JP2006305427A - Ultrasonic treatment apparatus and ultrasonic treatment method - Google Patents

Ultrasonic treatment apparatus and ultrasonic treatment method Download PDF

Info

Publication number
JP2006305427A
JP2006305427A JP2005128765A JP2005128765A JP2006305427A JP 2006305427 A JP2006305427 A JP 2006305427A JP 2005128765 A JP2005128765 A JP 2005128765A JP 2005128765 A JP2005128765 A JP 2005128765A JP 2006305427 A JP2006305427 A JP 2006305427A
Authority
JP
Japan
Prior art keywords
liquid
ultrasonic
processing chamber
processed
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005128765A
Other languages
Japanese (ja)
Other versions
JP4775694B2 (en
Inventor
Yoshiyuki Asakura
義幸 朝倉
Shinobu Koda
忍 香田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Electronics Co Ltd
Original Assignee
Honda Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Electronics Co Ltd filed Critical Honda Electronics Co Ltd
Priority to JP2005128765A priority Critical patent/JP4775694B2/en
Publication of JP2006305427A publication Critical patent/JP2006305427A/en
Application granted granted Critical
Publication of JP4775694B2 publication Critical patent/JP4775694B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Degasification And Air Bubble Elimination (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Apparatuses For Generation Of Mechanical Vibrations (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an ultrasonic treatment apparatus having a simple configuration and capable of efficiently carrying out liquid treatment using ultrasonic energy. <P>SOLUTION: The ultrasonic treatment apparatus 10 comprises a reaction tank 12 having an ultrasonic transducer 13 for generating ultrasonic wave in the outside of the bottom part 19. The reaction tank 12 is vertically partitioned by a partitioning plate 15. The region in the lower side of the partitioning plate 15 is used as a secondary treatment chamber 16 and the region in the upper side is used as a primary treatment chamber 17. A liquid W1 to be treated by ultrasonic radiation is at first supplied to the primary treatment chamber 17. The liquid W1 passed through the primary treatment chamber 17 is supplied to the secondary treatment chamber 16 via a flow path 26. The liquid W1 in the secondary treatment chamber 16 works as a medium for transmitting ultrasonic wave to the liquid W1 in the primary treatment chamber 17. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、液体に超音波を照射し、その超音波のエネルギーを利用して液体処理を行う超音波処理装置、及び超音波処理方法に関するものである。   The present invention relates to an ultrasonic processing apparatus and an ultrasonic processing method for irradiating a liquid with ultrasonic waves and performing liquid processing using the ultrasonic energy.

所定周波数域の強力な超音波を液体に照射すると、キャビテーションと呼ばれるナノレベルからミクロンレベルの微小気泡が発生し、その圧縮、崩壊過程を経てホットスポットと呼ばれる数千度、数千気圧の反応場が局所的に形成されることが知られている。近年ではこの反応場は一種の極限反応場として注目を浴びており、この極限反応場を利用して液体の処理(例えば、化学反応の誘起・促進、物質の分散、殺菌、乳化等の処理)を行う超音波処理装置の開発が進められている。ただし、かかる装置は実験室レベルにとどまり、未だ実用化には到っていない。   When the liquid is irradiated with powerful ultrasonic waves in a predetermined frequency range, nano- to micron-level bubbles called cavitation are generated, and after a process of compression and collapse, a reaction field of several thousand degrees and several thousand atmospheres called a hot spot is generated. Is known to form locally. In recent years, this reaction field has attracted attention as a kind of limit reaction field, and liquid processing (for example, induction / promotion of chemical reaction, dispersion of substance, sterilization, emulsification, etc.) using this limit reaction field. Development of an ultrasonic treatment apparatus that performs the above-mentioned process is underway. However, such a device remains at the laboratory level and has not yet been put into practical use.

また、このような超音波処理装置としては、超音波を被処理液体に照射することによりその被処理液体の化学反応を促進させる超音波反応装置(ソノリアクタ)が、既に提案されている(特許文献1参照)。   In addition, as such an ultrasonic processing apparatus, an ultrasonic reaction apparatus (sono reactor) that promotes a chemical reaction of the liquid to be processed by irradiating the liquid to be processed with ultrasonic waves has already been proposed (Patent Literature). 1).

図5には、特許文献1に記載された超音波反応装置101が概略的に示されている。この超音波反応装置101は、超音波を発生させるための超音波振動子102と、被処理液体W1が注入される反応槽103と、被処理液体W1を効率よく循環させるための筒状の循環補助部材104とを備えている。超音波振動子102は反応槽103の底部106に固定されており、発振回路105の発振信号に基づいて超音波振動子102が振動することにより超音波を発生する。また、循環補助部材104は、超音波振動子102の振動面に対して内面が垂直となるよう超音波振動子102の真上に配置されている。   FIG. 5 schematically shows an ultrasonic reaction device 101 described in Patent Document 1. The ultrasonic reaction apparatus 101 includes an ultrasonic vibrator 102 for generating ultrasonic waves, a reaction tank 103 into which the liquid to be processed W1 is injected, and a cylindrical circulation for efficiently circulating the liquid to be processed W1. And an auxiliary member 104. The ultrasonic vibrator 102 is fixed to the bottom 106 of the reaction vessel 103, and generates ultrasonic waves when the ultrasonic vibrator 102 vibrates based on the oscillation signal of the oscillation circuit 105. Further, the circulation assisting member 104 is disposed directly above the ultrasonic transducer 102 so that the inner surface is perpendicular to the vibration surface of the ultrasonic transducer 102.

このように構成された超音波反応装置101において、超音波振動子102を作動させて被処理液体W1に超音波を照射すると、筒状の循環補助部材104内にて被処理液体W1の流れが生じ、被処理液体W1が反応槽103内で積極的に循環する。
特開2003−71277号公報
In the ultrasonic reaction apparatus 101 configured as described above, when the ultrasonic transducer 102 is operated to irradiate the liquid to be processed W1 with ultrasonic waves, the flow of the liquid to be processed W1 in the cylindrical circulation assisting member 104 flows. The liquid W1 to be treated is actively circulated in the reaction tank 103.
JP 2003-71277 A

ところで、超音波反応装置において、被処理液体を大量に処理するためには、容量が大きな反応槽を用いて処理能力を向上させることが必要となるが、反応槽の高さが数十センチ以上となると、反応槽の全体で均一に化学反応を誘起・促進させることが困難となる。例えば、下方から超音波を照射して被処理液体の液面で反射させる処理槽では、超音波が反射する液面で化学反応が起こりやすく、反応槽の下部では化学反応があまり起こらない。そのため、攪拌部材などを用いて被処理液体の循環や攪拌をしなければ、被処理液体を効率よく処理することができない。   By the way, in the ultrasonic reaction apparatus, in order to process a large amount of liquid to be processed, it is necessary to improve the processing capacity using a reaction tank having a large capacity, but the height of the reaction tank is several tens of centimeters or more. Then, it becomes difficult to induce and promote a chemical reaction uniformly in the entire reaction tank. For example, in a treatment tank in which ultrasonic waves are irradiated from below and reflected by the liquid surface of the liquid to be treated, a chemical reaction is likely to occur on the liquid surface where the ultrasonic waves are reflected, and a chemical reaction does not occur much in the lower part of the reaction tank. Therefore, the liquid to be processed cannot be efficiently processed unless the liquid to be processed is circulated or stirred using a stirring member or the like.

特許文献1の超音波反応装置101は、設置された筒状の循環補助部材104の作用により被処理液体W1が反応槽103内で循環する構造であるため、あえて攪拌部材を用いる必要がない。しかし、その超音波反応装置101で用いられる反応槽103は、閉じた容器を用いて構成されたバッチ式であるため、被処理液体W1を大量に処理することができない。つまり、被処理液体W1を大量に処理するためには、外部から被処理液体W1を反応槽103に供給するとともに化学反応後の被処理液体W1を反応槽103から排出するといった流通型の装置構成とすることが好ましい。しかし、その構成を採用すると、循環補助部材104が流通の障害となって、被処理液体W1を効率よく処理することができなくなる。また、循環補助部材104のような障害物が被処理液体W1中に存在することは、反応効率の高い好適な音場を被処理液体W1中に形成するうえでマイナスに作用する。   Since the ultrasonic reaction apparatus 101 of Patent Document 1 has a structure in which the liquid W1 to be treated is circulated in the reaction tank 103 by the action of the installed cylindrical circulation auxiliary member 104, it is not necessary to use a stirring member. However, since the reaction tank 103 used in the ultrasonic reaction device 101 is a batch type configured using a closed container, the liquid W1 to be processed cannot be processed in a large amount. That is, in order to process the liquid W1 to be processed in a large amount, a flow-type apparatus configuration in which the liquid W1 to be processed is supplied from the outside to the reaction tank 103 and the liquid W1 after chemical reaction is discharged from the reaction tank 103. It is preferable that However, if the configuration is adopted, the circulation auxiliary member 104 becomes an obstacle to the flow, and the liquid W1 to be processed cannot be efficiently processed. In addition, the presence of an obstacle such as the circulation assisting member 104 in the liquid to be processed W1 has a negative effect in forming a suitable sound field with high reaction efficiency in the liquid to be processed W1.

そこで本願発明者は上記問題を解決しうる超音波処理装置及び方法を既に提案している。この超音波処理装置201の主要部を図6に概略的に示す。この装置201では、処理槽202が上下に仕切られる結果、その上半部が液体供給処理部203となり、その下半部が超音波伝播部(ダミー液体充填部)204となっている。従って、底部205に設けた超音波振動子206を発振回路207で作動させると、超音波が超音波伝播部204に照射される。すると、超音波伝播部204内に充填された脱気水W2を介して、超音波が液体供給処理部203の被処理液体W1に間接的に伝播し、液体供給処理部203内で反応が起こるようになっている。ただし、本願発明者は、液体処理効率の向上についてまだ改良の余地があると感じている。   Therefore, the present inventor has already proposed an ultrasonic processing apparatus and method capable of solving the above-described problems. The main part of this ultrasonic processing apparatus 201 is schematically shown in FIG. In this apparatus 201, as a result of partitioning the processing tank 202 up and down, the upper half is the liquid supply processing unit 203, and the lower half is the ultrasonic wave propagation unit (dummy liquid filling unit) 204. Therefore, when the ultrasonic transducer 206 provided on the bottom portion 205 is operated by the oscillation circuit 207, the ultrasonic wave is applied to the ultrasonic wave propagation unit 204. Then, ultrasonic waves propagate indirectly to the liquid W1 to be treated of the liquid supply processing unit 203 through the deaerated water W2 filled in the ultrasonic propagation unit 204, and a reaction occurs in the liquid supply processing unit 203. It is like that. However, the present inventor feels that there is still room for improvement with regard to the improvement of the liquid processing efficiency.

また、この装置201では、脱気水W2の体積変動を吸収するための貯留部208を処理槽202の外部に設け、それを超音波伝播部204に接続している。そして本願発明者は、この貯留部208を省略することで装置201の簡略化や小型化を図ろうと考えている。しかし、処理槽202は脱気槽を兼ねるものであるため、単純にこれを省略してしまうと、超音波伝播部204内に気体が残留して超音波の伝播を妨げる結果となる。ゆえに、この構成を採用すると、かえって液体処理効率を低下させてしまう可能性がある。   Moreover, in this apparatus 201, the storage part 208 for absorbing the volume fluctuation | variation of deaerated water W2 is provided in the exterior of the processing tank 202, and it is connected to the ultrasonic wave propagation part 204. The inventor of the present application intends to simplify and downsize the apparatus 201 by omitting the storage unit 208. However, since the processing tank 202 also serves as a deaeration tank, if it is simply omitted, the gas remains in the ultrasonic wave propagation unit 204 and the propagation of the ultrasonic wave is hindered. Therefore, if this configuration is adopted, there is a possibility that the liquid processing efficiency may be lowered.

本発明は上記の課題に鑑みてなされたものであり、その目的は、構成が簡単であって、しかも超音波エネルギーを利用した液体処理を効率よく行うことができる超音波処理装置、及び超音波処理方法を提供することにある。   The present invention has been made in view of the above problems, and an object of the present invention is to provide an ultrasonic processing apparatus capable of performing liquid processing efficiently using ultrasonic energy with a simple configuration, and ultrasonic waves. It is to provide a processing method.

上記課題を解決するために、請求項1に記載の発明は、処理槽と、前記処理槽に設置された超音波振動子と、前記処理槽内を前記超音波振動子から遠い一次処理室と前記超音波振動子から近い二次処理室とに区画する仕切り部材と、前記一次処理室及び前記二次処理室間を連通させる通路とを備えた超音波処理装置であって、前記一次処理室内には、超音波の照射によって処理されるべき被処理液体が最初に供給可能であり、前記二次処理室内には、前記一次処理室を通過した前記被処理液体が前記通路を介して供給可能であり、前記二次処理室内の前記被処理液体は、前記超音波振動子が発生した超音波を前記一次処理室内の前記被処理液体に伝播させる媒体として作用しうることを特徴とする超音波処理装置をその要旨とする。   In order to solve the above-mentioned problem, the invention described in claim 1 includes a processing tank, an ultrasonic vibrator installed in the processing tank, a primary processing chamber far from the ultrasonic vibrator in the processing tank, An ultrasonic processing apparatus comprising: a partition member partitioned into a secondary processing chamber close to the ultrasonic transducer; and a passage communicating between the primary processing chamber and the secondary processing chamber, wherein the primary processing chamber The liquid to be processed to be processed by ultrasonic irradiation can be supplied first, and the liquid to be processed that has passed through the primary processing chamber can be supplied to the secondary processing chamber through the passage. And the liquid to be processed in the secondary processing chamber can act as a medium for propagating the ultrasonic wave generated by the ultrasonic transducer to the liquid to be processed in the primary processing chamber. The gist of the processing apparatus.

従って、請求項1に記載の発明によると、超音波振動子の発生した超音波は、まず超音波振動子から近い二次処理室内の被処理液体を通過した後、超音波振動子から遠い一次処理室内の被処理液体に伝播する。この場合、二次処理室内の被処理液体を超音波が通過する際に音場が整えられるため、一次処理室にて効率よく所定の微小気体が発生し、効率よく液体処理を行うことが可能となる。また、この構成によれば、攪拌部材や循環補助部材などを処理槽内に設ける必要がなくなる。しかも、被処理液体は一次処理室内での超音波処理により脱気された後に二次処理室に供給されるので、二次処理室にあえて脱気槽を設ける必要もなくなる。よって、簡単な構成で被処理液体を大量にかつ効率よく処理することができる。加えて、二次処理室内においても被処理液体に超音波が作用することから、二次処理室が単なる超音波伝播部(ダミー液体充填部)である場合に比べて、液体処理効率が向上する。   Therefore, according to the first aspect of the present invention, the ultrasonic wave generated by the ultrasonic vibrator first passes through the liquid to be processed in the secondary processing chamber near the ultrasonic vibrator, and then is distant from the ultrasonic vibrator. Propagates to the liquid to be processed in the processing chamber. In this case, since the sound field is adjusted when the ultrasonic wave passes through the liquid to be processed in the secondary processing chamber, a predetermined minute gas is efficiently generated in the primary processing chamber, and the liquid processing can be performed efficiently. It becomes. Moreover, according to this structure, it is not necessary to provide a stirring member, a circulation auxiliary member, etc. in a processing tank. Moreover, since the liquid to be processed is supplied to the secondary processing chamber after being deaerated by ultrasonic treatment in the primary processing chamber, it is not necessary to provide a degassing tank in the secondary processing chamber. Therefore, the liquid to be processed can be processed in large quantities and efficiently with a simple configuration. In addition, since the ultrasonic wave acts on the liquid to be processed in the secondary processing chamber, the liquid processing efficiency is improved as compared with the case where the secondary processing chamber is a simple ultrasonic wave propagation portion (dummy liquid filling portion). .

なお、本発明における被処理液体の処理としては、化学反応の誘起・促進、物質の分散、殺菌、乳化などを挙げることができる。   Examples of the treatment of the liquid to be treated in the present invention include induction and promotion of chemical reaction, dispersion of substances, sterilization, and emulsification.

前記超音波振動子は前記処理槽の底部に設置されることが好ましく、前記仕切り部材は前記処理槽内を上下に仕切って前記一次処理室と前記二次処理室とに区画することが好ましい(請求項2)。この構成によると、処理槽の底部にて発生した超音波が、二次処理室内の被処理液体を通過した後に一次処理室内の被処理液体に伝播する結果、被処理液体の液面付近に微小気泡を発生させる。また、一次処理室の下方に二次処理室が位置しているため、ポンプ等の圧送手段を用いなくても、通路を介した二次処理室内への被処理液体の供給をスムーズに行うことができる。   The ultrasonic transducer is preferably installed at the bottom of the processing tank, and the partition member is preferably divided into the primary processing chamber and the secondary processing chamber by dividing the inside of the processing tank up and down ( Claim 2). According to this configuration, the ultrasonic wave generated at the bottom of the processing tank passes through the liquid to be processed in the secondary processing chamber and then propagates to the liquid to be processed in the primary processing chamber. Generate bubbles. In addition, since the secondary processing chamber is located below the primary processing chamber, the liquid to be processed can be smoothly supplied into the secondary processing chamber through the passage without using a pumping means such as a pump. Can do.

上記の仕切り部材としては、例えば超音波の波長の1/2の厚さを有する仕切り板や、波長の1/10以下の厚さを有する仕切り板が好ましい。波長の1/2の厚さの仕切り板を用いた場合、超音波がその仕切り板を透過して二次処理室側から第一処理室側に効率よく伝播される。また、波長の1/10以下の厚さの仕切り板を用いた場合、その仕切り板における超音波の反射が抑制されて、第一処理室側に超音波が効率よく伝播される。さらに、仕切り部材は、処理槽における高さ位置が調整可能に固定されることが好ましい。このようにすると、仕切り部材を超音波の波長に応じた最適な位置に設定することができ、超音波をより確実に伝播させることができる。   As said partition member, the partition plate which has the thickness of 1/2 of the wavelength of an ultrasonic wave, for example, and the partition plate which has the thickness of 1/10 or less of a wavelength are preferable. When a partition plate having a thickness of 1/2 of the wavelength is used, ultrasonic waves are transmitted through the partition plate and efficiently propagated from the secondary processing chamber side to the first processing chamber side. Further, when a partition plate having a thickness of 1/10 or less of the wavelength is used, reflection of ultrasonic waves at the partition plate is suppressed, and the ultrasonic waves are efficiently propagated to the first processing chamber side. Furthermore, it is preferable that the partition member is fixed so that the height position in the treatment tank can be adjusted. If it does in this way, a partition member can be set in the optimal position according to the wavelength of an ultrasonic wave, and an ultrasonic wave can be propagated more reliably.

また本発明は、バッチ式の超音波処理装置として具体化することもできるが、流通式の超音波処理装置として具体化することが好ましい。後者のようにすると、被処理液体を処理槽に流しながら連続的に液体処理を行うことができる。そのため、被処理液体の大量処理が可能となり、処理効率が大幅に向上する。   The present invention can be embodied as a batch-type ultrasonic treatment apparatus, but is preferably embodied as a flow-type ultrasonic treatment apparatus. In the latter case, the liquid treatment can be continuously performed while flowing the liquid to be treated into the treatment tank. Therefore, a large amount of liquid to be processed can be processed, and the processing efficiency is greatly improved.

前記通路は前記処理槽の外部に設けられていることが好ましい(請求項3)。仮に通路を処理槽の内部に設けた場合、その通路が被処理液体を通過する超音波にとって障害物となり、反応効率の高い好適な音場の形成にマイナスに作用する可能性がある。その点、請求項3に記載の発明によると、通路が超音波にとって障害物とならないため、反応効率の高い好適な音場を形成しやすくなる。   The passage is preferably provided outside the processing tank (claim 3). If a passage is provided inside the treatment tank, the passage may be an obstacle to the ultrasonic wave passing through the liquid to be treated, and may negatively affect the formation of a suitable sound field with high reaction efficiency. In that respect, according to the invention described in claim 3, since the passage does not become an obstacle to the ultrasonic wave, it is easy to form a suitable sound field with high reaction efficiency.

請求項4に記載の発明は、処理槽内の被処理液体に超音波を照射してその処理を行う超音波処理方法であって、前記処理槽内を、超音波振動子から遠い一次処理室と前記超音波振動子から近い二次処理室とに区画するとともに、前記被処理液体を前記一次処理室側から前記二次処理室側に流通させながら、前記二次処理室内の前記被処理液体を介して前記一次処理室内の前記被処理液体に超音波を照射することを特徴とする超音波処理方法をその要旨とする。この場合、前記一次処理室内にて前記被処理液体に超音波を照射することにより、前記被処理液体を脱気することが好ましい(請求項5)。   Invention of Claim 4 is the ultrasonic processing method which irradiates the to-be-processed liquid in a processing tank, and performs the process, Comprising: The inside of the said processing tank is a primary processing chamber far from an ultrasonic transducer | vibrator And the secondary processing chamber close to the ultrasonic transducer, and the liquid to be processed in the secondary processing chamber while flowing the liquid to be processed from the primary processing chamber side to the secondary processing chamber side. The gist of the ultrasonic processing method is to irradiate the liquid to be processed in the primary processing chamber via the ultrasonic wave. In this case, it is preferable to deaerate the liquid to be processed by irradiating the liquid to be processed with ultrasonic waves in the primary processing chamber.

従って、請求項4,5に記載の発明によると、超音波振動子の発生した超音波は、まず超音波振動子から近い二次処理室内の被処理液体を通過した後、超音波振動子から遠い一次処理室内の被処理液体に伝播する。この場合、二次処理室内の被処理液体を超音波が通過する際に音場が整えられるため、一次処理室にて効率よく所定の微小気体が発生し、効率よく液体処理を行うことが可能となる。また、この方法によれば、攪拌部材や循環補助部材などを処理槽内に設ける必要がなくなる。しかも、被処理液体は一次処理室内での超音波処理により脱気された後に二次処理室に供給されるので、二次処理室にあえて脱気槽を設ける必要もなくなる。よって、簡単な構成で被処理液体を大量にかつ効率よく処理することができる。加えて、二次処理室内においても被処理液体に超音波が作用することから、二次処理室が単なる超音波伝播部(ダミー液体充填部)である場合に比べて、液体処理効率が向上する。   Therefore, according to the fourth and fifth aspects of the invention, the ultrasonic wave generated by the ultrasonic vibrator first passes through the liquid to be processed in the secondary processing chamber close to the ultrasonic vibrator, and then from the ultrasonic vibrator. Propagates to the liquid to be processed in the distant primary processing chamber. In this case, since the sound field is adjusted when the ultrasonic wave passes through the liquid to be processed in the secondary processing chamber, a predetermined minute gas is efficiently generated in the primary processing chamber, and the liquid processing can be performed efficiently. It becomes. Moreover, according to this method, it is not necessary to provide a stirring member, a circulation auxiliary member, or the like in the processing tank. Moreover, since the liquid to be processed is supplied to the secondary processing chamber after being deaerated by ultrasonic treatment in the primary processing chamber, it is not necessary to provide a degassing tank in the secondary processing chamber. Therefore, the liquid to be processed can be processed in large quantities and efficiently with a simple configuration. In addition, since the ultrasonic wave acts on the liquid to be processed in the secondary processing chamber, the liquid processing efficiency is improved as compared with the case where the secondary processing chamber is a simple ultrasonic wave propagation portion (dummy liquid filling portion). .

以上詳述したように請求項1乃至5に記載の発明によれば、被処理液体の攪拌・循環用の部材も脱気槽も不要なため構成が簡単であって、しかも超音波エネルギーを利用した液体処理を効率よく行うことができる。   As described in detail above, according to the first to fifth aspects of the present invention, since the member for stirring and circulating the liquid to be treated and the deaeration tank are unnecessary, the configuration is simple, and ultrasonic energy is used. The liquid treatment can be performed efficiently.

以下、本発明を流通式の超音波反応装置(ソノリアクタ)に具体化した一実施の形態を図1に基づき説明する。なお、本実施形態の超音波反応装置10は、超音波処理を行うことで微小気泡を発生するものであるため、「超音波気泡発生装置」として把握することも可能である。   Hereinafter, an embodiment in which the present invention is embodied in a flow-type ultrasonic reaction apparatus (sono reactor) will be described with reference to FIG. In addition, since the ultrasonic reaction apparatus 10 of this embodiment produces | generates a microbubble by performing an ultrasonic treatment, it can also be grasped | ascertained as an "ultrasonic bubble generator."

図1に示すように、この超音波反応装置10は、長方形の箱状をなす反応槽12と、その反応槽12の底部の外側に設けられた複数の超音波振動子13とを備えている。本実施の形態の超音波振動子13は、平板状の圧電セラミックスからなり、発振回路14の発振信号に基づいて、周波数が500kHzの超音波20を出力する。なお、反応槽12の形状は特に限定されず、例えば円筒状などであってもよい。   As shown in FIG. 1, the ultrasonic reaction device 10 includes a reaction tank 12 having a rectangular box shape, and a plurality of ultrasonic transducers 13 provided outside the bottom of the reaction tank 12. . The ultrasonic transducer 13 of the present embodiment is made of a plate-shaped piezoelectric ceramic, and outputs an ultrasonic wave 20 having a frequency of 500 kHz based on the oscillation signal of the oscillation circuit 14. In addition, the shape of the reaction tank 12 is not specifically limited, For example, cylindrical shape etc. may be sufficient.

本実施の形態における反応槽12には、その槽内を仕切って上下に区画する仕切り板15が設けられている。ここでは、仕切り板15として、超音波20の波長の1/2の厚さを有する板材(例えば、アクリル樹脂プレート)を用いている。具体的にいうと、周波数500kHzの超音波20の波長は約3mmであるため、ここでは厚さ約1.5mmのアクリル樹脂プレートを用いている。なお、この程度の厚さのアクリル樹脂プレートは、仕切り板15に必要とされる所望の剛性、強度も備えている。従って、使用時に液圧が加わったとしても変形や破壊が起きにくいものとなっている。   The reaction tank 12 in the present embodiment is provided with a partition plate 15 that partitions the inside of the tank and divides it vertically. Here, a plate material (for example, an acrylic resin plate) having a thickness of ½ of the wavelength of the ultrasonic wave 20 is used as the partition plate 15. Specifically, since the wavelength of the ultrasonic wave 20 having a frequency of 500 kHz is about 3 mm, an acrylic resin plate having a thickness of about 1.5 mm is used here. The acrylic resin plate having such a thickness also has desired rigidity and strength required for the partition plate 15. Therefore, even when hydraulic pressure is applied during use, deformation and destruction are unlikely to occur.

仕切り板15によって仕切られた反応槽12は、上側半分の領域が、超音波20による被処理液体W1の処理を最初に行う一次処理室17となっていて、下側半分の領域が、超音波20による被処理液体W1の処理をその次に行う二次処理室16となっている。また、超音波振動子13を基準とすると、二次処理室16のほうが超音波振動子13から近い位置にあり、一次処理室17のほうが超音波振動子13から遠い位置にある。反応槽12の一次処理室17には、一次処理室17内に被処理液体W1を供給するための供給用配管21が接続されている。一方、反応槽12の二次処理室16には、二次処理室16内から被処理液体W1を排出するための排出用配管22が接続されている。そして、反応槽12の外部には、一次処理室17及び二次処理室16間を連通させる通路としての移送用配管26が配設されている。移送用配管26における一方の端部は一次処理室17の側面上部に接続され、他方の端部は二次処理室16の側面上部に接続されている。なお、図1では半円状に湾曲した移送用配管26を例示しているが、その形状は特に限定されず変更してもよい。   In the reaction tank 12 partitioned by the partition plate 15, the upper half region is a primary processing chamber 17 in which the treatment of the liquid W <b> 1 to be treated by the ultrasonic wave 20 is first performed, and the lower half region is an ultrasonic wave. The secondary processing chamber 16 performs the processing of the liquid W1 to be processed by 20 next. When the ultrasonic transducer 13 is used as a reference, the secondary processing chamber 16 is closer to the ultrasonic transducer 13 and the primary processing chamber 17 is farther from the ultrasonic transducer 13. A supply pipe 21 for supplying the liquid W1 to be processed into the primary processing chamber 17 is connected to the primary processing chamber 17 of the reaction tank 12. On the other hand, a discharge pipe 22 for discharging the liquid W1 to be processed from the secondary processing chamber 16 is connected to the secondary processing chamber 16 of the reaction tank 12. A transfer pipe 26 is disposed outside the reaction tank 12 as a passage for communicating between the primary processing chamber 17 and the secondary processing chamber 16. One end of the transfer pipe 26 is connected to the upper side of the primary processing chamber 17, and the other end is connected to the upper side of the secondary processing chamber 16. 1 illustrates the transfer pipe 26 curved in a semicircular shape, the shape thereof is not particularly limited and may be changed.

また、供給用配管21の途中には開閉バルブ23が設けられている。開閉バルブ23を開状態にすると、被処理液体W1が供給用配管21を通してまず反応槽12の一次処理室17内に供給され、そこで超音波20の照射による処理を受ける。次に、一次処理室17内の被処理液体W1は、移送用配管26を介して二次処理室16内に供給され、そこでも超音波20の照射による処理を受ける。その後、二次処理室16内の被処理液体W1は、排出用配管22を通して反応槽12から排出される。   An opening / closing valve 23 is provided in the middle of the supply pipe 21. When the on-off valve 23 is opened, the liquid W1 to be processed is first supplied into the primary processing chamber 17 of the reaction tank 12 through the supply pipe 21 and is subjected to processing by irradiation with the ultrasonic wave 20 there. Next, the liquid W1 to be processed in the primary processing chamber 17 is supplied into the secondary processing chamber 16 via the transfer pipe 26 and is also subjected to processing by irradiation with the ultrasonic waves 20 there. Thereafter, the liquid W1 to be processed in the secondary processing chamber 16 is discharged from the reaction tank 12 through the discharge pipe 22.

また、この反応槽12の上部、詳しくは一次処理室17内の被処理液体W1の上部には、空気層A1が存在している。一次処理室17の上端面の一部は開放されていて、空気層A1と反応槽12の外部領域とが連通している。   In addition, an air layer A1 exists above the reaction tank 12, specifically, above the liquid W 1 to be processed in the primary processing chamber 17. A part of the upper end surface of the primary processing chamber 17 is open, and the air layer A1 and the external region of the reaction tank 12 communicate with each other.

ここで被処理液体W1の一例としては農薬などの有機化合物を含む廃水を挙げることができ、その処理とは前記廃水中に含まれる有機化合物を分解して無害化する処理(通常は酸化分解反応)を挙げることができる。この場合、前記処理は連続処理であってもよく非連続処理(いわゆるバッチ処理)であってもよいが、本実施形態では大量処理を目的とするため、連続処理を行う流通式の構成を採用している。   Here, as an example of the liquid W1 to be treated, waste water containing organic compounds such as agricultural chemicals can be mentioned, and the treatment is treatment for decomposing and detoxifying the organic compounds contained in the waste water (usually oxidative degradation reaction) ). In this case, the processing may be continuous processing or non-continuous processing (so-called batch processing), but in this embodiment, for the purpose of mass processing, a flow-type configuration that performs continuous processing is adopted. is doing.

本実施の形態において超音波反応装置10には、それを制御するための制御装置30が設けられている。制御装置30は、CPU31、ROM32、RAM33、入出力ポート(図示略)などからなる周知のマイクロコンピュータにより構成され、発振回路14及び開閉バルブ23と電気的に接続されている。制御装置30を構成するROM32は制御プログラムを記憶しており、CPU31はRAM33を利用してその制御プログラムを実行する。その結果、制御装置30は各種の制御信号を出力して、超音波反応装置10の発振回路14や開閉バルブ23を制御する。具体的にいうと、制御装置30は、開閉バルブ23に制御信号を出力してその開閉バルブ23を開状態にし、反応槽12への被処理液体W1の供給を開始させる。またこのとき、制御装置30は発振回路14に制御信号を出力してその発振回路14から発振信号を出力させる。この発振信号に基づいて超音波振動子13が振動することにより、超音波20が照射される。   In the present embodiment, the ultrasonic reaction device 10 is provided with a control device 30 for controlling it. The control device 30 is configured by a known microcomputer including a CPU 31, a ROM 32, a RAM 33, an input / output port (not shown), and the like, and is electrically connected to the oscillation circuit 14 and the opening / closing valve 23. The ROM 32 constituting the control device 30 stores a control program, and the CPU 31 uses the RAM 33 to execute the control program. As a result, the control device 30 outputs various control signals to control the oscillation circuit 14 and the opening / closing valve 23 of the ultrasonic reaction device 10. More specifically, the control device 30 outputs a control signal to the opening / closing valve 23 to open the opening / closing valve 23 and start supplying the liquid W1 to be treated to the reaction tank 12. At this time, the control device 30 outputs a control signal to the oscillation circuit 14 and causes the oscillation circuit 14 to output an oscillation signal. As the ultrasonic transducer 13 vibrates based on this oscillation signal, the ultrasonic wave 20 is irradiated.

超音波振動子13の発生した超音波20は、まず超音波振動子13から近い位置にある二次処理室16内の被処理液体W1に伝達し、その被処理液体W1中を上方向に進行する。その際にある程度音場が整えられる。二次処理室16内の被処理液体W1を通過した超音波20は、仕切り板15を通過した後、さらに超音波振動子13から遠い位置にある一次処理室17内の被処理液体W1に伝播する。つまり、二次処理室16内の被処理液体W1は、超音波振動子13が発生した超音波20を一次処理室17内の被処理液体W1に伝播させる媒体として作用する。一次処理室17内に伝播した超音波20は、被処理液体W1中をさらに上方向に進行し、最終的には被処理液体W1の液面(被処理液体W1と空気層A1との界面)で反射される。このため、液面近傍では定在波が発生する。その結果、ナノレベルからミクロンレベルのキャビテーションが発生し、化学反応が盛んに起こるようになる。また、このような超音波処理によるキャビテーションの発生によって、結果的に一次処理室17内の被処理液体W1が脱気される。なお、一次処理室17内にて発生した気体は、開放状態にある一次処理室17の上端面から処理槽12の外部に抜け出すようになっている。   The ultrasonic wave 20 generated by the ultrasonic vibrator 13 is first transmitted to the liquid to be treated W1 in the secondary processing chamber 16 located near the ultrasonic vibrator 13, and travels upward in the liquid to be treated W1. To do. At that time, the sound field is adjusted to some extent. The ultrasonic wave 20 that has passed through the liquid to be processed W1 in the secondary processing chamber 16 propagates to the liquid to be processed W1 in the primary processing chamber 17 that is further away from the ultrasonic transducer 13 after passing through the partition plate 15. To do. That is, the liquid to be processed W1 in the secondary processing chamber 16 acts as a medium for propagating the ultrasonic waves 20 generated by the ultrasonic transducer 13 to the liquid to be processed W1 in the primary processing chamber 17. The ultrasonic wave 20 propagated into the primary processing chamber 17 travels further upward in the liquid to be processed W1, and finally the liquid surface of the liquid to be processed W1 (interface between the liquid to be processed W1 and the air layer A1). Reflected by. For this reason, a standing wave is generated near the liquid surface. As a result, cavitation at the nano-level to micron level occurs, and chemical reactions occur actively. Further, due to the occurrence of cavitation due to such ultrasonic treatment, the liquid W1 to be treated in the primary treatment chamber 17 is deaerated as a result. The gas generated in the primary processing chamber 17 escapes from the upper end surface of the primary processing chamber 17 in an open state to the outside of the processing bath 12.

一次処理室17内にて脱気された被処理液体W1は、続いて移送用配管26を通過して二次処理室16内に供給される。二次処理室16は一次処理室17の下方に位置しているため、とりわけポンプ等の圧送手段を用いなくても、被処理液体W1は重力の作用により移送用配管26を介して自然に流下する。従って、この構成によれば二次処理室16内への被処理液体W1の供給をスムーズに行うことができる。このため、本実施形態では二次処理室16内で脱気を行うための脱気槽をあえて省略した構成となっている。また、二次処理室16内においても被処理液体W1には超音波20が作用する。二次処理室16では一次処理室17ほど定在波が発生しないため、化学反応が起こるエリアも少ないと考えられる。しかし、二次処理室16内に被処理液体W1を通じることにより、超音波20で被処理液体W1を二次的に処理(再処理)することができる。   The liquid W1 to be processed deaerated in the primary processing chamber 17 is subsequently supplied into the secondary processing chamber 16 through the transfer pipe 26. Since the secondary processing chamber 16 is located below the primary processing chamber 17, the liquid W1 to be processed naturally flows down through the transfer pipe 26 by the action of gravity without using a pumping means such as a pump. To do. Therefore, according to this configuration, the liquid W1 to be processed can be smoothly supplied into the secondary processing chamber 16. For this reason, in this embodiment, the deaeration tank for performing deaeration in the secondary processing chamber 16 is intentionally omitted. In the secondary processing chamber 16, the ultrasonic wave 20 acts on the liquid W1 to be processed. Since the standing wave is not generated in the secondary processing chamber 16 as much as the primary processing chamber 17, it is considered that the area where chemical reaction occurs is small. However, the liquid to be processed W1 can be secondarily processed (reprocessed) with the ultrasonic wave 20 by passing the liquid to be processed W1 into the secondary processing chamber 16.

反応槽12の一次処理室17において被処理液体W1が化学反応を起こすと、被処理液体W1の温度が上昇する。本願発明者は、赤外線サーモグラフィを用いて被処理液体W1の温度分布を可視化することにより、液面近傍で化学反応が盛んに起こることを確認した。   When the liquid to be processed W1 undergoes a chemical reaction in the primary processing chamber 17 of the reaction tank 12, the temperature of the liquid to be processed W1 rises. The inventor of this application has confirmed that chemical reactions occur actively in the vicinity of the liquid surface by visualizing the temperature distribution of the liquid to be treated W1 using infrared thermography.

図2には、その温度分布の様子が示されている。なお、この確認の際には、底部に超音波振動子13を設けた反応槽12を用いており、図2(a)では液面の高さが52cmとなるまで被処理液体W1を充填した状態で温度分布を確認し、図2(b)では液面の高さが26cmとなるまで被処理液体W1を充填した状態で温度分布を確認した。ここでは、説明の便宜上、各温度領域を異なるハッチングで区別して示しているが、実際には、温度毎に色分けされたカラー画像として表示される。   FIG. 2 shows the temperature distribution. In this confirmation, the reaction tank 12 provided with the ultrasonic vibrator 13 at the bottom is used, and in FIG. 2A, the liquid W1 to be treated is filled until the liquid level becomes 52 cm. The temperature distribution was confirmed in the state, and in FIG. 2B, the temperature distribution was confirmed in the state where the liquid W1 was filled until the liquid level reached 26 cm. Here, for convenience of explanation, each temperature region is indicated by different hatching, but actually, it is displayed as a color image that is color-coded for each temperature.

図2(a),(b)に示すように、液温は超音波20が反射する液面近傍で最も高くなっており、液面近傍で化学反応が最も盛んに起こることが確認された。また、図2(a)に示すように、液面が高くなると、反応槽12の上半部のほうが下半部にくらべて盛んに化学反応が起こることが確認された。ただし、超音波振動子13に近接した底部ではその超音波振動子13の振動に伴う発熱により温度が上昇していた。また、図2(a)の上半部のみと、図2(b)とを比較すると、前者においてむしろ高温エリアが多くみられ、より盛んに化学反応が起きていることがわかった。   As shown in FIGS. 2 (a) and 2 (b), the liquid temperature was highest near the liquid surface where the ultrasonic wave 20 was reflected, and it was confirmed that the chemical reaction occurred most actively near the liquid surface. Moreover, as shown to Fig.2 (a), when the liquid level became high, it was confirmed that the chemical reaction occurs more actively in the upper half part of the reaction tank 12 compared with the lower half part. However, the temperature rises at the bottom near the ultrasonic transducer 13 due to heat generated by the vibration of the ultrasonic transducer 13. Moreover, comparing only the upper half part of FIG. 2A with FIG. 2B, it was found that a high temperature area was more often seen in the former, and a chemical reaction occurred more actively.

さらに、本願発明者は、反応槽12における高さと化学反応量との関係を求めた。具体的には、0.1mol/Lのヨウ化カリウム(KI)の水溶液を反応槽12に入れ、その水溶液に超音波20を照射する。この超音波20の照射によって、水溶液中でキャビテーションが発生し、そのキャビテーションによる高温の反応場において水分子が水素ラジカル(・H)やヒドロキシラジカル(・OH)に分解される。そして、次式のように、ヒドロキシラジカル(・OH)がKI水溶液と反応する。   Furthermore, this inventor calculated | required the relationship between the height in the reaction tank 12, and the amount of chemical reactions. Specifically, an aqueous solution of 0.1 mol / L potassium iodide (KI) is put into the reaction vessel 12 and the ultrasonic wave 20 is irradiated to the aqueous solution. Cavitation is generated in the aqueous solution by the irradiation of the ultrasonic wave 20, and water molecules are decomposed into hydrogen radicals (.H) and hydroxy radicals (.OH) in a high temperature reaction field due to the cavitation. Then, as shown in the following formula, the hydroxy radical (.OH) reacts with the KI aqueous solution.

2I+2・OH→I+2OH 2I + 2 · OH → I 2 + 2OH

つまり、Iイオンが酸化することでIが生成される。このIは難溶であるため、次式のように、過剰なIイオンと反応してI イオンが生成される。 That is, I 2 is generated by oxidation of the I ion. Since this I 2 is hardly soluble, it reacts with an excess of I ions to generate I 3 ions as shown in the following formula.

+I→I I 2 + I → I 3

そして、このI を測定することにより、高さに応じた化学反応量を定量化した。具体的には、I が生成されると水溶液は黄色に変色する。その水溶液の色の変化を吸光度計で測定し、化学反応量として数値化した。 And the amount of chemical reaction according to height was quantified by measuring this I 3 . Specifically, when I 3 is generated, the aqueous solution turns yellow. The change in the color of the aqueous solution was measured with an absorptiometer and quantified as a chemical reaction amount.

図3にはその測定結果を示す。なおここでは、反応槽12における水溶液の液面の高さを52cmとして測定を行った。この測定結果でも、液面近傍で化学反応量が最も多くなっていることが確認された。同様に、液面が高くなると、反応槽12の上半部のほうが下半部よりも盛んに化学反応が起こることが確認された。   FIG. 3 shows the measurement results. Here, the measurement was performed with the height of the aqueous solution in the reaction tank 12 being 52 cm. Also from this measurement result, it was confirmed that the amount of chemical reaction was the largest near the liquid surface. Similarly, it was confirmed that when the liquid level was higher, the chemical reaction occurred more actively in the upper half of the reaction tank 12 than in the lower half.

以上の結果からすると、液面が高い大型の反応槽12の場合には、主として上半部(一次処理室17内)で化学反応が誘起・促進されるとともに、超音波20の反射面となる液面の近傍でそれが最も盛んになると結論付けられる。そのため、本実施の形態の超音波反応装置10では、反応槽12を仕切り板15によって上下に区画し、主として上半部を反応場として利用するようにしている。しかしながら、下半部(二次処理室16)においても、超音波20の作用によりある程度化学反応が起こることは明らかである。従って本実施形態では、当該下半部を単なる超音波伝播部(ダミー液体充填部)とするのではなく、被処理液体W1の再処理を行うための二次処理室16として積極的に有効利用している。   From the above results, in the case of the large reaction tank 12 having a high liquid level, the chemical reaction is induced and promoted mainly in the upper half (in the primary processing chamber 17), and becomes a reflection surface of the ultrasonic wave 20. It can be concluded that it is most prosperous near the liquid level. Therefore, in the ultrasonic reaction apparatus 10 of the present embodiment, the reaction tank 12 is partitioned up and down by the partition plate 15, and the upper half is mainly used as a reaction field. However, it is clear that a chemical reaction occurs to some extent also in the lower half (secondary processing chamber 16) due to the action of the ultrasonic wave 20. Therefore, in the present embodiment, the lower half is not simply used as an ultrasonic wave propagation part (dummy liquid filling part) but actively used as the secondary processing chamber 16 for reprocessing the liquid W1 to be processed. is doing.

さて、以上詳述した本実施形態によれば以下の効果を得ることができる。   Now, according to the embodiment described in detail above, the following effects can be obtained.

(1)本実施形態の超音波反応装置10では、反応槽12内を仕切って上下に区画する仕切り板15を設け、その下側の領域を二次処理室16として用い、その上側の領域を一次処理室17として用いている。そして、主に一次処理室17内において超音波処理による化学反応を誘起・促進させるとともに、併せて二次処理室16内においても被処理液体W1に超音波20を作用させて再処理を行うようにしている。従って、二次処理室16が単なる超音波伝播部(ダミー液体充填部)である場合に比べて、液体処理効率を向上させることができる。   (1) In the ultrasonic reaction apparatus 10 of this embodiment, the partition plate 15 which partitions the inside of the reaction tank 12 and divides it vertically is used, the lower area is used as the secondary processing chamber 16, and the upper area is used. It is used as the primary processing chamber 17. Then, the chemical reaction by ultrasonic treatment is mainly induced / promoted in the primary processing chamber 17 and, at the same time, in the secondary processing chamber 16, the ultrasonic wave 20 is applied to the liquid W1 to be reprocessed. I have to. Therefore, compared with the case where the secondary processing chamber 16 is a simple ultrasonic wave propagation part (dummy liquid filling part), the liquid processing efficiency can be improved.

(2)本実施形態の超音波反応装置10では、二次処理室16内の被処理液体W1を超音波20が通過する際に音場が整えられるため、一次処理室17内の被処理液体W1中に好適な音場が形成されやすくなる。その結果、主として一次処理室17内において効率よく所定の微小気体を発生させることが可能となる。よって、被処理液体W1の化学反応を効率よく誘起・促進させることができ、従来に比べて効率よく液体処理を行うことができる。   (2) In the ultrasonic reaction apparatus 10 of the present embodiment, since the sound field is adjusted when the ultrasonic wave 20 passes through the liquid to be processed W1 in the secondary processing chamber 16, the liquid to be processed in the primary processing chamber 17 is provided. A suitable sound field is easily formed during W1. As a result, it is possible to efficiently generate a predetermined minute gas mainly in the primary processing chamber 17. Therefore, the chemical reaction of the liquid W1 to be treated can be induced and promoted efficiently, and the liquid treatment can be performed more efficiently than before.

(3)本実施形態の超音波反応装置10では、被処理液体W1は一次処理室17内での超音波処理により脱気された後に二次処理室16に供給されるので、二次処理室16にあえて脱気槽を設ける必要がない。従って、脱気槽を省略することで、装置の簡略化、小型化、低コスト化を達成することができる。   (3) In the ultrasonic reaction apparatus 10 of this embodiment, the liquid W1 to be treated is supplied to the secondary processing chamber 16 after being degassed by ultrasonic treatment in the primary processing chamber 17, so that the secondary processing chamber It is not necessary to provide a deaeration tank. Therefore, by omitting the deaeration tank, it is possible to achieve simplification, miniaturization, and cost reduction of the apparatus.

(4)本実施形態の超音波反応装置10では、反応槽12に供給用配管21及び排出用配管22を設けるとともに、一次処理室17及び二次処理室16間を連通させる移送用配管26を設けている。よって、被処理液体W1を一次処理室17から二次処理室16に流しつつ連続的に液体処理を行うことができ、被処理液体W1の大量処理が可能となる。また、従来のように攪拌部材や循環補助部材などを反応槽12内に設ける必要がないので、それら部材が被処理液体W1の流通の障害となることもない。   (4) In the ultrasonic reaction apparatus 10 of the present embodiment, the supply pipe 21 and the discharge pipe 22 are provided in the reaction tank 12, and the transfer pipe 26 that communicates between the primary processing chamber 17 and the secondary processing chamber 16 is provided. Provided. Therefore, the liquid treatment can be continuously performed while flowing the liquid to be treated W1 from the primary treatment chamber 17 to the secondary treatment chamber 16, and a large amount of the liquid to be treated W1 can be treated. Moreover, since it is not necessary to provide a stirring member, a circulation auxiliary member, or the like in the reaction tank 12 as in the prior art, these members do not hinder the flow of the liquid W1 to be processed.

(5)本実施形態の超音波反応装置10における二次処理室16は、閉じた系ではないので、反応槽12の壁面に加わる水圧を一定に維持してその変形を防止するといった必要性がない。それゆえ、二次処理室16内の被処理液体W1の体積変化を調整するための貯留部を省略でき、装置の簡略化、小型化、低コスト化を達成することができる。   (5) Since the secondary processing chamber 16 in the ultrasonic reaction apparatus 10 of the present embodiment is not a closed system, there is a need to keep the water pressure applied to the wall surface of the reaction tank 12 constant and prevent its deformation. Absent. Therefore, the storage unit for adjusting the volume change of the liquid W1 to be processed in the secondary processing chamber 16 can be omitted, and the simplification, size reduction, and cost reduction of the apparatus can be achieved.

(6)本実施の形態の超音波反応装置10では、一次処理室17内の被処理液体W1の液面(被処理液体W1と空気層A1との界面)を反射面とし、超音波20の周波数を500kHzに設定している。この場合、被処理液体W1の液面は超音波20の音圧によって波長程度(3mm程度)の大きさで脈動をするため、その液面の近傍では超音波20の反射による定在波が均一に発生する。その結果、被処理液体W1の液面近傍における反応場が平均化されて、再現性のある反応場を容易に形成することができる。ここで、液面を脈動させてその近傍で定在波を均一に発生させるためには、超音波20の周波数を200kHz〜500kHzに設定することが好ましい。また、超音波20の周波数を200kHz〜500kHzに設定すると、液面近傍でヒドロキシラジカルが多く発生するため、被処理液体W1の化学反応を促進させるのに実用上好ましいものとなる。   (6) In the ultrasonic reaction apparatus 10 of the present embodiment, the liquid surface of the liquid to be processed W1 in the primary processing chamber 17 (interface between the liquid to be processed W1 and the air layer A1) is used as a reflection surface, and the ultrasonic wave 20 The frequency is set to 500 kHz. In this case, the liquid surface of the liquid W1 to be processed pulsates with a size of about a wavelength (about 3 mm) due to the sound pressure of the ultrasonic wave 20, so that the standing wave due to the reflection of the ultrasonic wave 20 is uniform in the vicinity of the liquid surface. Occurs. As a result, the reaction field in the vicinity of the liquid level of the liquid W1 to be processed is averaged, and a reproducible reaction field can be easily formed. Here, in order to pulsate the liquid surface and generate a standing wave uniformly in the vicinity thereof, the frequency of the ultrasonic wave 20 is preferably set to 200 kHz to 500 kHz. Moreover, when the frequency of the ultrasonic wave 20 is set to 200 kHz to 500 kHz, a large amount of hydroxy radicals are generated in the vicinity of the liquid surface, which is practically preferable for promoting the chemical reaction of the liquid W1 to be processed.

なお、本発明の実施形態は以下のように変更してもよい。   In addition, you may change embodiment of this invention as follows.

・上記実施の形態では、アクリル樹脂プレートからなる仕切り板15によって反応槽12内を上半部と下半部とに区画したが、アクリル樹脂以外の樹脂からなるプレートや、金属製やガラス製のプレート等を用いて仕切り板15を構成することも可能である。また、仕切り板15を使用する代わりに、例えば、膜のような部材を仕切り部材として選択してもよい。   In the above embodiment, the reaction tank 12 is partitioned into the upper half and the lower half by the partition plate 15 made of an acrylic resin plate. However, the plate made of a resin other than acrylic resin, or made of metal or glass It is also possible to configure the partition plate 15 using a plate or the like. Further, instead of using the partition plate 15, for example, a member such as a film may be selected as the partition member.

・本実施の形態において、反応槽12の底部19に固定される超音波振動子13を取り替えることで超音波20の波長や照射強度などを変更可能に構成してもよい。またその場合には、超音波20の波長や照射強度に応じて仕切り板15の高さ位置を調整可能な調整機構を設けてもよい。具体例としては、反応槽12内に仕切り板15を支持固定するための支持部材を配置し、その支持部材における複数の高さ位置に仕切り板15が着脱可能な仕切り板固定部を設けたもの等を挙げることができる。   -In this Embodiment, you may comprise so that the wavelength, irradiation intensity | strength, etc. of the ultrasonic wave 20 can be changed by replacing | exchanging the ultrasonic transducer | vibrator 13 fixed to the bottom part 19 of the reaction tank 12. FIG. In that case, an adjustment mechanism capable of adjusting the height position of the partition plate 15 according to the wavelength of the ultrasonic wave 20 and the irradiation intensity may be provided. As a specific example, a support member for supporting and fixing the partition plate 15 is arranged in the reaction tank 12, and a partition plate fixing portion to which the partition plate 15 can be attached and detached is provided at a plurality of height positions in the support member. Etc.

・上記実施の形態では、本発明を被処理液体W1中の化学反応を誘起・促進させる超音波反応装置(ソノリアクタ)10に具体化したが、これ以外のもの、例えば、超音波分散装置、超音波分離装置、超音波殺菌装置、超音波洗浄機などの超音波処理装置に具体化してもよい。あるいは、被処理液体W1中にナノバブルやマイクロバブル等といった微小気泡を発生させるための超音波気泡発生装置に具体化してもよい。なお、当該装置により発生される微小気泡は、主としてナノバブルであってもよく、主としてマイクロバブルであってもよく、ナノバブル及びマイクロバブルの混合物であってもよい。このような超音波気泡発生装置により得られた微小気泡を含む液体は、例えば、殺菌、洗浄などに利用できる。   In the above embodiment, the present invention is embodied in the ultrasonic reaction device (sono reactor) 10 that induces and accelerates the chemical reaction in the liquid W1 to be processed. You may actualize in ultrasonic processing apparatuses, such as a sonic separator, an ultrasonic sterilizer, and an ultrasonic cleaner. Alternatively, the present invention may be embodied in an ultrasonic bubble generating device for generating micro bubbles such as nano bubbles and micro bubbles in the liquid to be processed W1. Note that the microbubbles generated by the apparatus may be mainly nanobubbles, mainly microbubbles, or a mixture of nanobubbles and microbubbles. The liquid containing microbubbles obtained by such an ultrasonic bubble generator can be used for, for example, sterilization and cleaning.

・上記実施の形態では、水平に設けられた仕切り板15によって反応槽12内を上下に区画していたが、図4に示す別の実施形態の超音波反応装置(ソノリアクタ)10Aのように、垂直に設けられた仕切り板15によって反応槽12内を左右に区画してもよい。この超音波反応装置10Aでは、超音波振動子13が反応槽12の底面外側ではなく側壁部の外側に設けられている。仕切り板15の右側の領域(超音波振動子13から近い側の領域)は、二次処理室16として使用される。一方、仕切り板15の左側の領域(超音波振動子13から遠い側の領域)は、一次処理室17として使用される。   In the above embodiment, the inside of the reaction tank 12 is vertically divided by the partition plate 15 provided horizontally, but as in the ultrasonic reaction device (sono reactor) 10A of another embodiment shown in FIG. The reaction tank 12 may be divided into left and right sides by a partition plate 15 provided vertically. In this ultrasonic reaction apparatus 10 </ b> A, the ultrasonic transducer 13 is provided outside the side wall portion, not outside the bottom surface of the reaction tank 12. A region on the right side of the partition plate 15 (a region closer to the ultrasonic transducer 13) is used as the secondary processing chamber 16. On the other hand, the left region (region far from the ultrasonic transducer 13) of the partition plate 15 is used as the primary processing chamber 17.

次に、特許請求の範囲に記載された技術的思想のほかに、前述した実施形態によって把握される技術的思想を以下に列挙する。   Next, in addition to the technical ideas described in the claims, the technical ideas grasped by the embodiment described above are listed below.

(1)請求項1乃至3のいずれか1項において、前記仕切り部材は、前記超音波の波長の1/2の厚さを有する仕切り板であることを特徴とする超音波処理装置。   (1) The ultrasonic processing apparatus according to any one of claims 1 to 3, wherein the partition member is a partition plate having a thickness that is ½ of the wavelength of the ultrasonic wave.

(2)請求項1乃至3のいずれか1項において、前記仕切り部材は、前記超音波の波長の1/10以下の厚さを有する仕切り板であることを特徴とする超音波処理装置。   (2) The ultrasonic processing apparatus according to any one of claims 1 to 3, wherein the partition member is a partition plate having a thickness of 1/10 or less of the wavelength of the ultrasonic wave.

(3)請求項1乃至3のいずれか1項において、前記一次処理室には供給用配管が接続され、前記二次処理室には排出用配管が接続されることを特徴とする超音波処理装置。   (3) The ultrasonic processing according to any one of claims 1 to 3, wherein a supply pipe is connected to the primary processing chamber, and a discharge pipe is connected to the secondary processing chamber. apparatus.

(4)処理槽の底部から上部に向けて200kHz〜500kHzの超音波を照射して、前記処理槽内の被処理液体の液面でその超音波を反射させることにより、前記被処理液体の処理を行う超音波処理方法であって、前記処理槽内を、超音波振動子から遠い一次処理室と前記超音波振動子から近い二次処理室とに区画するとともに、前記被処理液体を前記一次処理室側から前記二次処理室側に流通させながら、前記二次処理室内の前記被処理液体を介して前記一次処理室内の前記被処理液体に超音波を照射するとともに、前記一次処理室内の前記被処理液体を脱気することを特徴とする超音波処理方法。   (4) Treatment of the liquid to be treated by irradiating ultrasonic waves of 200 kHz to 500 kHz from the bottom to the top of the treatment tank and reflecting the ultrasonic waves at the liquid surface of the liquid to be treated in the treatment tank. An ultrasonic treatment method in which the inside of the treatment tank is partitioned into a primary treatment chamber far from the ultrasonic transducer and a secondary treatment chamber near the ultrasonic transducer, and the liquid to be treated is separated from the primary treatment chamber. While circulating from the processing chamber side to the secondary processing chamber side, the liquid to be processed in the primary processing chamber is irradiated with ultrasonic waves through the liquid to be processed in the secondary processing chamber, and in the primary processing chamber An ultrasonic treatment method comprising degassing the liquid to be treated.

(5)処理槽と、前記処理槽に設置された超音波振動子と、前記処理槽内を前記超音波振動子から遠い一次処理室と前記超音波振動子から近い二次処理室とに区画する仕切り部材と、前記一次処理室及び前記二次処理室間を連通させる通路とを備え、前記一次処理室内にて微小気泡を発生させる超音波気泡発生装置であって、前記一次処理室内には、超音波の照射によって処理されるべき被処理液体が最初に供給可能であり、前記二次処理室内には、前記一次処理室を通過した前記被処理液体が前記通路を介して供給可能であり、前記二次処理室内の前記被処理液体は、前記超音波振動子が発生した超音波を前記一次処理室内の前記被処理液体に伝播させる媒体として作用しうることを特徴とする超音波気泡発生装置。   (5) A processing tank, an ultrasonic transducer installed in the processing tank, a partition in the processing tank into a primary processing chamber far from the ultrasonic transducer and a secondary processing chamber close to the ultrasonic transducer An ultrasonic bubble generator that generates microbubbles in the primary processing chamber, the partitioning member, and a passage communicating between the primary processing chamber and the secondary processing chamber, The liquid to be processed to be processed by ultrasonic irradiation can be supplied first, and the liquid to be processed that has passed through the primary processing chamber can be supplied to the secondary processing chamber through the passage. The liquid to be processed in the secondary processing chamber can act as a medium for propagating the ultrasonic wave generated by the ultrasonic transducer to the liquid to be processed in the primary processing chamber. apparatus.

(6)処理槽内の被処理液体に超音波を照射してその被処理液体中に微小気泡を発生させる超音波気泡発生方法であって、前記処理槽内を、超音波振動子から遠い一次処理室と前記超音波振動子から近い二次処理室とに区画するとともに、前記被処理液体を前記一次処理室側から前記二次処理室側に流通させながら、前記二次処理室内の前記被処理液体を介して前記一次処理室内の前記被処理液体に超音波を照射することで、前記一次処理室内の前記被処理液体に前記微小気泡を発生させることを特徴とする超音波気泡発生方法。   (6) An ultrasonic bubble generating method for irradiating a liquid to be processed in a processing tank with ultrasonic waves to generate microbubbles in the liquid to be processed, wherein the inside of the processing tank is a primary distant from the ultrasonic transducer The chamber is divided into a processing chamber and a secondary processing chamber close to the ultrasonic transducer, and the liquid to be processed is circulated from the primary processing chamber side to the secondary processing chamber side, while the target chamber in the secondary processing chamber is circulated. An ultrasonic bubble generating method, characterized in that the microbubbles are generated in the liquid to be processed in the primary processing chamber by irradiating the liquid to be processed in the primary processing chamber through the processing liquid.

(7)上記技術的思想6または7において、前記微小気泡は主としてナノバブルであること。   (7) In the technical idea 6 or 7, the microbubbles are mainly nanobubbles.

(8)上記技術的思想6または7において、前記微小気泡は主としてマイクロバブルであること。   (8) In the technical idea 6 or 7, the microbubbles are mainly microbubbles.

(9)上記技術的思想6または7において、前記微小気泡はナノバブル及びマイクロバブルの混合物であること。   (9) In the technical idea 6 or 7, the microbubbles are a mixture of nanobubbles and microbubbles.

本発明を具体化した一実施形態の超音波反応装置を示す概略構成図。BRIEF DESCRIPTION OF THE DRAWINGS The schematic block diagram which shows the ultrasonic reaction apparatus of one Embodiment which actualized this invention. (a),(b)は赤外線サーモグラフィを用いて可視化された温度分布を示す説明図。(A), (b) is explanatory drawing which shows the temperature distribution visualized using infrared thermography. 反応槽における高さと化学変化量との関係を示すグラフ。The graph which shows the relationship between the height in a reaction tank, and a chemical variation | change_quantity. 別の実施形態の超音波反応装置を示す概略構成図。The schematic block diagram which shows the ultrasonic reaction apparatus of another embodiment. 従来の超音波反応装置を示す概略構成図。The schematic block diagram which shows the conventional ultrasonic reaction apparatus. 本願発明者が既に提案している超音波反応装置を示す概略構成図。The schematic block diagram which shows the ultrasonic reaction apparatus which this inventor has already proposed.

符号の説明Explanation of symbols

10,10A…超音波処理装置としての超音波反応装置
12…処理槽としての反応槽
13…超音波振動子
15…仕切り部材としての仕切り板
16…二次処理室
17…一次処理室
19…底部
20…超音波
26…通路としての移送用配管
W1…被処理液体
DESCRIPTION OF SYMBOLS 10,10A ... Ultrasonic reaction apparatus as ultrasonic processing apparatus 12 ... Reaction tank as processing tank 13 ... Ultrasonic vibrator 15 ... Partition plate as partition member 16 ... Secondary processing chamber 17 ... Primary processing chamber 19 ... Bottom 20 ... Ultrasound 26 ... Transfer pipe as passage W1 ... Liquid to be treated

Claims (5)

処理槽と、前記処理槽に設置された超音波振動子と、前記処理槽内を前記超音波振動子から遠い一次処理室と前記超音波振動子から近い二次処理室とに区画する仕切り部材と、前記一次処理室及び前記二次処理室間を連通させる通路とを備えた超音波処理装置であって、
前記一次処理室内には、超音波の照射によって処理されるべき被処理液体が最初に供給可能であり、前記二次処理室内には、前記一次処理室を通過した前記被処理液体が前記通路を介して供給可能であり、前記二次処理室内の前記被処理液体は、前記超音波振動子が発生した超音波を前記一次処理室内の前記被処理液体に伝播させる媒体として作用しうることを特徴とする超音波処理装置。
A partition member that divides a processing tank, an ultrasonic transducer installed in the processing tank, a primary processing chamber far from the ultrasonic transducer and a secondary processing chamber close to the ultrasonic transducer in the processing tank And an ultrasonic processing apparatus comprising a passage communicating between the primary processing chamber and the secondary processing chamber,
In the primary processing chamber, a liquid to be processed to be processed by irradiation of ultrasonic waves can be supplied first, and in the secondary processing chamber, the liquid to be processed that has passed through the primary processing chamber passes through the passage. The liquid to be processed in the secondary processing chamber can act as a medium for propagating the ultrasonic wave generated by the ultrasonic transducer to the liquid to be processed in the primary processing chamber. An ultrasonic processing apparatus.
前記超音波振動子は前記処理槽の底部に設置され、前記仕切り部材は前記処理槽内を上下に仕切って前記一次処理室と前記二次処理室とに区画することを特徴とする請求項1に記載の超音波処理装置。   The ultrasonic transducer is installed at the bottom of the processing tank, and the partition member divides the inside of the processing tank up and down to partition the primary processing chamber and the secondary processing chamber. An ultrasonic treatment apparatus according to 1. 前記通路は前記処理槽の外部に設けられていることを特徴とする請求項1または2に記載の超音波処理装置。   The ultrasonic processing apparatus according to claim 1, wherein the passage is provided outside the processing tank. 処理槽内の被処理液体に超音波を照射してその処理を行う超音波処理方法であって、
前記処理槽内を、超音波振動子から遠い一次処理室と前記超音波振動子から近い二次処理室とに区画するとともに、前記被処理液体を前記一次処理室側から前記二次処理室側に流通させながら、前記二次処理室内の前記被処理液体を介して前記一次処理室内の前記被処理液体に超音波を照射することを特徴とする超音波処理方法。
An ultrasonic treatment method for performing treatment by irradiating a liquid to be treated in a treatment tank with ultrasonic waves,
The inside of the processing tank is partitioned into a primary processing chamber far from the ultrasonic transducer and a secondary processing chamber close to the ultrasonic transducer, and the liquid to be processed is transferred from the primary processing chamber side to the secondary processing chamber side. The ultrasonic processing method is characterized in that the liquid to be processed in the primary processing chamber is irradiated with ultrasonic waves through the liquid to be processed in the secondary processing chamber while being distributed to the secondary processing chamber.
前記一次処理室内にて前記被処理液体に超音波を照射することにより、前記被処理液体を脱気することを特徴とする請求項4に記載の超音波処理方法。   The ultrasonic processing method according to claim 4, wherein the liquid to be processed is degassed by irradiating the liquid to be processed with ultrasonic waves in the primary processing chamber.
JP2005128765A 2005-04-26 2005-04-26 Ultrasonic treatment apparatus and ultrasonic treatment method Expired - Fee Related JP4775694B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005128765A JP4775694B2 (en) 2005-04-26 2005-04-26 Ultrasonic treatment apparatus and ultrasonic treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005128765A JP4775694B2 (en) 2005-04-26 2005-04-26 Ultrasonic treatment apparatus and ultrasonic treatment method

Publications (2)

Publication Number Publication Date
JP2006305427A true JP2006305427A (en) 2006-11-09
JP4775694B2 JP4775694B2 (en) 2011-09-21

Family

ID=37472941

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005128765A Expired - Fee Related JP4775694B2 (en) 2005-04-26 2005-04-26 Ultrasonic treatment apparatus and ultrasonic treatment method

Country Status (1)

Country Link
JP (1) JP4775694B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009168652A (en) * 2008-01-17 2009-07-30 Hitachi High-Technologies Corp Autoanalyzer
JP2015087350A (en) * 2013-11-01 2015-05-07 原子燃料工業株式会社 Nuclear fuel sipping device and nuclear fuel sipping method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103212356B (en) * 2013-04-28 2014-12-24 陕西师范大学 Disloyalty type phonochemistry reaction equipment
KR20180100082A (en) 2018-08-20 2018-09-07 이재영 Sonicator suppressing calescence in the processing fluid

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57159538A (en) * 1981-02-26 1982-10-01 Mareri Erunesuto Ultrasonic device particularly related to treatment of liquid
JPS59156405A (en) * 1983-02-28 1984-09-05 Konishiroku Photo Ind Co Ltd Ultrasonic defoaming method and apparatus therefor
JPH11197406A (en) * 1998-01-17 1999-07-27 Horiba Ltd Ultrasonic defoaming tank
JP2000140505A (en) * 1998-11-12 2000-05-23 Tokyo Electron Ltd Apparatus and method for degassing
JP2000325702A (en) * 1999-05-17 2000-11-28 Hideyuki Tabuchi Device for sterilizing and degassing
JP2001300522A (en) * 2000-04-25 2001-10-30 Kubota Corp Method for decomposing difficult-to-decompose organic matter

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57159538A (en) * 1981-02-26 1982-10-01 Mareri Erunesuto Ultrasonic device particularly related to treatment of liquid
JPS59156405A (en) * 1983-02-28 1984-09-05 Konishiroku Photo Ind Co Ltd Ultrasonic defoaming method and apparatus therefor
JPH11197406A (en) * 1998-01-17 1999-07-27 Horiba Ltd Ultrasonic defoaming tank
JP2000140505A (en) * 1998-11-12 2000-05-23 Tokyo Electron Ltd Apparatus and method for degassing
JP2000325702A (en) * 1999-05-17 2000-11-28 Hideyuki Tabuchi Device for sterilizing and degassing
JP2001300522A (en) * 2000-04-25 2001-10-30 Kubota Corp Method for decomposing difficult-to-decompose organic matter

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009168652A (en) * 2008-01-17 2009-07-30 Hitachi High-Technologies Corp Autoanalyzer
JP2015087350A (en) * 2013-11-01 2015-05-07 原子燃料工業株式会社 Nuclear fuel sipping device and nuclear fuel sipping method

Also Published As

Publication number Publication date
JP4775694B2 (en) 2011-09-21

Similar Documents

Publication Publication Date Title
Gogate et al. Sonochemical reactors: important design and scale up considerations with a special emphasis on heterogeneous systems
Dahlem et al. The radially vibrating horn: a scaling-up possibility for sonochemical reactions
JP4775694B2 (en) Ultrasonic treatment apparatus and ultrasonic treatment method
JP2007059318A (en) Plasma generator
Keil et al. Reactors for sonochemical engineering-present status
Gogate et al. Intensification of cavitational activity in the sonochemical reactors using gaseous additives
JP2002172389A (en) Ultrasonic treatment apparatus for organic waste liquid
Agarkoti et al. Mapping of cavitation intensity in a novel dual-frequency ultrasonic reactor of capacity 10 L
RU2009127697A (en) DEVICE FOR ULTRASONIC THERAPY
JP5352858B2 (en) Ultrasonic / photochemical hybrid reactor
JP2006122763A (en) Ultrasonic treatment apparatus and ultrasonic treatment method
JP2005199253A (en) Ultrasonic liquid treatment apparatus
KR101217167B1 (en) Apparatus for mixing chemicals using ultrasonic waves
Gogate Theory of cavitation and design aspects of cavitational reactors
JP3840843B2 (en) Water treatment method and apparatus
Yasuda et al. Effect of agitation condition on performance of sonochemical reaction
JP2006122763A5 (en)
JP4921431B2 (en) Ultrasonic treatment equipment
JP2004202322A (en) Ultrasonic treatment method and apparatus
JP3187017U (en) Ultrasonic reactor
JP7163541B2 (en) ultrasonic chemical reactor
JP4377796B2 (en) Ultrasonic treatment apparatus evaluation method, sound field evaluation method, ultrasonic treatment system
JP3035433B2 (en) Ozone sterilization cleaning equipment
JP7273273B2 (en) Ultrasonic degassing method and apparatus
JP2007209936A (en) Ultrasonic decomposition apparatus and ultrasonic decomposition method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080423

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080423

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090918

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110412

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110527

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110614

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110616

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140708

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees