糸膜などの濾過膜やイオン交換膜を使用することな
く効果的に高度の脱気と滅菌とを可能とする簡易水処理
装置としての脱気殺菌装置を提供することにある。
[0013] Accordingly, the object of the present invention is not only the chemical injection treatment,
It is an object of the present invention to provide a deaeration / sterilization device as a simple water treatment device capable of effectively performing a high degree of deaeration and sterilization without using a filtration membrane such as a hollow fiber membrane or an ion exchange membrane.

【0014】[0014]

【課題を解決するための手段】上述の課題を解決するた
め、本発明による脱気殺菌装置は、超音波エネルギーの
付与による被処理水の低温沸騰を伴う真空脱気装置と、
該真空脱気装置によって脱気された脱気水を加圧して減
圧容器内で断熱膨張させる循環脱気装置とを備えたこと
を特徴としている。
In order to solve the above-mentioned problems, a deaeration / sterilization apparatus according to the present invention comprises: a vacuum deaeration apparatus with low-temperature boiling of water to be treated by applying ultrasonic energy;
A circulating deaerator for pressurizing the degassed water degassed by the vacuum deaerator and adiabatically expanding the degassed water in a decompression vessel.

【0015】本発明の好ましい一つの態様によれば、前
記真空脱気装置は、真空ポンプで減圧された円筒状の脱
気室と、該脱気室内に同軸状に配置され、給水口から導
入されて内部を満たした水に減圧低温沸騰と空洞化現象
を与えて前記脱気室に溢流させる導水筒と、導水筒の内
部の水に空洞化現象誘発のための超音波を照射する超音
波振動子と、脱気室内を下部で連通する内周室と外周室
に仕切る仕切筒とを備え、前記外周室にはその内部に貯
留された脱気水を前記循環脱気装置へ送り込む導水手
段、例えば溢流口が設けられている。
According to a preferred aspect of the present invention, the vacuum degassing device has a cylindrical degassing chamber depressurized by a vacuum pump, and is coaxially arranged in the degassing chamber and introduced from a water supply port. A water guide tube that gives the depressurized low-temperature boiling and cavitation phenomenon to the water that has been filled and overflows into the degassing chamber, and an ultrasonic wave that irradiates the water inside the water guide tube with an ultrasonic wave for inducing a cavitation phenomenon. A sonic vibrator, and a partition tube for partitioning an inner peripheral chamber and an outer peripheral chamber communicating with each other at a lower portion of the deaeration chamber, wherein the deaeration water stored in the outer circumference chamber is sent to the circulation deaerator. Means, for example an overflow, are provided.

【0016】本発明の更に好ましい一つの態様によれ
ば、前記循環脱気装置は、前記脱気室の外周を包囲して
前記導水手段を介して脱気室から脱気水の導入を受ける
円筒状の循環脱気タンクと、該循環脱気タンク内に貯え
られた脱気水を加圧送水する循環ポンプと、循環ポンプ
で加圧された脱気水を前記循環脱気タンク内の壁面に噴
射衝突させて瞬間断熱膨張させる噴射ノズル装置とを備
え、前記循環脱気タンク内は好ましくは真空脱気装置の
脱気室と共通の真空ポンプによって減圧されている。
According to a further preferred aspect of the present invention, the circulating deaerator includes a cylinder surrounding the outer periphery of the deaeration chamber and receiving the deaerated water from the deaeration chamber via the water guiding means. Circulating deaeration tank, a circulating pump that pressurizes and sends deaerated water stored in the circulating deaeration tank, and a deaerated water pressurized by the circulating pump is applied to a wall surface in the circulating deaeration tank. And an injection nozzle device for instantaneously adiabatic expansion by injection collision. The inside of the circulation deaeration tank is preferably depressurized by a common vacuum pump with a deaeration chamber of a vacuum deaerator.

【0017】本発明の更に好ましい一つの態様では、前
記循環脱気タンクの周囲を囲む円筒状の保水タンクと、
前記循環ポンプの吐出ラインを前記噴射ノズル装置と前
記保水タンクとに切り換える例えば電磁弁などの弁手段
とを更に備え、前記保水タンクは処理水取出系に接続さ
れ、また該保水タンク内は好ましくは真空脱気装置の脱
気室と共通の真空ポンプによって減圧されている。
In a further preferred aspect of the present invention, a cylindrical water retention tank surrounding the periphery of the circulation deaeration tank,
It further comprises valve means such as an electromagnetic valve for switching the discharge line of the circulating pump between the injection nozzle device and the water retention tank, wherein the water retention tank is connected to a treated water extraction system, and the inside of the water retention tank is preferably The pressure is reduced by a vacuum pump common to the deaeration chamber of the vacuum deaerator.

【0018】本発明による脱気殺菌装置では、例えば或
る必要な量の給水を受けたときに給水と外部への送水を
停止し、循環ポンプを予め設定した流量で運転して複数
回分の循環脱気を例えばタイマーなどの時限装置で管理
し、所定回数の循環脱気を終えたときにこの時限装置に
よって循環ポンプの吐出ラインを噴射ノズル装置から保
水タンクへ切り換えるようにする。これにより、複数回
の循環脱気による高度の脱気が果たされると同時に、循
環脱気系内での複数回の高圧への加圧と瞬間断熱膨張に
よる脱気水中の微生物の細胞破壊で高度の殺菌が果たさ
れ、前段の超音波低温沸騰による真空脱気と併せて消耗
保守部品を殆ど必要としない脱気殺菌装置を提供するこ
とができる。
In the degassing / sterilizing apparatus according to the present invention, for example, when a certain required amount of water is received, the water supply and the water supply to the outside are stopped, and the circulation pump is operated at a preset flow rate to perform the circulation for a plurality of times. The deaeration is controlled by a timer such as a timer, and when the circulation deaeration is completed a predetermined number of times, the discharge line of the circulation pump is switched from the injection nozzle device to the water holding tank by the timer. As a result, a high degree of degassing is achieved by multiple circulation degassing, and at the same time, multiple depressurizations to high pressure in the circulation degassing system and cell destruction of microorganisms in degassed water by instantaneous adiabatic expansion are achieved. The present invention can provide a deaeration / sterilization apparatus that hardly requires consumable maintenance parts in addition to vacuum deaeration by ultrasonic low-temperature boiling in the preceding stage.

【0019】本発明の脱気殺菌装置では、先ず真空脱気
装置において減圧された脱気室内で導水筒内の水に減圧
低温沸騰と超音波による空洞化現象を誘発させ、水中の
溶存気体を水と共に気泡として脱気室に開放し、脱気室
から真空ポンプで吸引捕集して脱気するので、脱気のた
めの減圧を水の導入に利用できるほか、処理水を煮沸さ
せるための加熱エネルギーは不要である。
In the degassing / sterilizing apparatus of the present invention, firstly, the water in the water guide cylinder is induced to decompressed / low-temperature boil and cavitation by ultrasonic waves in the degassing chamber depressurized by the vacuum degassing apparatus, thereby dissolving the dissolved gas in the water. Air is released into the degassing chamber together with water as air bubbles, and the air is collected by suction from the degassing chamber with a vacuum pump to degas, so that decompression for degassing can be used for introducing water and also for boiling treated water. No heating energy is required.

【0020】冬季のように導水筒内の水温が低いときは
水の粘性が大きくなり、低温の水中で発生した気泡と水
は強い粘性力をもつので、速やかに且つ容易に脱気する
ことが困難になりがちであるが、本発明では、真空脱気
装置は超音波振動子によって導水筒の水に空洞化現象を
誘発するための超音波振動エネルギーを照射し、給水管
から導水筒内に導入された水にキャビテーションを生起
せしめている。
When the water temperature in the water pipe is low, as in winter, the viscosity of the water increases, and the bubbles and water generated in the low-temperature water have a strong viscous force. Although it tends to be difficult, in the present invention, the vacuum deaerator irradiates ultrasonic vibration energy for inducing cavitation in water in the water guide tube by the ultrasonic vibrator, and from the water supply pipe into the water guide tube. Cavitation occurs in the introduced water.

【0021】従って水が真空圧のみにより減圧沸騰を起
こす場合よりも減圧の程度が少なくても、超音波振動エ
ネルギーによるキャビテーション現象で水に空洞化現象
が誘発され、この空洞に水中の溶存気体が気泡となって
捕捉され、それが上昇流に随伴して減圧下の脱気室内に
放出されることによって気体として脱気室に放散される
ので、脱気室に接続された真空ポンプから効果的に脱気
することができる。もちろん、脱気室の減圧を充分低圧
にし、それ自体で導水筒内の水に減圧沸騰を起こす場合
にも超音波の照射を併用することは効果的である。
Therefore, even if the degree of the pressure reduction is smaller than the case where the water causes boiling under reduced pressure only by the vacuum pressure, the cavitation phenomenon by the ultrasonic vibration energy induces a cavitation phenomenon in the water, and the dissolved gas in the water is introduced into the cavity. It is trapped as bubbles and is released into the degassing chamber as a gas by being released into the degassing chamber under reduced pressure along with the upward flow, so it is effective from the vacuum pump connected to the degassing chamber Can be degassed. Of course, it is effective to use ultrasonic irradiation together when the pressure in the degassing chamber is reduced to a sufficiently low pressure and the water in the water guide tube itself boils under reduced pressure.

【0022】一般に超音波によるキャビテーションは、
音圧が大気圧を超えたときに発生する。そこで、超音波
の音圧を(p)、処理対象の水の密度を(ρ)、粒子の
振動速度を(u)、波の伝播速度を(c)とすれば、p
=ρcuである。また、音波の強度、すなわちパワー密
度(I)は、I=ρcuである。
In general, cavitation by ultrasonic waves
Occurs when sound pressure exceeds atmospheric pressure. Therefore, if the sound pressure of the ultrasonic wave is (p), the density of the water to be treated is (ρ), the vibration speed of the particles is (u), and the propagation speed of the wave is (c), p
= Ρcu. Also, the intensity of the sound wave, that is, the power density (I) is I = ρcu 2 .

【0023】処理対象の水の密度は水中の揮発性成分や
有機物などの不純物含有量で大きく影響を受けることか
ら、本発明では導水筒の好ましくは底面に複数の超音波
振動子を取り付け、振動子の稼動数と駆動電源の電圧電
流制御によって超音波の強度を制御し、真空度が脱気室
内の水の飽和水蒸気圧に達する前に導水筒内の水柱にキ
ャビテーションを発生させて水中の溶存気体を効率的に
気泡化し、この気泡を渦巻ポンプによる上昇回転渦流に
巻き込んでその軸心部に収束させながら導水筒上端から
半径方向に向けて脱気室内に放水飛散させ、この飛散に
よって水中に含まれる微細な気泡を脱気室における真空
脱気で除去するものであり、従って、このような脱気に
よって酸化力の極めて弱い脱気水としたうえで例えばイ
オン交換樹脂筒に送り込むことにより、イオン交換樹脂
の劣化を効果的に防止するようことも可能である。
Since the density of water to be treated is greatly affected by the content of impurities such as volatile components and organic substances in the water, in the present invention, a plurality of ultrasonic vibrators are preferably mounted on the bottom surface of the water pipe, and The ultrasonic intensity is controlled by controlling the number of operating elements and the voltage and current of the driving power supply, and cavitation is generated in the water column in the water pipe before the degree of vacuum reaches the saturated water vapor pressure of the water in the degassing chamber. The gas is efficiently bubbled, and the bubbles are drawn into the upward rotating vortex by the vortex pump and converge on the axial center of the gas. The fine bubbles contained are removed by vacuum degassing in a degassing chamber.Thus, such degassing forms degassed water with extremely weak oxidizing power and then, for example, into an ion exchange resin cylinder. By Komu Ri, it is possible to effectively prevent deterioration of the ion exchange resin.

【0024】この超音波振動による脱気の効果の向上は
著しく、従来の一般的な受水槽における水面が大気に開
放された条件下での超音波加振方式とは異なり、本発明
では導水筒内の上部に連通する脱気室が減圧された条件
下で行なわれるので、脱気された水に大気から平衡分圧
に応じた量の気体が再び溶解してしまうことがなく、塩
素臭のないほぼ純水に近い高純度の脱気水を得ることが
できる。
The improvement of the degassing effect by the ultrasonic vibration is remarkable, and unlike the conventional ultrasonic vibration method in which the water surface in a general water receiving tank is open to the atmosphere, the present invention employs a water pipe. Since the degassing chamber communicating with the upper part of the inside is performed under reduced pressure conditions, the gas corresponding to the equilibrium partial pressure does not dissolve again in the degassed water from the atmosphere, and the chlorine odor It is possible to obtain high-purity degassed water which is not nearly pure water.

【0025】特に好ましくは、直立状態の導水筒の底部
から導水筒内に満たされた水に超音波振動の定在波が与
えられるように導水筒の寸法及び超音波振動の周波数を
選定することにより、導水筒内を満たす水柱には超音波
の定在波が形成され、水面で超音波の完全反射が起こる
ので最大の超音波振動エネルギーが伝達され、それによ
りキャビテーションが瞬時に発生し、溶存気体が盛んに
気泡となって水面で破裂し、導水筒内の減圧された上部
脱気空間から外部へ捕集除去され、従って脱気の効率が
更に高くなる。
Particularly preferably, the dimensions of the water guide tube and the frequency of the ultrasonic vibration are selected so that the standing wave of the ultrasonic vibration is given to the water filled in the water guide tube from the bottom of the water guide tube in the upright state. As a result, a standing wave of ultrasonic waves is formed in the water column filling the water pipe, and the maximum ultrasonic vibration energy is transmitted because the ultrasonic waves are completely reflected on the water surface, thereby instantaneously generating cavitation and dissolving The gas vigorously becomes bubbles and ruptures on the water surface, and is collected and removed from the depressurized upper degassing space in the water pipe, thereby further improving the degassing efficiency.

【0026】このようにして真空脱気装置で脱気処理さ
れた脱気水は導水筒を囲む脱気室の内周室に溢流し、ま
た脱気で生じる気体分はその上部空間から真空ポンプで
吸引捕集され、内周室内では底部の連通路を介して脱気
水が外周室に流入し、そこに貯留される間に脱気水が沈
静化されるので残留気泡は上昇して上部空間に放散さ
れ、同様に真空ポンプによって吸引捕集される。
The deaerated water thus deaerated by the vacuum deaerator overflows into the inner peripheral chamber of the deaeration chamber surrounding the water pipe, and the gas generated by the deaeration is removed from the upper space by a vacuum pump. In the inner peripheral chamber, the deaerated water flows into the outer peripheral chamber through the communication passage at the bottom, and the deaerated water is calmed while being stored therein, so that the residual bubbles rise to the upper part. It is released into the space and is similarly collected by suction by a vacuum pump.

【0027】外周室内の脱気水は、脱気室の最外壁に設
けられた溢流口または配管系などの導水手段によって脱
気室の外周を囲む循環脱気タンクに送られ、そこから更
に循環ポンプに吸引されて高圧に加圧される。循環ポン
プで高圧に加圧された脱気水は、既に真空脱気装置によ
って水中の気体分が大半除去され、更に加圧によって圧
縮されているので、循環ポンプの吐出ラインにおける水
中には圧縮性の気体分は殆ど存在せず、従って1気圧で
生息していた微生物の細胞は水中溶存気体によるクッシ
ョン効果を得ることなく細胞内は高圧水で満たされるこ
とになる。このような状態でこの高圧水は噴射ノズルに
至り、該ノズルから減圧下の循環脱気タンク室内に高速
高圧で噴射されて循環脱気タンク内で衝合壁面に衝突さ
れ、これによって瞬間的な断熱膨張を受けることになる
ので、水中の微生物の細胞も高圧状態から急激に膨張さ
れて瞬時の破壊を余儀なくされる。
The degassed water in the outer peripheral chamber is sent to a circulating degassing tank surrounding the outer periphery of the degassing chamber by a water guiding means such as an overflow port or a piping system provided on the outermost wall of the degassing chamber, and further from there. It is sucked by the circulation pump and pressurized to high pressure. The degassed water pressurized to a high pressure by the circulation pump has already been compressed by pressurization because most of the gas content in the water has already been removed by the vacuum deaerator, and the water in the discharge line of the circulation pump has compressibility. Therefore, the cells of microorganisms that lived at 1 atm are filled with high-pressure water without obtaining a cushioning effect due to dissolved gas in water. In such a state, the high-pressure water reaches the injection nozzle, is injected from the nozzle into the circulating deaeration tank under reduced pressure at a high speed and a high pressure, and collides with the abutment wall in the circulating deaeration tank. Since the cells undergo adiabatic expansion, the cells of the microorganisms in the water are also rapidly expanded from the high-pressure state and must be destroyed instantaneously.

【0028】上述のように噴射ノズル装置の出口に対面
するように循環脱気タンク内には噴射水に対する衝合壁
面があり、この壁面は循環脱気タンク自体の内壁面を利
用してもよく、或いは別体の衝合部材を配置して構成す
ることもできる。噴射ノズルから高圧高速で噴射される
水が衝合壁面に衝突すると、水に残存している極微細な
気泡も断熱膨張と衝突エネルギーによって瞬時に破壊さ
れ、これにより気泡中の気体が脱気室に開放されるので
減圧による気体の捕集が効果的となり、後述のように複
数回の循環脱気を行うことによって例えば0.1ppm
以下の極めて低い残存気体濃度までの高度の脱気が可能
である。
As described above, the circulating deaeration tank has an abutting wall against the jet water so as to face the outlet of the injection nozzle device, and this wall may use the inner wall of the circulating deaeration tank itself. Alternatively, a separate abutment member may be arranged and configured. When water jetted at high pressure and high speed from the injection nozzle collides with the abutment wall, the ultrafine bubbles remaining in the water are also instantaneously destroyed by the adiabatic expansion and collision energy, thereby causing the gas in the bubbles to degas. Gas is effectively collected by decompression, and for example, 0.1 ppm by performing multiple circulation degassing as described below.
A high degree of degassing to the following extremely low residual gas concentrations is possible.

【0029】気泡の破裂で分離した気体は循環脱気タン
ク内の上部空間から真空ポンプに吸引捕集され、一方、
高度に脱気された水は自然落下で循環脱気タンク内に貯
まるが、この場合、脱気水が下部貯水面に穏やかに導入
されるように鎮静用の案内樋などを循環脱気タンク内に
配置しても良い。
The gas separated by the rupture of the bubbles is sucked and collected by the vacuum pump from the upper space in the circulation degassing tank.
Highly degassed water is stored in the circulating deaeration tank by natural fall.In this case, a guide gutter for sedation is installed in the circulating deaeration tank so that the deaerated water is gently introduced into the lower reservoir. May be arranged.

【0030】この循環ポンプの作動による循環脱気殺菌
処理は、真空脱気装置によって例えば或る必要な量の給
水分の脱気が終了した後に開始しても良い。この場合、
真空脱気装置で脱気しながら必要量の給水を受けたとき
に給水系と外部への送水系を作動停止し、循環ポンプを
予め設定した定吐出量で運転して複数回分の循環脱気を
例えばタイマーなどの時限装置で管理する。例えば、循
環ポンプの吸込量Qを給水口への新水の単位時間当たり
の給水量Q1と循環系に流れる循環水の単位時間当たり
の循環流量Q2との和に等しく設定し(即ち、Q=Q1
+Q2)、新水の給水量Q1と循環流量Q2との比m
(但し、m=Q2/Q1)が1より大きくなるような条
件で装置を稼働させると、循環脱気タンク内に溜まった
水を繰り返し脱気処理することができるので、残留溶存
気体濃度が究極まで低くなった高脱気水を得ることが可
能となる。
The circulation deaeration sterilization process by the operation of the circulation pump may be started, for example, after the deaeration of a required amount of supplied water by the vacuum deaerator is completed. in this case,
When the required amount of water is received while deaeration is performed by the vacuum deaerator, the water supply system and the water supply system to the outside are deactivated, and the circulating pump is operated at a preset constant discharge rate to perform the circulation deaeration for multiple times. Is managed by a timed device such as a timer. For example, the suction amount Q of the circulation pump is set equal to the sum of the supply amount Q1 of fresh water to the water supply port per unit time and the circulation flow rate Q2 of the circulation water flowing through the circulation system per unit time (that is, Q = Q1
+ Q2), the ratio m between the supply amount Q1 of fresh water and the circulation flow Q2
If the apparatus is operated under the condition that (m = Q2 / Q1) becomes larger than 1, the water accumulated in the circulating degassing tank can be repeatedly degassed, so that the residual dissolved gas concentration is ultimately increased. It is possible to obtain highly degassed water that has been lowered to as low as possible.

【0031】所定回数の循環脱気が終了するだけの時間
が経過したときにこの時限装置によって循環ポンプの吐
出ラインを噴射ノズル装置から保水タンクへ切り換える
と、複数回の循環脱気によって高度に脱気され且つ循環
脱気系内での複数回の高圧への加圧・瞬間断熱膨張によ
る脱気水中の微生物の細胞破壊で高度に殺菌された処理
水が保水タンクに移される。保水タンクから外部への送
水は例えば水位センサーなどによる送水弁及び送水ポン
プの監視制御のもとに適宜行うことができる。また、循
環脱気タンク内及び保水タンク内は共に真空ポンプで減
圧されており、好ましくはこれらのタンク内の減圧は脱
気室内の減圧のための真空ポンプによって共通に行うの
がよい。
When the discharge line of the circulating pump is switched from the injection nozzle device to the water holding tank by the time limit device after a lapse of time sufficient to complete the predetermined number of circulation deaerations, a high degree of deaeration is performed by a plurality of circulation deaerations. The treated water that has been highly sterilized due to cell destruction of microorganisms in the degassed water by pressurization to high pressure and instantaneous adiabatic expansion multiple times in the circulating degassing system is transferred to a water holding tank. The water supply from the water retention tank to the outside can be appropriately performed under the monitoring control of a water supply valve and a water supply pump by a water level sensor or the like. The pressure in the circulation degassing tank and the water holding tank are both reduced by a vacuum pump. Preferably, the pressure in these tanks is reduced by a vacuum pump for reducing the pressure in the degassing chamber.

【0032】[0032]

【発明の実施の形態】図1は本発明の好適な実施の形態
を模式的に示しており、主装置は、導水筒3と円筒脱気
室8を備えた真空脱気装置と、脱気室8の外側を囲む円
筒循環脱気タンク19と循環ポンプ13及び噴射ノズル
装置18を備えた循環脱気装置とによって構成され、こ
れらの脱気室8、循環脱気タンク19、及び後述する円
筒保水タンク20は、導水筒3を中心とする同心状の3
つの主要な環状空間を内包する一体の多重円筒気密タン
ク4によって形成されている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 schematically shows a preferred embodiment of the present invention. The main device is a vacuum deaerator having a water guide tube 3 and a cylindrical deaeration chamber 8, and a deaerator. It comprises a cylindrical circulating deaeration tank 19 surrounding the outside of the chamber 8 and a circulating deaerator equipped with a circulating pump 13 and an injection nozzle device 18. The water holding tank 20 is a concentric 3 centered on the water pipe 3.
It is formed by an integral multi-cylindrical hermetic tank 4 containing two main annular spaces.

【0033】真空脱気装置は、導水筒3内の水に対する
超音波エネルギーの付与によって被処理水の低温沸騰を
伴う真空脱気処理を行い、循環脱気装置は該真空脱気装
置によって脱気された脱気水を循環ポンプ13で高圧に
加圧して減圧された循環脱気タンク19内で断熱膨張さ
せる循環脱気処理を行う。
The vacuum deaerator performs vacuum deaeration accompanied by low-temperature boiling of the water to be treated by applying ultrasonic energy to water in the water pipe 3, and a circulating deaerator uses the vacuum deaerator to deaerate. A circulating deaeration process is performed in which the deaerated water is pressurized to a high pressure by the circulating pump 13 and adiabatically expanded in the circulated deaeration tank 19 that has been decompressed.

【0034】先ずはじめに真空脱気装置について述べる
と、この真空脱気装置は、真空ポンプ22で内部を減圧
された円筒状の脱気室8と、該脱気室内に同軸状に縦に
配置された導水筒3と、導水筒内の水に空洞化現象誘発
のための超音波を照射する超音波振動子31と、脱気室
8内を下部で連通する内周室8aと外周室8bに仕切る
仕切筒7とを備え、外周室8bにはその内部に貯留され
た脱気水を前記循環脱気装置へ送り込む導水手段として
の溢流口9が最外壁に設けられている。
First, the vacuum deaerator will be described. The vacuum deaerator is provided with a cylindrical deaeration chamber 8 the inside of which is depressurized by a vacuum pump 22, and is vertically arranged coaxially in the deaeration chamber. The water guide tube 3, an ultrasonic vibrator 31 for irradiating ultrasonic waves for inducing cavitation to water in the water guide tube, and an inner peripheral chamber 8 a and an outer peripheral chamber 8 b communicating the lower part of the deaeration chamber 8. The outer peripheral chamber 8b is provided with an overflow port 9 on the outermost wall as a water guiding means for feeding the deaerated water stored therein to the circulating deaerator.

【0035】導水筒3は、その底面よりも上方に距離を
おいた位置に下部給水口を備え、給水管から止水弁2
3、入口電磁弁24および例えば特公平6−38959
号公報に開示されているようなスケール除去用の電極筒
1を介して導入される水で内部が満たされ、この内部を
満たした水に減圧低温沸騰と空洞化現象を与える。この
導水筒3の底部には、導水筒内の水に超音波を照射して
空洞化現象を誘発するための超音波振動子31が複数配
置されており、各振動子は図示しない励振制御装置によ
り駆動されるようになっている。
The water pipe 3 is provided with a lower water supply port at a position above the bottom surface thereof, and is provided with a water stop valve 2 from the water supply pipe.
3. Inlet solenoid valve 24 and, for example, Japanese Patent Publication No. 6-38959
The inside is filled with water introduced through a scale removing electrode tube 1 as disclosed in Japanese Unexamined Patent Application Publication No. H10-293, and a low-pressure low-temperature boiling and cavitation phenomenon are given to the water filling the inside. A plurality of ultrasonic transducers 31 for irradiating water in the water guide cylinder with ultrasonic waves to induce a cavitation phenomenon are arranged at the bottom of the water guide cylinder 3, and each of the transducers is an excitation control device (not shown). Driven by the

【0036】導水筒3の頭部は端面が閉鎖されて周面に
複数の溢流口5が開口しており、この溢流口5から間隔
をあけて導水筒頭部には周囲を囲む飛沫防止用の筒状カ
ラー6が固定されている。従って導水筒3から溢流する
水は溢流口5を通過して脱気室8の内周室8aに流入
し、さらにその底部の連通間隙を通過して外周室8bに
流入する用になっている。
The head of the water pipe 3 has an end face closed and a plurality of overflow ports 5 opened on the peripheral surface. A tubular collar 6 for prevention is fixed. Therefore, the water that overflows from the water pipe 3 flows into the inner peripheral chamber 8a of the deaeration chamber 8 through the overflow port 5, and further flows into the outer peripheral chamber 8b through the communication gap at the bottom. ing.

【0037】作動状態においては真空ポンプ22によっ
て脱気室8内が高真空状態に保たれており、真空ポンプ
22からの排気は大気中に放散されている。この状態で
止水弁23および入口電磁弁24を開くと、図示しない
受水槽から給水管を経て送られてくる水が電極筒1内で
脱スケール処理された後、減圧状態下の導水筒3内に吸
引される。導水筒3内に水が満たされた状態で導水筒3
の底部に配置された超音波振動子31から予め定められ
た周波数の超音波を導水筒内の水に照射すると、導水筒
3内の水にキャビテーションによる空洞化現象が誘起さ
れて水中に溶けている気体が気泡として分離する。この
気泡発生には減圧下における低温沸騰現象も寄与する。
In the operating state, the inside of the deaeration chamber 8 is maintained in a high vacuum state by the vacuum pump 22, and the exhaust from the vacuum pump 22 is radiated into the atmosphere. When the water stop valve 23 and the inlet electromagnetic valve 24 are opened in this state, the water sent from the water tank (not shown) via the water supply pipe is descaled in the electrode tube 1, and then the water guide tube 3 under the reduced pressure state Is sucked into. In the state where the water is filled in the water pipe 3, the water pipe 3
When an ultrasonic wave of a predetermined frequency is irradiated on water in the water guide tube from the ultrasonic transducer 31 disposed at the bottom of the container, a cavitation phenomenon due to cavitation is induced in the water in the water guide tube 3 and the water is dissolved in the water. Gas is separated as bubbles. The low-temperature boiling phenomenon under reduced pressure also contributes to this bubble generation.

【0038】導水筒3内の水には真空ポンプ22による
負圧によって上昇流が生じており、この上昇流に気泡が
巻込まれながら導水筒3の頭部の溢流口5から内周室8
aに吹き出した水はさらに底部の連通間隙を通過して外
周室8bに流入する。内周室8aの上部空間では、溢流
口5から吹き出した際に気泡の破裂放散によって生じた
気体が真空ポンプ22に吸引捕集され、同様に外周室8
bの上部空間でも水中を浮上して水面で放散された気体
が溢流口9を介して真空ポンプ22により吸引捕集され
る。
An upward flow is generated in the water in the water guide tube 3 by the negative pressure of the vacuum pump 22, and bubbles are entrained in the upward flow from the overflow port 5 at the head of the water guide tube 3 to the inner peripheral chamber 8.
The water blown out to a further flows into the outer peripheral chamber 8b through the communication gap at the bottom. In the upper space of the inner peripheral chamber 8a, the gas generated by the burst and release of bubbles when blown out from the overflow port 5 is sucked and collected by the vacuum pump 22, and similarly, the outer peripheral chamber 8a
In the space above b, the gas that floats in the water and is scattered on the water surface is sucked and collected by the vacuum pump 22 through the overflow port 9.

【0039】このようにして脱気された水は高真空状態
の脱気室8内の内周室8aと外周室8bの互いに下部で
連通した貯水空間に蓄えられ、本実施例ではその水位が
飛散防止用の円筒カラー6の下縁レベルとほぼ同等レベ
ルで脱気室8の最外壁に開口された溢流口9を超える
と、該溢流口9から循環脱気タンク19内へ溢流するよ
うになっている。
The water thus degassed is stored in a water storage space which communicates with the inner peripheral chamber 8a and the outer peripheral chamber 8b at the lower part of the deaeration chamber 8 in a high vacuum state. When the overflow exceeds the overflow port 9 opened at the outermost wall of the deaeration chamber 8 at a level substantially equal to the lower edge level of the cylindrical collar 6 for preventing scattering, the overflow from the overflow port 9 into the circulation deaeration tank 19. It is supposed to.

【0040】さて、循環脱気装置は、脱気室8の外周を
包囲して溢流口9を介して脱気室8から脱気水の導入を
受ける円筒状の循環脱気タンク19と、該循環脱気タン
ク内に貯えられた脱気水を高圧に加圧して送水する循環
ポンプ13と、循環ポンプで加圧された脱気水を前記循
環脱気タンク19の内壁面に噴射衝突させて瞬間断熱膨
張させる噴射ノズル装置18とを備えており、循環脱気
タンク19内は真空脱気装置の脱気室8と共通の真空ポ
ンプ22によって減圧されている。
The circulating deaerator comprises a cylindrical circulating deaeration tank 19 which surrounds the outer periphery of the deaeration chamber 8 and receives deaeration water from the deaeration chamber 8 through the overflow port 9. A circulating pump 13 for pressurizing and sending deaerated water stored in the circulating deaeration tank to a high pressure and jetting the deaerated water pressurized by the circulating pump onto the inner wall surface of the circulating deaeration tank 19. An injection nozzle device 18 for instantaneously adiabatic expansion is provided, and the pressure in the circulation deaeration tank 19 is reduced by a common vacuum pump 22 with the deaeration chamber 8 of the vacuum deaeration device.

【0041】さらに循環脱気タンク19の外周は環状保
水タンク20によって囲まれ、また循環ポンプの吐出ラ
イン14には、加圧された脱気水を噴射ノズル装置18
へ送る時のみ開かれる電磁弁15と、加圧された脱気水
を保水タンク20へ送るときのみ開かれる電磁弁16が
配置されている。保水タンク20の出口は処理水取出系
を構成する送水ポンプ21に接続され、送水ポンプ21
の吐出口は逆止弁25及びゲート弁28を介して送水配
管に接続され、逆止弁25とゲート弁28との間には膨
張タンク26及び圧力スイッチ27が配置されている。
また保水タンク20内は真空脱気装置の脱気室8及び循
環脱気タンク19と共通の真空ポンプ22によって減圧
されている。
Further, the outer periphery of the circulation deaeration tank 19 is surrounded by an annular water retention tank 20, and pressurized deaeration water is supplied to the discharge line 14 of the circulation pump by an injection nozzle device 18.
An electromagnetic valve 15 that is opened only when the pressurized degassed water is sent to the water holding tank 20 is disposed. The outlet of the water retention tank 20 is connected to a water supply pump 21 constituting a treated water extraction system.
Is connected to a water supply pipe via a check valve 25 and a gate valve 28, and an expansion tank 26 and a pressure switch 27 are disposed between the check valve 25 and the gate valve 28.
The pressure in the water holding tank 20 is reduced by a vacuum pump 22 common to the deaeration chamber 8 and the circulation deaeration tank 19 of the vacuum deaerator.

【0042】循環脱気タンク19内の貯水空間10の水
位は水位検出器30aにより検出される二つの水位レベ
ルで監視制御され、また保水タンク20内の水位も水位
検出器30bおよび30cにより検出される四つの水位
レベルで監視制御される。図示しない外部の制御装置が
これらの水位検出器からの信号に基づいて入口電磁弁2
4、循環ポンプ13、電磁弁15,16、送水ポンプ2
1、ゲート弁28を総合的に作動制御する。
The water level in the water storage space 10 in the circulation degassing tank 19 is monitored and controlled at two water levels detected by a water level detector 30a, and the water level in the water retention tank 20 is also detected by water level detectors 30b and 30c. It is monitored and controlled at four levels. An external controller (not shown) controls the inlet solenoid valve 2 based on signals from these water level detectors.
4. Circulation pump 13, solenoid valves 15, 16, water pump 2
1. The overall operation of the gate valve 28 is controlled.

【0043】さて、外周室8bから溢流口9を介して脱
気水が循環脱気タンクに送られ、それが必要な水位に達
すると、循環ポンプ13の作動によって脱気水が高圧に
加圧される。循環ポンプ13で高圧に加圧された脱気水
はポンプ吐出ライン14から電磁弁15を通過して噴射
ノズル装置18に送られるが、この高圧脱気水は既に真
空脱気装置によって水中の気体分が大半除去され、更に
加圧によって圧縮されているので、循環ポンプ13の吐
出ライン14における高圧脱気水中には圧縮性の気体分
は殆ど存在せず、従って1気圧で生息していた微生物の
細胞は水中溶存気体によるクッション効果を得ることな
く細胞内は高圧水で満たされることになる。このような
状態でこの高圧水は電磁弁15を介して噴射ノズル装置
18に至り、該ノズルから減圧下の循環脱気タンク室1
9内に高速高圧で噴射されて循環脱気タンク19の内壁
面に衝突され、これによって瞬間的な断熱膨張を受ける
ことになるので、水中の微生物の細胞も高圧状態から急
激に膨張されて瞬時に破壊され、殺菌が果たされる。
The deaerated water is sent from the outer peripheral chamber 8b to the circulating deaeration tank through the overflow port 9, and when it reaches a required water level, the circulating pump 13 activates the deaerated water to increase the pressure. Pressed. The degassed water pressurized to a high pressure by the circulation pump 13 is sent from the pump discharge line 14 through the solenoid valve 15 to the injection nozzle device 18. Since most of the microorganisms have been removed and further compressed by pressurization, there is almost no compressible gas in the high-pressure degassed water in the discharge line 14 of the circulation pump 13, and therefore, microorganisms that lived at 1 atm. The cells are filled with high-pressure water without obtaining a cushion effect due to dissolved gas in water. In such a state, the high-pressure water reaches the injection nozzle device 18 via the electromagnetic valve 15, and from the nozzle, the circulating deaeration tank chamber 1 under reduced pressure
9 is injected into the circulation deaeration tank 19 at high speed and high pressure and collides with the inner wall surface of the circulation deaeration tank 19, thereby being subjected to instantaneous adiabatic expansion. It is destroyed and sterilized.

【0044】噴射ノズル装置18から高圧高速で噴射さ
れた水が衝合壁面に衝突すると、水に残存している極微
細な気泡も断熱膨張と衝突エネルギーによって瞬時に破
壊され、これにより気泡中の気体が循環脱気タンク内の
上部空間に放散される。
When the water jetted at high pressure and high speed from the jet nozzle device 18 collides with the abutting wall, the ultrafine bubbles remaining in the water are also instantaneously destroyed by the adiabatic expansion and the collision energy. The gas is released to the upper space in the circulation deaeration tank.

【0045】断熱膨張で分離した気体は循環脱気タンク
19内の上部空間から真空ポンプ22に吸引捕集され、
一方、高度に脱気された水は自然落下で循環脱気タンク
19の貯水空間に貯まる。
The gas separated by the adiabatic expansion is sucked and collected by the vacuum pump 22 from the upper space in the circulation deaeration tank 19.
On the other hand, the highly degassed water is stored in the water storage space of the circulation deaeration tank 19 by natural fall.

【0046】この循環ポンプ13の作動による循環脱気
殺菌処理は、真空脱気装置によって例えば或る必要な量
の給水分の脱気が終了した後に開始される。即ち、真空
脱気装置で必要量の給水を脱気処理し終えたときに給水
系と外部への送水系を作動停止し、循環ポンプ13を予
め設定した定吐出量で運転して複数回分の循環脱気を例
えばタイマーなどの時限装置で管理する。例えば、循環
ポンプの吸込量Qを給水口への新水の単位時間当たりの
給水量Q1と循環系に流れる循環水の単位時間当たりの
循環流量Q2との和に等しく設定し(即ち、Q=Q1+
Q2)、新水の給水量Q1と循環流量Q2との比m(但
し、m=Q2/Q1)が1より大きくなるような条件で
循環ポンプ13を稼働させると、循環脱気タンク19内
に溜まった水を繰り返し脱気処理することができ、残留
溶存気体濃度を例えば0.1ppm以下の極めて低い値
に処理した高脱気水を得ることが可能である。
The circulating degassing sterilization process by the operation of the circulating pump 13 is started, for example, after the deaeration of a required amount of supplied water by the vacuum deaerator is completed. That is, when the required amount of water is deaerated by the vacuum deaerator, the water supply system and the water supply system to the outside are stopped, and the circulating pump 13 is operated at a preset constant discharge amount to perform a plurality of operations. The circulation deaeration is managed by a timed device such as a timer. For example, the suction amount Q of the circulation pump is set equal to the sum of the water supply amount Q1 of fresh water to the water supply port per unit time and the circulation flow rate Q2 of the circulation water flowing through the circulation system per unit time (that is, Q = Q1 +
Q2), when the circulation pump 13 is operated under the condition that the ratio m (where m = Q2 / Q1) of the supply amount Q1 of fresh water and the circulation flow rate Q2 is larger than 1, the inside of the circulation deaeration tank 19 The accumulated water can be repeatedly degassed, and it is possible to obtain highly degassed water whose residual dissolved gas concentration has been treated to an extremely low value of, for example, 0.1 ppm or less.

【0047】例えば目標の溶存気体濃度まで低濃度とす
るに要する循環脱気の所要時限をTとすると、この時限
Tが経過したときに外部シーケンサーなどの時限装置の
動作によって電磁弁15は閉じて代わりに電磁弁16が
開かれ、循環ポンプ13の吐出ラインが噴射ノズル装置
18から保水タンク20へ切り換えられる。これによっ
て水位検出器30aにより低水位レベルまでの水位低下
が検出されると循環ポンプ13が停止され、所要循環回
数の循環脱気によって高度に脱気され且つ循環脱気系内
での複数回の高圧への加圧・瞬間断熱膨張による脱気水
中の微生物の細胞破壊で高度に殺菌された処理水が保水
タンク20に貯留される。保水タンク20から外部への
送水は水位検出器30b及び30cによる送水ポンプ2
1とゲート弁28の監視制御により適正に行われる。こ
の場合、保水タンク20の貯水量を毎分当たりの給水量
の少なくとも2TQ倍以上に設定しておくことにより、
外部への送水量と給水量とを等量とする連続脱気殺菌処
理運転を実現することもできる。
For example, assuming that the time required for circulating degassing required for reducing the concentration to the target dissolved gas concentration is T, the electromagnetic valve 15 is closed by the operation of a timed device such as an external sequencer when the time T has elapsed. Instead, the solenoid valve 16 is opened, and the discharge line of the circulation pump 13 is switched from the injection nozzle device 18 to the water holding tank 20. As a result, when the water level detector 30a detects that the water level has dropped to the low water level, the circulation pump 13 is stopped, and the circulation pump 13 is evacuated to a high degree by the required number of circulations and a plurality of times in the circulation deaeration system. Treated water highly sterilized by cell destruction of microorganisms in degassed water by pressurization to high pressure and instantaneous adiabatic expansion is stored in the water retention tank 20. The water supply from the water holding tank 20 to the outside is performed by a water supply pump 2 using water level detectors 30b and 30c.
1 and the gate valve 28 are monitored and controlled properly. In this case, by setting the water storage amount of the water holding tank 20 to at least 2 TQ times or more of the water supply amount per minute,
It is also possible to realize a continuous deaeration / sterilization operation in which the amount of water supplied to the outside and the amount of water supplied are equal.

【0048】尚、循環脱気タンク19内及び保水タンク
20内はいずれも共通の真空ポンプ22で同時に減圧さ
れているが、これは真空ポンプ22に分岐管路を介して
個々に独立した電磁弁で選択的に減圧したり、或いはそ
れぞれに独立した別個の真空ポンプを用意したり、種々
の変形が可能である。
The inside of the circulation deaeration tank 19 and the inside of the water holding tank 20 are simultaneously depressurized by a common vacuum pump 22, which is connected to the vacuum pump 22 via an independent electromagnetic valve via a branch line. The pressure can be reduced selectively, or separate vacuum pumps can be provided independently of each other, and various modifications can be made.

【0049】[0049]

【発明の効果】以上に述べたように、本発明による脱気
殺菌装置は、超音波エネルギーの付与による被処理水の
低温沸騰を伴う真空脱気装置と、該真空脱気装置によっ
て脱気された脱気水を加圧して減圧容器内で断熱膨張さ
せる循環脱気装置とを備えているので、超音波低温沸騰
による効果的な真空脱気に加えて複数回の循環脱気によ
る高度の脱気が可能であり、しかも循環脱気系内での複
数回の高圧への加圧と瞬間断熱膨張による脱気水中の微
生物の細胞破壊で高度の殺菌処理も果たされるので大量
の殺菌済み衛生水を作ることができ、前段の超音波低温
沸騰による真空脱気と併せて消耗保守部品を殆ど必要と
しない運転及び保守の簡単な環境保全にも資する脱気殺
菌装置を提供することができると言う効果が得られる。
As described above, the deaeration / sterilization apparatus according to the present invention is a vacuum deaeration apparatus in which the water to be treated is boiled at a low temperature by applying ultrasonic energy, and a deaeration apparatus using the vacuum deaeration apparatus. The system has a circulation deaerator that pressurizes the degassed water and adiabatically expands it in a decompression vessel. In addition to effective vacuum degassing by ultrasonic low-temperature boiling, advanced degassing by multiple circulation degassing is also provided. A large amount of sterilized sanitary water can be achieved by performing a high degree of sterilization by decomposing microorganisms in deaerated water by applying pressure to high pressure multiple times and instantaneously adiabatic expansion in the circulation deaeration system. It can be said that it is possible to provide a deaeration / sterilization apparatus which contributes to simple environmental preservation of operation and maintenance which requires almost no consumable maintenance parts in addition to vacuum deaeration by ultrasonic low-temperature boiling in the preceding stage. The effect is obtained.

【0050】また本発明による脱気殺菌装置は高真空と
超音波キャビテーションによる低温沸騰を利用した真空
脱気処理に加えて加圧と断熱膨張による循環脱気を効果
的に組み合わせた高度の脱気及び殺菌処理を行わせるの
で、殺菌と共に水中の溶存酸素だけでなく揮発性気体成
分をも効果的に脱気することが可能であり、水道水を酸
化腐蝕力の殆どない高脱気無菌清浄水に変えて配管の防
食と衛生水提供に寄与するだけでなく、溶存ガスや不純
物に敏感な例えば半導体ウエハやIC装置の製造に利用
する高清浄水の製造にも利用でき、水資源の有効利用か
ら廃水浄化に至広い利用範囲に有効に対応できるもので
ある。
Further, the deaeration / sterilization apparatus according to the present invention is a high-level deaeration that effectively combines circulation deaeration by pressurization and adiabatic expansion in addition to vacuum deaeration treatment using low-temperature boiling by high vacuum and ultrasonic cavitation. And sterilization treatment, it is possible to effectively deaerate not only dissolved oxygen in the water but also volatile gas components together with the sterilization. In addition to contributing to corrosion prevention of pipes and providing sanitary water, it can also be used for the production of highly purified water that is sensitive to dissolved gases and impurities, for example, for the production of semiconductor wafers and IC devices. It can effectively cope with a wide range of use for wastewater purification.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の好適な実施形態の一例を示す系統図で
ある。
FIG. 1 is a system diagram showing an example of a preferred embodiment of the present invention.

【符号の説明】[Explanation of symbols]

3:導水筒 7:仕切筒 8:脱気室 9:溢流口(導水手段) 13:循環ポンプ 15:電磁弁 16:電磁弁 18:噴射ノズル装置 19:循環脱気タンク 20:保水タンク 21:送水ポンプ 22:真空ポンプ 3: water guide tube 7: partition tube 8: deaeration chamber 9: overflow port (water guide means) 13: circulation pump 15: solenoid valve 16: solenoid valve 18: injection nozzle device 19: circulation deaeration tank 20: water retention tank 21 : Water pump 22: Vacuum pump

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4D011 AA16 AA18 AB01 AB05 AB07 AC01 AC03 AC04 AC06 AD01 AD02 AD06 4D037 AA01 AB03 AB11 AB18 BA23 BA24 BA26 BB01 BB02 BB04 BB05 BB07  ────────────────────────────────────────────────── ─── Continued on the front page F term (reference) 4D011 AA16 AA18 AB01 AB05 AB07 AC01 AC03 AC04 AC06 AD01 AD02 AD06 4D037 AA01 AB03 AB11 AB18 BA23 BA24 BA26 BB01 BB02 BB04 BB05 BB07

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 超音波エネルギーの付与による被処理水
の低温沸騰を伴う真空脱気装置と、該真空脱気装置によ
って脱気された脱気水を加圧して減圧容器内で断熱膨張
させる循環脱気装置とを備えたことを特徴とする脱気殺
菌装置。
1. A vacuum deaerator with low-temperature boiling of water to be treated by applying ultrasonic energy, and a circulation for pressurizing deaerated water deaerated by the vacuum deaerator and adiabatically expanding it in a decompression vessel. A deaeration / sterilization device comprising a deaeration device.
【請求項2】 前記真空脱気装置が、真空ポンプで減圧
された円筒状の脱気室と、該脱気室内に同軸状に配置さ
れ、給水口から導入されて内部を満たした水に減圧低温
沸騰と空洞化現象を与えて前記脱気室に溢流させる導水
筒と、導水筒の内部の水に空洞化現象誘発のための超音
波を照射する超音波振動子と、脱気室内を下部で連通す
る内周室と外周室に仕切る仕切筒とを備え、前記外周室
にはその内部に貯留された脱気水を前記循環脱気装置へ
送り込む導水手段が設けられていることを特徴とする請
求項1に記載の脱気殺菌装置。
2. The vacuum deaerator is provided with a cylindrical deaeration chamber depressurized by a vacuum pump, and coaxially disposed in the deaeration chamber, and depressurizes water introduced from a water supply port to fill the inside. A water guide tube that gives a low-temperature boiling and hollowing phenomenon to overflow into the degassing chamber, an ultrasonic vibrator that irradiates ultrasonic waves for inducing a hollowing phenomenon to water inside the water guide cylinder, and a degassing chamber. A partition tube for partitioning an inner peripheral chamber and an outer peripheral chamber communicating with each other at a lower portion, wherein the outer peripheral chamber is provided with a water guiding means for sending deaerated water stored therein to the circulation deaerator. The deaeration / sterilization device according to claim 1, wherein
【請求項3】 前記循環脱気装置が、前記脱気室の外周
を包囲して前記導水手段を介して脱気室から脱気水の導
入を受ける円筒状の循環脱気タンクと、該循環脱気タン
ク内に貯えられた脱気水を高圧に加圧して送水する循環
ポンプと、循環ポンプで加圧された脱気水を前記循環脱
気タンク内の壁面に噴射衝突させて瞬間断熱膨張させる
噴射ノズル装置とを備え、前記循環脱気タンク内は真空
ポンプによって減圧されていることを特徴とする請求項
2に記載の脱気殺菌装置。
3. A circulating deaeration tank, wherein the circulating deaerator surrounds an outer periphery of the deaeration chamber and receives deaerated water from the deaeration chamber through the water introducing means. A circulating pump that pressurizes and sends degassed water stored in the degassing tank to a high pressure, and instantaneously adiabatic expansion by injecting and colliding degassed water pressurized by the circulating pump with a wall in the circulating degassing tank. The deaeration and sterilization apparatus according to claim 2, further comprising an injection nozzle device for causing the circulation and the deaeration tank to be depressurized by a vacuum pump.
【請求項4】 前記循環脱気タンクの周囲を囲む円筒状
の保水タンクと、前記循環ポンプの吐出ラインを前記噴
射ノズル装置と前記保水タンクとに切り換える弁手段と
を更に備え、前記保水タンクは処理水取出系に接続さ
れ、また該保水タンク内は真空ポンプによって減圧され
ていることを特徴とする請求項3に記載の脱気殺菌装
置。
4. A water holding tank having a cylindrical shape surrounding the circulation deaeration tank, and valve means for switching a discharge line of the circulation pump between the injection nozzle device and the water holding tank. 4. The deaeration / sterilization apparatus according to claim 3, wherein the dewatering / sterilizing apparatus is connected to a treated water extraction system, and the inside of the water holding tank is depressurized by a vacuum pump.
【請求項5】 循環ポンプの運転中は給水及び外部への
送水を停止すると共に、この間に予め設定した所定回数
分の循環脱気が終了したときに循環ポンプの吐出ライン
を噴射ノズル装置から保水タンクへ切り換える時限装置
を更に備えたことを特徴とする請求項4に記載の脱気殺
菌装置。
5. During the operation of the circulation pump, the water supply and the water supply to the outside are stopped, and when the circulation deaeration for a predetermined number of times is completed during this time, the discharge line of the circulation pump is kept from the injection nozzle device. The deaeration / sterilization apparatus according to claim 4, further comprising a time limiter for switching to a tank.
JP13559099A 1999-05-17 1999-05-17 Degassing sterilizer Expired - Fee Related JP3464626B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13559099A JP3464626B2 (en) 1999-05-17 1999-05-17 Degassing sterilizer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13559099A JP3464626B2 (en) 1999-05-17 1999-05-17 Degassing sterilizer

Publications (2)

Publication Number Publication Date
JP2000325702A true JP2000325702A (en) 2000-11-28
JP3464626B2 JP3464626B2 (en) 2003-11-10

Family

ID=15155391

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13559099A Expired - Fee Related JP3464626B2 (en) 1999-05-17 1999-05-17 Degassing sterilizer

Country Status (1)

Country Link
JP (1) JP3464626B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003086479A1 (en) * 2002-04-12 2003-10-23 Throwleigh Technologies, L.L.C. Methods and apparatus for decontaminating fluids
US7118852B2 (en) 2002-04-11 2006-10-10 Throwleigh Technologies, L.L.C. Methods and apparatus for decontaminating fluids
JP2006305427A (en) * 2005-04-26 2006-11-09 Honda Electronic Co Ltd Ultrasonic treatment apparatus and ultrasonic treatment method
FR2894154A1 (en) * 2005-12-06 2007-06-08 Pharmatop Scr NOVEL METHOD FOR STABILIZING OXIDATION - SENSITIVE MINERAL OR ORGANIC SUBSTANCES.
JP2011104501A (en) * 2009-11-16 2011-06-02 Mingasu:Kk Gas separation apparatus and gas separation method
CN103480182A (en) * 2013-10-17 2014-01-01 科威信(无锡)洗净科技有限公司 Circular and continuous degassing device
CN110143651A (en) * 2019-04-17 2019-08-20 濮阳可利威化工有限公司 A kind of sewage sterilization system and its method
CN110156227A (en) * 2019-05-31 2019-08-23 濮阳可利威化工有限公司 A kind of sewage disposal system and method
CN111053179A (en) * 2019-12-31 2020-04-24 德清秋水果汁有限公司 Multistage film formula fruit juice vacuum degassing jar

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3013544U (en) 1995-01-10 1995-07-18 浅田鉄工株式会社 Defoaming device

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7118852B2 (en) 2002-04-11 2006-10-10 Throwleigh Technologies, L.L.C. Methods and apparatus for decontaminating fluids
WO2003086479A1 (en) * 2002-04-12 2003-10-23 Throwleigh Technologies, L.L.C. Methods and apparatus for decontaminating fluids
JP2005524683A (en) * 2002-04-12 2005-08-18 スロウレイ・テクノロジーズ・エルエルシー Method and apparatus for decontaminating fluids
AU2002306757B2 (en) * 2002-04-12 2009-07-02 Throwleigh Technologies, L.L.C. Methods and apparatus for decontaminating fluids
JP2006305427A (en) * 2005-04-26 2006-11-09 Honda Electronic Co Ltd Ultrasonic treatment apparatus and ultrasonic treatment method
WO2007065999A3 (en) * 2005-12-06 2007-09-20 Pharmatop Scr Method for producing injectable solutions by degassing liquids and the use thereof for stabilising oxidation-sensitive substances
WO2007065999A2 (en) * 2005-12-06 2007-06-14 Pharmatop Method for producing injectable solutions by degassing liquids and the use thereof for stabilising oxidation-sensitive substances
FR2894154A1 (en) * 2005-12-06 2007-06-08 Pharmatop Scr NOVEL METHOD FOR STABILIZING OXIDATION - SENSITIVE MINERAL OR ORGANIC SUBSTANCES.
JP2011104501A (en) * 2009-11-16 2011-06-02 Mingasu:Kk Gas separation apparatus and gas separation method
CN103480182A (en) * 2013-10-17 2014-01-01 科威信(无锡)洗净科技有限公司 Circular and continuous degassing device
CN110143651A (en) * 2019-04-17 2019-08-20 濮阳可利威化工有限公司 A kind of sewage sterilization system and its method
CN110143651B (en) * 2019-04-17 2021-12-03 濮阳可利威化工有限公司 Sewage disinfection system and method thereof
CN110156227A (en) * 2019-05-31 2019-08-23 濮阳可利威化工有限公司 A kind of sewage disposal system and method
CN111053179A (en) * 2019-12-31 2020-04-24 德清秋水果汁有限公司 Multistage film formula fruit juice vacuum degassing jar
CN111053179B (en) * 2019-12-31 2024-02-20 德清秋水果汁有限公司 Multistage film type fruit juice vacuum degassing tank

Also Published As

Publication number Publication date
JP3464626B2 (en) 2003-11-10

Similar Documents

Publication Publication Date Title
JP2006272232A (en) Method for forming superfine bubble, its device and sterilizing or disinfecting facility using it
US4906387A (en) Method for removing oxidizable contaminants in cooling water used in conjunction with a cooling tower
JP3929472B2 (en) Gas dissolution amount adjusting device and system
EP2036864A1 (en) Water treatment apparatus
CA2344174A1 (en) Method and apparatus for continuous or intermittent supply of ozonated water
JP7165447B2 (en) Gas injection system for optimizing nanobubble formation in disinfectant solutions
US20030234173A1 (en) Method and apparatus for treating fluid mixtures with ultrasonic energy
JP6261814B2 (en) Washing apparatus and washing method, and membrane separation bioreactor
JP2000325702A (en) Device for sterilizing and degassing
RU2305073C9 (en) Installation for purification and decontamination of the water
JP6884955B2 (en) Hydrogen water production system and hydrogen water production method
US6228273B1 (en) Apparatus and method for control of rate of dissolution of solid chemical material into solution
Starchevskyy et al. The effectiveness of food industry wastewater treatment by means of different kinds of cavitation generators
US20120248016A1 (en) Fluid handling and cleaning circulation system
JP7093564B2 (en) Infectious waste treatment equipment
RU2304561C2 (en) Installation for purification and decontamination of the water
KR100904722B1 (en) Apparatus for generating micro-buble
JP2006346633A (en) Apparatus and method for treating liquid
JP4313492B2 (en) Deaerator
JP3644557B2 (en) Deaerator
KR101699039B1 (en) Apparatus for manufacturing sterilization water
JP3825149B2 (en) Water treatment equipment
RU2600353C2 (en) Method of treating water and aqueous solutions and installation for its implementation
JP3961649B2 (en) Deaerator
KR101671410B1 (en) Water treatement apparatus for reusing rainwater and waste water

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313118

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080822

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080822

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080822

Year of fee payment: 5

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080822

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080822

Year of fee payment: 5

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080822

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080822

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090822

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees