JP3825149B2 - Water treatment equipment - Google Patents

Water treatment equipment Download PDF

Info

Publication number
JP3825149B2
JP3825149B2 JP24026697A JP24026697A JP3825149B2 JP 3825149 B2 JP3825149 B2 JP 3825149B2 JP 24026697 A JP24026697 A JP 24026697A JP 24026697 A JP24026697 A JP 24026697A JP 3825149 B2 JP3825149 B2 JP 3825149B2
Authority
JP
Japan
Prior art keywords
water
cylinder
deaeration
ion exchange
exchange resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP24026697A
Other languages
Japanese (ja)
Other versions
JPH11650A (en
Inventor
秀幸 田淵
Original Assignee
秀幸 田淵
田淵 康夫
北海道パワーエンジニアリング株式会社
コスモエンジニアリング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 秀幸 田淵, 田淵 康夫, 北海道パワーエンジニアリング株式会社, コスモエンジニアリング株式会社 filed Critical 秀幸 田淵
Priority to JP24026697A priority Critical patent/JP3825149B2/en
Publication of JPH11650A publication Critical patent/JPH11650A/en
Application granted granted Critical
Publication of JP3825149B2 publication Critical patent/JP3825149B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、上水、中水、あるいは下水を脱気及び軟水化処理するための水処理装置に関し、例えばビルや工場などの給配水設備や浄水設備において真空脱気とイオン交換処理の一体的な組み合わせ処理により水中の揮発性溶存成分および腐食性溶存成分を効果的に除去しつつ軟水化又は純水化するための水処理装置に関するものである。
【0002】
【従来の技術】
イオン交換樹脂筒に水を通すことにより炭酸塩硬度を下げて軟水化することは例えばボイラ給水設備などでよく知られている。この場合、イオン交換樹脂筒に導入する水に酸化物が溶解していると、強酸・弱酸性陽イオン交換樹脂の場合は酸化による不可逆膨潤を起こし、また陰イオン交換樹脂の場合は酸化によって交換基が分解したり不可逆膨潤を起こしたりするので、通水に際しては水中に酸化物が溶解あるいは混在していないことを確認しないと、イオン交換樹脂の耐久性を左右する大きな問題を引き起こす恐れがある。例えば、配管のライニングの疵から溶出した鉄イオンや銅イオンが水中の溶存酸素との反応で銹となって混在している場合、それらの触媒的な働きでイオン交換樹脂が酸化されて劣化する。
【0003】
そこで従来から、通水に酸化物の溶解あるいは混在が認められるような場合、あるいはそれが生じる可能性がある場合には、イオン交換樹脂に通水する前に水に脱スケールおよび腐食防止などの目的で前処理を施すことが常識的に行なわれている。
【0004】
最も一般的なこの種の前処理は、溶存酸素を除去するための毒性の強いヒドラジンなどの脱酸剤とpHを高めるための清缶剤とを配合した薬品を水に投入する薬注方式である。
【0005】
また、薬注によらない方式として、水中に溶存している酸素・炭酸ガス・遊離塩素などを高真空度の容器内で一定水量ごとに一括脱気するバッチ処理による真空脱気方式も知られており、大量処理のためにエジェクターとサイクロンを組み合わせた多段連続真空脱気方式も知られている。
【0006】
また、この他にも、例えば特公平2−11319号、特公平2−12640号あるいは特公平6−38959号公報には、静電場または振動電場を与えるタンク中で水中のミネラル成分をイオン解離させて浮遊スケールとして析出除去する際にタンク内を減圧して脱気することが教示されている。
【0007】
【発明が解決しようとする課題】
薬注方式では、脱酸剤の有毒性の問題は勿論、イオン交換樹脂筒の上流で薬注を行なうと、その分だけ水中の不純物が増加するのでイオン交換樹脂にとっては負荷の増加となるばかりでなく自然と薬注量が増加する傾向があり、適正な薬品投入量の監視には管理面で困難を伴うことや、薬品使用量がかさむなどの諸問題があるので、薬剤使用に付加価値が見込まれる厳正に管理された工場などでの用途以外には一般的ではない。
【0008】
真空脱気方式については、例えば生活給水の水処理やビル等での赤水対策には真空の取扱が難しいため未だ広く普及してはいないが、比較的容易に扱えるのはバッチ処理方式の真空脱気装置である。しかしながら、バッチ処理方式の真空脱気装置は、処理が非連続であるので処理量が限られ、多量の水を処理する必要がある場合には大規模な設備としなければならず、設備維持費用が多額となるので一般的ではない。
【0009】
一方、例えば食品工場などのように連続多量処理が要求される場合には、運転操作および保守に専門的な煩雑さが要求されるエジェクターとサイクロンを組み合わせた多段連続真空脱気方式が採用され、時間当たりの処理量も充分な設備が実用化されているが、設置面積が大きく、設備費用及び維持費用が大きいので、処理による付加価値が見込める産業用途向きであり、一般の共同住宅やオフィスビルなどにおける水処理設備の脱気装置としては管理面も含めて経済的に引き合わず、採用は現実的ではない。
【0010】
この他に、例えば中空糸膜脱気法をイオン交換樹脂筒の上流で実行する方式も考えられるが、この場合は、水中の金属塩が中空糸膜に付着し、それが酸化されて忽ちのうちに脱気酸素の通路が塞がって脱気不能に陥り、頻繁な膜交換のためにランニングコストが嵩む欠点がある。
【0011】
また、中空糸膜をイオン交換樹脂の下流で使用することも単に溶存酸素の除去には効果があるが、この場合も、例えばボイラ設備では蒸気リターン配管や循環温水配管から溶解した金属イオン成分が酸化されて中空糸膜面に付着固化し、目詰まりをおこすので、中空糸膜の全面交換作業を比較的早期に行なうことが余儀なくされる欠点が避けられない。
【0012】
尚、真空脱気処理に併用して処理水を加熱沸騰することにより水中のトリハロメタンやトリクロロエチレン等の有機発癌物質を同時に除去することも知られているが、給湯系では採用されるものの、冷水を供給する給水系では煮沸のためのエネルギーが無駄となるので現実には採用できない難点がある。
【0013】
従って本発明の課題は、薬注を不要としながらほぼ連続的な通水を可能とする比較的設備維持の簡単な真空脱気とイオン交換処理との組み合わせ方式よる水処理装置、特に水中の揮発性溶存成分および腐食性溶存成分を効果的に除去しつつ軟水化又は純水化するための水処理装置を提供することである。
【0014】
また、薬注を不要としながらもイオン交換樹脂の劣化を効果的に防止して、イオン交換樹脂の耐久性を向上でき、延てはイオン交換樹脂の逆洗回数をも削減可能な水処理装置を提供すること、或いは、加熱することなく溶存物質の除去を果たすことのできる水処理装置を提供することなども本発明の別の課題である。
【0015】
【課題を解決するための手段】
上述の課題を解決するための本発明の基本理念は、給水を受ける導水筒内で減圧下で空洞現象を誘発して水中の溶存気体を捕集脱気し、導水筒で脱気された水を減圧貯水タンク内で更に真空脱気して一時貯留し、この減圧貯水タンクに蓄えられた水を、減圧貯水タンクより下方に配置されたイオン交換樹脂筒に大気と接触させることなく送水するようにして、イオン交換樹脂筒には薬注によらずに溶存酸素の除去された水を通水し、以てイオン交換膜の酸化を防止できるようにした点にある。
【0016】
本発明の脱気装置は、先に例示した特公平2−11319号、特公平2−12640号或いは特公平6−38959号公報に開示されているような水に電界を作用させて水中の電解質を電解する電界処理装置の下流に設置することができ、それにより上流で電離処理された水を本発明の水処理装置に導いて水中の残存溶存気体の殆どを除去し、それを連続的に下流のイオン交換樹脂筒へ通水することが可能である。イオン交換樹脂筒を通過した水は軟水化又は純水化されており、適当な軟水貯水槽から下流の配水設備へ分配されることになる。
【0017】
本発明による水処理装置は、給水管から導入される水に減圧と必要に応じて更に超音波処理を加えることにより空洞現象を誘発して水中の溶存気体を捕集脱気する導水筒と、導水筒で脱気された水を大気圧以下に減圧された室内に一時貯留する減圧貯水タンクと、減圧貯水タンクより下方に配置されたイオン交換樹脂筒と、減圧貯水タンクに蓄えられた水を大気に接触することなくイオン交換樹脂筒に導入する送水手段とを備えたことを基本的な特徴とするものである。
【0018】
本発明の水処理装置では、減圧によって導水筒内に吸引導入した水に空洞現象を誘発させ、場合によっては減圧沸騰を生起させることにより、水中の溶存気体を気泡として水面上で破裂させ、これを気体として減圧源に吸引捕集して脱気するので、脱気のための減圧を水の導入に利用できるほか、処理水を煮沸させるための加熱エネルギーが不要である。
【0019】
導水筒における水の空洞現象の誘発には超音波振動エネルギーの照射が有効であり、この場合は、導水筒内には給水管から導入された水にキャビテーションを生起せしめるための超音波振動付与装置が取り付けられ、水が真空圧のみにより、減圧沸騰を起こす場合よりも減圧の程度が少なくても、超音波振動エネルギーによるキャビテーションで水に空洞現象を誘発でき、溶存気体の気泡化を促進することができる。もちろん、減圧を充分低圧にし、それ自体で水に減圧沸騰を起こす場合にも超音波の照射を併用することは効果的である。
【0020】
一般に超音波によるキャビテーションは、音圧が大気圧を超えたときに発生する。そこで、超音波の音圧を(p)、処理対象の水の密度を(ρ)、粒子の振動速度を(u)、波の伝播速度を(c)とすれば、p=ρcuである。また、音波の強度、すなわちパワー密度(I)は、I=ρcu2 である。
【0021】
従って、本発明では処理対象の水の密度は水中の揮発性成分や有機物などの不純物含有量で大きく影響をうけることから、導水筒の底面の裏側に複数の超音波振動子を取り付け、振動子の稼動数と駆動電源の電圧電流制御によって超音波の強度を制御し、真空度が脱気室内の水の飽和水蒸気圧に達する前に導水筒内の水柱にキャビテーションを発生させて水中の揮発性成分等を効率的に気泡化し、この気泡を水面上で破裂させて減圧源に吸引捕集することにより脱気し、この脱気水中に含まれる微細な気泡を更に脱気室における散水による真空脱気で除去し、酸化力の極めて弱い脱気水に換えたうえでイオン交換樹脂筒に送り込むことにより、イオン交換樹脂の劣化を効果的に防止するようにしたものである。
【0022】
この超音波振動による脱気の効果の向上は著しく、従来の一般的な受水槽における水面が大気に開放された条件下での超音波加振方式とは異なり、本発明では導水筒内の上部空間が減圧された条件下で行なわれるので、脱気された水に大気から平衡分圧に応じた量の気体が再び溶解してしまうことがなく、塩素臭のないほぼ純水に近い高純度の脱気水を得ることができる。
【0023】
特に好ましくは、直立状態の導水筒の底部から導水筒内に満たされた水に超音波振動の定在波が与えられるように導水筒の寸法及び超音波振動の周波数を選定することにより、導水筒内を満たす水柱には超音波の定在波が形成され、水面で超音波の完全反射が起こるので最大の超音波振動エネルギーが伝達され、それによりキャビテーションが瞬時に発生し、溶存気体が盛んに気泡となって水面で破裂し、導水筒内の減圧された上部脱気空間から外部へ捕集除去され、従って脱気の効率が更に高くなる。
【0024】
本発明の好ましい別の特徴によれば、導水筒には水中の溶存気体を導水筒内の上部脱気空間内で急膨張させて減圧脱気する膨張脱気循環系が付設されている。この膨張脱気循環系は、導水筒内の下部から水を吸引するポンプと、このポンプで加圧された水を導水筒内の上部脱気空間に噴射するノズルとを備えている。
【0025】
すなわち、上述のように導水筒内で超音波によるキャビテーション空洞内に捕集された気体の圧力は比較的小さく、導水筒の底部では水柱の水圧で圧縮されて微細な気泡となっており、膨張が不十分であるので浮上速度も遅く、これが水面に浮上しても温度等の条件によっては直ちに破裂することなく気泡のまま水面に留まり、脱気されるまでに時間がかかる場合があるが、上記膨張脱気循環系を付設した場合は、好ましくは導水筒の底部の気泡発生部位の直上部位、超音波振動付与の場合は振動面上の気泡発生部位の直上部位から、発生気泡を水と共に前記ポンプで吸引・加圧し、これを前記ノズルから導水筒上部脱気空間に噴射することにより、ノズルからの噴射水を減圧下の上部空間内で急激に減圧膨張させて脱気することができる。
【0026】
この場合、更に好ましくはノズルからの噴射水を導水筒内壁面または別に取り付けた衝合壁部材に衝突させ、噴射水に含まれる気泡を強制的に破裂させると一層効果的な脱気が可能である。気泡の破裂で分離した気体は導水筒内の上部脱気空間から外部へ捕集脱気され、脱気水は自然落下で下方の導水筒内の水面に上積貯水されるが、この場合に脱気水が水面に穏やかに導入されるように鎮静用の樋手段などを付設してもよい。
【0027】
尚、この膨張脱気循環系に用いられる上記ポンプとノズルの組み合わせは所謂吸水ジェットポンプを構成し、その吸水流量QP は、水処理装置自体の減圧吸引による給水流量QW に対してQP =mQW の関係にある。ここで、ポンプの容量の選定により脱気循環係数mが大きな値になるようにすればするほど脱気効率は高くなり、またポンプの容量を可変設定できるようにすることにより、装置の給水流量QW に応じて脱気能力を任意に設定可能な循環系とすることができる。
【0028】
本発明の更に別の好ましい特徴によれば、導水筒の上部開口縁には導水筒内に貯えられた水を溢流によって減圧貯水タンクに導入する溢流手段が設けられ、この場合、減圧貯水タンクは、導水筒の上部開口縁から溢流する水を受け入れて脱気する脱気室と、脱気室の底部から水を導入して残存気泡を浮上させる第1貯水室と、第1貯水室から水を導入して送水手段に導出する第2貯水室とを備え、これら脱気室と第1および第2貯水室並びに導水筒の各上部空間は互いに連通して減圧室を形成し、減圧室には脱気ガス捕集用の吸気減圧装置が接続される。
【0029】
また、この場合、減圧貯水タンクの脱気室内に、導水筒の上部開口縁から溢流する水を散水する散水手段と、散水手段による散水を受けて水を飛散させる散水床とを設けると、減圧貯水タンク内での真空脱気も更に効率的となる。
【0030】
このような減圧貯水タンクは、減圧下での散水による真空脱気槽と脱気された水の一時貯留槽の機能を兼ねるものであり、後述のように円筒状タンクの内部を二枚の仕切り板で縦割り状に仕切りることにより、脱気室、第1貯水室、および第2貯水室を形成することができる。
【0031】
この場合、三室の横断面積の比は二枚の仕切り板の取り付け位置によって所望に決定することができ、具体的な比の例を示せば、脱気室:第1貯水室:第2貯水室=0.675:0.25:0.075である。
【0032】
このような二枚の仕切り板の上縁はタンク上蓋との間に間隙を形成し、この間隙によって三室の上部空間は互いに連通した減圧室となる。この減圧室は外部の真空ポンプに接続され、稼動中は大気圧より低い減圧状態に保たれる。
【0033】
また各仕切り板の下縁もタンク底板との間に間隙を形成するように取り付けられ、この間隙は脱気室と第1貯水室間、および第1貯水室と第2貯水室間の水の通路を形成する。
【0034】
尚、ここで脱気室と第1貯水室間の水の通路を形成する間隙が、第1貯水室と第2貯水室間の水の通路を形成する間隙に対面するような仕切り板の配置の場合は、脱気室から第1貯水室に流入してくる水が第1貯水室と第2貯水室間の水の通路を形成する間隙に直接向かわないように、第1貯水室内の底板上に適宜な高さの邪魔板を設けると良い。
【0035】
送水手段は第2貯水室の底部から大気に触れることなく水を吸引し、揚水ポンプでイオン交換樹脂筒内の上部空間に散水する。イオン交換樹脂筒の内部は大気から遮断されており、その上部空間の下方にはイオン交換樹脂濾材床が装填されている。イオン交換樹脂濾材床を通過する間に交換反応を受けて軟水化した水はイオン交換樹脂筒の底部から配管を介して軟水貯留槽に送られ、そこから下流の配水設備に送られることになる。
【0036】
本発明の水処理装置においては、処理対象の水中に金属イオン又は金属が存在していても、水中の溶存酸素、遊離塩素、炭酸ガス等の腐食性溶存ガスをイオン交換樹脂筒の上流でほぼ完全に脱気することができ、イオン交換樹脂筒に通水される水は酸化力の弱い水となっている。従って、薬注を行なうことなくイオン交換樹脂の酸化が防止され、その耐久性を大幅に向上することが可能である。
【0037】
また、酸化によるイオン交換樹脂の不可逆膨潤の発生の懸念がなくなるので、例えば強酸性陽イオン交換樹脂として架橋度の低いものを使用することが可能となり、速い交換反応速度で大分子のイオンの交換性を良好にすることができるという利点も得ることができる。
【0038】
尚、脱酸された水中に鉄や銅の酸化物が混在していても、水の酸化力が弱くなっているのでイオン交換樹脂は酸化を受けにくく、従ってイオン交換樹脂濾材床の上に単なる濾過層を配置することで除鉄除銅層として使用可能となり、軟水器のイオン交換樹脂の耐久性を増す利点も得ることができる。
【0039】
本発明の水処理装置は、機械室やボイラ室などの狭い部屋内に設置されて使用されることが多いと考えられるので、装置構成としては一体化構造であることが好ましい。このような設置床面積を極力小さくしたい用途において、本発明の水処理装置は減圧貯水タンクとイオン交換樹脂筒とを上下二段構造の一体型タンクとして構成でき、この場合、一体型タンクの上段が減圧貯水タンクに、下段がイオン交換樹脂筒に構成される。
【0040】
このような上下二段構造の一体型タンクの場合、送水手段の揚水ポンプを設置床面に配置し、一体型タンクの上段にある減圧貯水タンク内の上部規定制御水面から揚水ポンプまでの落差を揚水ポンプの吸込み揚程の一部に利用することができ、これにより揚水ポンプとして特に高圧ポンプを利用しなくても、通常のポンプでイオン交換樹脂筒に送水することができる。
【0041】
このように、本発明の水処理装置は、減圧貯水タンクとイオン交換樹脂筒を一体型タンクに組み込んだ単体構造の水処理ユニットとして構成することができるが、本発明はこれに限定されるものではなく、減圧貯水タンクとイオン交換樹脂筒とを別体の缶体として構成し、各缶体を配管で接続して集合設備として構成できることは述べるまでもない。
【0042】
尚、本発明による水処理装置の水と接触する主要構造部材を第三種以上の電気接地条件で配管を含めて同一電位に保つことにより電蝕を防止することは望ましいことである。
【0043】
【発明の実施の形態】
本発明の好適な実施の形態を図面と共に説明すると以下の通りである。尚、図示の実施例では、受水槽から導かれる水を前述の特公平6−38959号公報に開示された水質浄化用の電極筒に導いて、高周波電界による処理水中の未電離金属塩のイオン解離の促進によって処理水中のミネラル成分を非付着性の遊離物質として析出・濾別してから導水筒に導入する構成の装置を例示しているが、本発明の水処理装置はこの実施例に限定されるものではなく、受水槽から導水筒への直接給水はもちろん、他の種々の水処理装置の下流側に組み合わせて利用することができるものである。
【0044】
図1において、設備への給水は、受水槽14へ受けた水を電極筒15で電離処理してから給水管8に送ることで行っており、この電極筒15は制御器26で制御され、高周波電界による処理水中の未電離金属塩のイオン解離の促進によって水中のミネラル成分を非付着性の遊離物として析出および濾別するものであり、その詳細は特公平6−38959号公報に述べられているのでここでは詳説しない。
【0045】
尚、受水層14と電極筒15との間には電磁開閉弁16が介装されており、この電磁開閉弁16は制御器26による制御で通常の装置稼働時には開かれているが、保守などの目的で給水を止める必要のある際には閉鎖される。
【0046】
給水管8は導水筒7の下部に接続されており、この導水筒7は、後述するように超音波によるキャビテーションの発生によって促進された真空脱気を行なうためのものであり、本例では導水筒7は筒状本体1の外側面に直立姿勢で取り付けられている。
【0047】
筒状本体1は、上蓋6で密閉される一体構造の密閉タンクであり、筒状本体1の内部は中間隔壁9によって上下二段に仕切られ、上段が真空脱気用の減圧貯水タンク10、下段が軟水化用のイオン交換樹脂筒11を構成している。
【0048】
減圧貯水タンク10の内部は、図2にも示したように、筒状本体1の内周面に両側縁で溶着された二枚の仕切り板5a,5bによって縦に三室に仕切りられており、上流から順に脱気室2、第1貯水室3、第2貯水室4を形成している。
【0049】
各仕切り板5a,5bの上縁は上蓋6との間に間隙を形成しており、これにより三室2,3,4の各上部空間が導水筒7の上部空間と共に互いに連通した減圧室を構成し、この減圧室には外部の真空ポンプ27の吸引ポートに接続されている。
【0050】
また各仕切り板5a,5bの下縁は中間隔壁9との間に間隙を形成しており、これら間隙によって脱気室2と第1貯水室3との間の水の連通口12および第1貯水室3と第2貯水室4との間の水の連通口13が形成されている。連通口13の直前には、連通口12からの水流が連通口13に直接差し込まないように、連通口13の高さより上方へ延在する一枚の邪魔板5cが設けられており、この邪魔板5cの下縁は中間隔壁9に、また両側縁は筒状本体1の内周面にそれぞれ溶着されている。
【0051】
脱気室2は、上部で溢流連通管18を介して導水筒7の上部空間に連通されており、溢流連通管18の導水筒7内における端部には溢流堰17が設けられている。この溢流堰17は導水筒7の天井面との間に間隔を形成しており、これにより、導水筒7の上部に減圧空間が確保されるようになっている。
【0052】
溢流堰17は導水筒7の上部開口縁を形成し、そこから溢流する水は溢流連通管18により脱気室2内に導かれるが、この導入された水を脱気室2内で広範囲に散水するために、脱気室2の上部には溢流連通管18の出口に接続されたV型の溢流樋19が径方向に延在配置され、その下方に溢流樋19落下してくる水を受けて飛散分散させる散水床20が配置されている。
【0053】
この散水床20の配置高さは、減圧貯水タンク10内の水位が上限水位HLにあるときに散水床20が中途深さまで水に浸かるように設定され、またこの上限水位HLでは仕切り板5bはその上縁が水中に没するように高さ寸法が制限されている。減圧貯水タンク10内の水位を計測するために、第2貯留室4内には上蓋6から上限水位検出用の水位検出器31aと下限水位検出用の水位検出器31bが垂下挿入され、それぞれの検出出力は制御器26に送られて電極筒15、導水筒7、真空ポンプ27や揚水ポンプ23、電磁開閉弁16,22などの作動制御に利用される。
【0054】
さて、導水筒7の底部には、導水筒7の軸心上に指向して超音波振動を放射する複数の超音波振動子34が取りつけられ、これらの振動子34は制御器26によって駆動制御されている。この場合、制御器26は、動作させる超音波振動子34の数と振動出力強度を水質及び水量に応じて予め設定されたプログラムにより可変制御する。
【0055】
この超音波振動子34は数十kHzの超音波を放射し、その実効振動面から導水筒7の水面(溢流堰17の上縁)までの距離は、放射超音波振動の4分の1半波長の奇数倍近傍に定められている。これにより導水筒7の内部を満たす水柱には超音波の定在波が形成され、粗密の変化が大きく、且つその水面で超音波振動がほぼ完全に反射されて高い効率でキャビテーションを生起し、それにより水中溶存気体が活発に気泡となって減圧状態下の上部空間に放散される。この導水筒7の上部空間は減圧貯水タンク10の上部空間と連通している。
【0056】
ところで、導水筒7の底面は裏面に超音波振動子34を取り付けた振動面となっているが、振動面から筒内に放射された超音波によって水柱に形成されるキャビテーション空洞内に捕集される気泡の粒径は通常の使用温度条件下では一般に極めて微細である。例えば、導水筒7内の水柱を40/760 mmHgの減圧下におき、水柱の温度を10℃とすれば、キャビテーションで生起する気泡の体積Vは、
V=(n×20×22.4×283)/(M×273)
≒ 464×n/M (但し、n/Mは水柱の気体のモル比)
にまで膨張しようとするが、振動面上の気泡は水柱の水圧で圧縮されているので、膨張は不完全である。このような場合、本発明の別の特徴にしたがって、導水筒には膨張脱気循環系が付設される。
【0057】
図3に膨張脱気循環系を導水筒に付設した場合の変形実施例を示す。図3において、図1と同一符号は対応する部分を示し、この変形実施例では、図1の実施例における導水筒7に代えて、ポンプ74及びノズル76による膨張脱気循環系が付設された導水筒70を用いており、それ以外の各部は図1の実施例と同様である。導水筒70は、全体形状が概略直立円筒形であることは図1の実施例と同様であるが、その内部の上部空間71は、溢流連通管18との連通開口よりも更に上方に拡がるように全高が高くなっている。この上部脱気空間71は、溢流連通管18を介して脱気室2の上部空間に連通すると共に、頂部の配管72を介して直接的に真空ポンプ27の吸引ポートに接続されている。
【0058】
導水筒70の下部貯水部には、給水管8から導入された水に超音波を照射することによって生じた気泡が浮上する途中で気泡と共に水を吸引するように、底部近傍に吸引口73が設けられている。この吸引口73にはポンプ74の吸引ポートが接続され、ポンプ74の吐出ポートには配管75によって噴射ノズル76が接続されている。噴射ノズル76は導水筒70の上部空間内に噴射口を向け、ポンプ74で加圧された吐出水が上部空間71内の対向内壁面に衝突するように霧状に噴射を行うようになっている。
【0059】
減圧下にある上部空間71内でノズル76から水が噴射されると、水中の気泡はノズル76を出た直後に外部圧力を瞬時に失って急膨張し、水から気体が分離される。この分離気体は直ちに上部空間71から配管72および真空ポンプ27によって捕集排気され、一方、このようにして脱気された霧状の噴射水は上部空間71内を自由落下して下方の水面上に上積みされて溜ることになる。
【0060】
このように、膨張脱気循環系は導水筒70内の水を強制的に霧状に細分化して気泡内の気体の圧力による束縛を解き、ジェット噴流の力を利用して気泡に急速な膨張を促す付加強制脱気手段であり、ポンプ74の吐出流量の設定によって循環送水流量QP を単位時間当たりの装置への給水流量QW のm倍(m>1)に設定して循環脱気を行えば付加的な脱気の効果が得られるが、係数mを更に大きくすれば脱気効果はそれに応じて高くなる。ポンプ74には固定容量型ポンプや可変容量型ポンプを使用することができ、或いはまた、速度調整可能な電動機で駆動されるポンプを使用することもできる。
【0061】
尚、ポンプ74を給水流量と平衡した流量設定で運転してもよく、また、ポンプ74による循環流量よりも給水流量を増して運転した場合には、ノズル76からの脱気された循環水は導水筒70内の水位を上昇させるが、これはやがて溢流堰17を越えてオーバーフローし、溢流連通管18から脱気室2で導入されるので何等支障はない。
【0062】
以上に述べたような膨張脱気循環系を付設した導水筒70による付加的な脱気システムは、それ自体で凡ゆる液体中のガスの脱気に適するものであり、比較的密度の高い液体における脱気に際しては超音波照射強度を液体密度に応じて調整すればよく、例えば石油プラントにおける回収水中に含まれるベンゼン等の毒性ガスの脱気や洗瓶工程における洗浄廃水中からの塩素ガスの脱気にも利用でき、また、脱気ガスを真空ポンプから回収することもできるので、給水設備に限らず下水処理や各種プラントの廃水処理においても今後不可欠なシステムとして位置付けられる。
【0063】
さて、図1に戻って、導水筒7、脱気室2、第1および第2貯水室3,4の各上部空間に放散された水中溶存気体は、制御器26で作動制御される真空ポンプ27により吸引され、真空ポンプ27の排気ラインから外部へ排出されることになる。尚、この排気ラインに脱臭装置を付設して周囲環境への臭気の放散を防止することは好ましいことである。
【0064】
減圧貯水タンク10の第2貯水室4は、底部の出口から配管21により電磁開閉弁22および揚水ポンプ23を介してイオン交換樹脂筒11の上部の入口に接続されている。これらの電磁開閉弁22および揚水ポンプ23の動作も制御器26で制御される。
【0065】
筒状本体1の下段のイオン交換樹脂筒11は、貫流によるイオン交換反応で水を軟水化するためのものであり、上部の入口に接続された散水ノズル28と、その下方のイオン交換樹脂濾材床29とを内部に備え、濾材床29の下方の筒底部出口は配管30により開閉弁32を介して軟水槽33に接続され、この軟水槽33から図示しない配水設備に供給されるようになっている。
【0066】
尚、イオン交換樹脂筒11の底部出口には逆止弁35および開閉弁36を介して逆洗用ポンプ37も接続されており、この逆洗用ポンプ37は、軟水槽33の水を吸い込んでイオン交換樹脂筒11に逆送できるようになっている。逆洗時に必要なイオン交換樹脂再生薬液は薬液タンク38から薬液ポンプ39及びバルブ40を介して逆洗ポンプ37の吸込みライン側に注入できるようになっている。またイオン交換樹脂筒11の入口には逆洗時に開かれるバルブ24を介して排水ピットへの配管25が接続され、更にイオン交換樹脂筒11の底部出口とこの排水配管25との間は、ドレン排出時に開かれるバルブ41を介して接続されている。
【0067】
例示した水処理装置の動作を説明すると、まず電磁開閉弁22を閉じて揚水ポンプ23を停止した状態で電磁開閉弁16を開き、制御器26により電極筒15および真空ポンプ27を動作させる。これにより受水槽14から電極筒15内に水が吸引され、電極筒15内における高周波電界による処理水中の未電離金属塩のイオン解離の促進によって水中のミネラル成分が非付着性の遊離スケールとして析出・濾別される。電極筒15内で析出されたスケール分は電極筒15の下部ドレンから適宜排出させ、脱スケールされた水は酸素・炭酸ガス・遊離塩素ガスなどを溶存しているので、下流の導水筒7と減圧貯水タンク10へ送って脱気する。
【0068】
すなわち、導水筒7と減圧貯水タンク10の内部は真空ポンプ27による減圧で負圧となっているので、電極筒15内の処理水は給水管8を介して導水筒7に吸引され、これが徐々にその水位を上昇させて遂には導水筒7内を満たし、その上部開口縁の溢流堰17から溢流すると、この溢流水は溢流連通管18および溢流樋19を介して減圧貯水タンク10の脱気室2内に散水流下される。
【0069】
導水筒7内では、制御器26によって作動制御される超音波振動子34からの超音波振動が水に与えられており、その強度は、真空ポンプ27による減圧が水の飽和水蒸気圧に達する前に超音波による励振で水中にキャビテーションが起きるように制御される。これにより、導水筒7内の水中に活発な気泡の発生が誘発され、水中の溶存気体は瞬時に気泡化して水中を上昇し、水面で外圧を失って破裂し、気体となって導水筒7の上部空間に放出され、連通管18を通過して減圧貯水タンク10の上部空間(減圧室)から真空ポンプ27の吸引によって装置外部に排出される。なお、図3の変形実施例では更に膨張脱気循環系による強制的な脱気が付加的に行われる。
【0070】
導水筒7の上縁の溢流堰17から溢流した水には未だ微粒子状の気泡が残存しているが、この水は溢流樋19により脱気室2内の散水床20の上に散水され、散水床20で広範囲に飛散されながら流下する間に減圧状態の室内で更に脱気され、脱気室2内から第1及び第2貯水室3,4内を次第に満たすようになる。
【0071】
このようにして減圧貯水タンク10内に溜られる水は既に充分に脱気されており、タンク10内で水位が上昇する際には、脱気室2から連通口12を通って第1貯水室3に流入し、このとき流れの向きが邪魔板5cによって強制的に上向き流れとされるので、連通口12から第1貯水室3に流入してくる流れに気泡が随伴していても、軽い気泡は流れの向きが上向きに変えられる際に互いに衝突して成長し、浮力を増しながら上向きの流れに乗って上方へ流れ、連通口13から第2貯水室4へ差し込むことなく水面に達し、水面で外圧を失って急速に膨張破裂することにより気体となって真空ポンプ27により吸引される。
【0072】
第1および第2貯水室3,4内で脱気水が予め設定された上限水位HLに達すると、水位検出器31aからの検出信号によって制御器26が電磁開閉弁22を開くと同時に、揚水ポンプ23を作動させる。これにより第2貯水室4の底部の出口から電磁開閉弁22および揚水ポンプ23を介して下段のイオン交換樹脂筒11に脱気水が送られる。
【0073】
この間も真空ポンプ27の吸引による導水筒7および減圧貯水タンク10への給水と脱気は継続されており、揚水ポンプ23は、上段の貯水室3,4の水位が検出器31bで検出される下限水位LL以上であれば動作を継続するように制御器26で制御され、水位が下限水位LLより下がると制御器26は揚水ポンプ23を止めて真空ポンプ27の作動により減圧貯水タンク10内の水位が再び上限水位HLまで回復するのを待つように制御する。
【0074】
図4は、筒状本体1と揚水ポンプ23の設置高さの関係を示す説明図であり、本例では、減圧貯水タンク10を上段に、イオン交換樹脂筒11を下段に配置して、揚水ポンプ23に対して吸込み側の押し込み揚程h1を与え、これにより揚水ポンプ23に対する真空ポンプの負圧抵抗を軽減し、揚水ポンプの実揚程を比較的小さなh2としている。
【0075】
イオン交換樹脂筒11では、揚水ポンプ23から送られてくる脱気水を筒頂部の散水ノズル28からその下部のイオン交換樹脂濾過床29に散水し、イオン交換樹脂濾過床29を通過する間に軟水化された水は筒底部の出口から配管30および開閉弁32を介して軟水槽33に貯水され、そこから下流の排水設備に送られることになる。
【0076】
このように脱気水が減圧貯水タンク10からイオン交換樹脂筒を通過する間に処理水が外気との接触から遮断され、従って外気中の気体が平衡分圧に応じて水中に溶解することがなく、酸化力の弱い状態のままイオン交換樹脂を通過するのでイオン交換樹脂の酸化を防止してその耐久性を格段に向上させることができ、イオン交換樹脂として架橋度の低いものを使用して貫流交換容量を大きくすることも可能となるだけでなく、イオン交換樹脂の薬注逆洗浄のサイクルを伸ばすこともできる。
【0077】
また脱気に寄与する減圧貯水タンクを上段とし、その下段にイオン交換樹脂筒を配置しているので、機械室やボイラ室内などに比較的狭い設置面積で配置することができる。
【0078】
尚、図示の例では上下二段の一体構造ユニットによる水処理装置を示したが、減圧貯水タンクとイオン交換樹脂筒個々に独立したタンク形式で構成し、これらを配管系で接続しても同様に機能する水処理装置とすることができる。
【0079】
【発明の効果】
以上に述べたように、本発明によれば、減圧脱気処理容器を使用しながら連続的な送水を可能とする真空脱気イオン交換式の軟水化水処理装置を提供することができ、その設備維持も比較的簡単であって、例えば制御器は簡単なオン−オフ制御装置で実現可能であると共に、薬注を不要とし、加熱処理することなく溶存物質を効果的に除去して軟水として送水することができる。
【0080】
また薬注によることなく水中の腐食性溶存成分を除去してイオン交換樹脂による軟水化が達成でき、処理後の水に薬剤の残留がないので、特にボイラの給水管理に利用すれば清缶剤や脱酸剤などの有害薬剤が不要となるほかボイラの腐食も防止でき、ボイラの蒸気中に薬剤が存在しなくなるのでその放出による薬剤飛散の恐れも皆無となるなど、数多くの利益を得ることができる。
【0081】
更に超音波振動によるキャビテーションの発生を併用して真空脱気中に効率よく溶存気体の気化を促進し、脱気水の空気との再接触を極力防止して処理系内での大気からの酸素や炭酸ガスの再溶解を防止しつつイオン交換樹脂に通水するので、イオン交換樹脂の酸化による劣化が防止でき、例えば強塩基性イオン交換樹脂を用いても交換基の酸化による吸水性の低下や収縮を起こすことなく、その耐久性が格段に向上し、イオン交換樹脂の洗浄サイクルも延長できるので稼動効率を向上させることが可能である。
【図面の簡単な説明】
【図1】本発明の好適な実施の形態の一例を示す説明図である。
【図2】図1の装置の減圧貯水タンクの横断面構造を示す説明図である。
【図3】本発明の変形実施形態の一例を示す説明図である。
【図4】筒状本体と揚水ポンプの設置高さの関係を示す説明図である。
【符号の説明】
1:円筒本体
2:脱気室
3:第1貯水室
4:第2貯水室
5a:仕切り板
5b:仕切り板
5c:邪魔板
6:上蓋
7:導水筒
8:給水管
9:中間隔壁
10:減圧貯水タンク
11:イオン交換樹脂筒
12:連通口
13:連通口
14:受水槽
15:電極筒
16:電磁開閉弁
17:溢流堰
18:溢流連通管
19:溢流樋
20:散水床
21:配管
22:電磁開閉弁
23:揚水ポンプ
24:開閉弁
25:開閉弁
26:制御器
27:真空ポンプ
28:散水ノズル
29:イオン交換樹脂濾材床
30:配管
31a:水位検出器
31b:水位検出器
70:導水筒
71:上部空間(上部脱気空間)
72:配管
73:吸引口
74:ポンプ
75:配管
76:ノズル
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a water treatment apparatus for degassing and softening water, middle water, or sewage, and for example, integrated vacuum degassing and ion exchange treatment in water distribution facilities and water purification facilities such as buildings and factories. The present invention relates to a water treatment apparatus for softening or purifying water while effectively removing volatile dissolved components and corrosive dissolved components in water by simple combination treatment.
[0002]
[Prior art]
It is well known, for example, in boiler water supply equipment, to soften water by reducing carbonate hardness by passing water through an ion exchange resin cylinder. In this case, if the oxide is dissolved in the water introduced into the ion exchange resin cylinder, it causes irreversible swelling due to oxidation in the case of strong acid / weak acid cation exchange resin, and exchange by oxidation in the case of anion exchange resin. Since the group decomposes or causes irreversible swelling, it is possible to cause a major problem that affects the durability of the ion exchange resin unless it is confirmed that oxides are not dissolved or mixed in the water during water flow. . For example, when iron ions and copper ions eluted from the lining of the piping lining are mixed in the reaction with dissolved oxygen in the water, the ion exchange resin is oxidized and deteriorated by their catalytic action. .
[0003]
Therefore, in the case where oxides are dissolved or mixed in the water flow, or there is a possibility that it will occur, it is necessary to prevent descaling and corrosion in the water before passing it through the ion exchange resin. It is common sense to perform pretreatment for the purpose.
[0004]
The most common type of pretreatment is a chemical injection system in which a chemical containing a detoxicating agent such as highly toxic hydrazine to remove dissolved oxygen and a canning agent to increase pH is added to water. is there.
[0005]
In addition, as a method that does not rely on chemical injection, there is also known a vacuum degassing method by batch processing in which oxygen, carbon dioxide gas, free chlorine, etc. dissolved in water are collectively degassed in a high-vacuum container for every fixed amount of water. A multi-stage continuous vacuum deaeration method combining an ejector and a cyclone for mass processing is also known.
[0006]
In addition, for example, in Japanese Patent Publication No. 2-11319, Japanese Patent Publication No. 2-12640 or Japanese Patent Publication No. 6-38959, a mineral component in water is ionically dissociated in a tank that applies an electrostatic field or an oscillating electric field. It is taught that the inside of the tank is degassed by depressurization when it is deposited and removed as a floating scale.
[0007]
[Problems to be solved by the invention]
In the chemical injection method, not only the toxic problem of the deoxidizer, but also when the chemical injection is performed upstream of the ion exchange resin cylinder, the amount of impurities in the water increases accordingly, which only increases the load on the ion exchange resin. In addition, there is a tendency to increase the amount of drug injected naturally, and there are various problems such as management difficulties in monitoring the appropriate amount of drug input, and the increase in drug use amount. It is not common except for applications in strictly controlled factories and other places where it is expected.
[0008]
As for the vacuum degassing method, for example, it is difficult to handle vacuum for water treatment of domestic water supply and red water countermeasures in buildings. Qi device. However, the batch processing type vacuum degassing apparatus has a limited amount of processing because the processing is discontinuous, and if it is necessary to process a large amount of water, it must be a large-scale facility, and the equipment maintenance cost Is uncommon because it is expensive.
[0009]
On the other hand, when continuous mass processing is required, such as in a food factory, a multi-stage continuous vacuum deaeration system that combines an ejector and a cyclone that are required to be technically complicated for operation and maintenance is adopted. Equipment with sufficient processing capacity per hour has been put to practical use, but the installation area is large, and the equipment and maintenance costs are large. As a degassing device for water treatment facilities, etc., such as management, it is not economically attracted and its adoption is not realistic.
[0010]
In addition to this, for example, a method of executing the hollow fiber membrane deaeration method upstream of the ion exchange resin cylinder is also conceivable, but in this case, a metal salt in water adheres to the hollow fiber membrane, and it is oxidized to become a fault. In the meantime, there is a drawback that the passage of deaerated oxygen is blocked and the deaeration becomes impossible, and the running cost increases due to frequent membrane exchange.
[0011]
In addition, the use of the hollow fiber membrane downstream of the ion exchange resin is also effective for simply removing dissolved oxygen. In this case, however, in the boiler equipment, for example, the metal ion component dissolved from the steam return pipe or the circulating hot water pipe is not used. Since it oxidizes and adheres and solidifies on the surface of the hollow fiber membrane, causing clogging, it is inevitable that the entire surface of the hollow fiber membrane must be replaced relatively early.
[0012]
It is also known to simultaneously remove organic carcinogens such as trihalomethane and trichloroethylene in the water by heating and boiling the treated water in combination with the vacuum degassing treatment. In the water supply system to be supplied, energy for boiling is wasted, so there is a difficulty that cannot be adopted in reality.
[0013]
Accordingly, an object of the present invention is to provide a water treatment apparatus using a combination of vacuum degassing and ion exchange treatment that is relatively easy to maintain and enables almost continuous water flow without the need for chemical injection, in particular, volatilization in water. It is to provide a water treatment apparatus for softening or purifying water while effectively removing a soluble dissolved component and a corrosive dissolved component.
[0014]
In addition, water treatment equipment that can effectively prevent the deterioration of the ion exchange resin and improve the durability of the ion exchange resin while eliminating the need for chemical injection, and thus can reduce the number of backwash times of the ion exchange resin. Another object of the present invention is to provide a water treatment apparatus that can remove dissolved substances without heating.
[0015]
[Means for Solving the Problems]
The basic philosophy of the present invention for solving the above-mentioned problems is that under reduced pressure in a water pipe that receives water supply. Cavity phenomenon To collect and deaerate the dissolved gas in the water, further vacuum deaerate the water degassed in the water conduit and temporarily store the water stored in the vacuum storage tank, Water is supplied to the ion exchange resin cylinder disposed below the depressurized water storage tank without making contact with the atmosphere, and water from which dissolved oxygen is removed is passed through the ion exchange resin cylinder without using chemical injection, Therefore, the oxidation of the ion exchange membrane can be prevented.
[0016]
The deaeration apparatus of the present invention has an electrolyte in water by applying an electric field to water as disclosed in JP-B-2-11319, JP-B-2-12640 or JP-B-6-38959. Can be installed downstream of the electric field treatment apparatus for electrolyzing the water, whereby the water ionized upstream is guided to the water treatment apparatus of the present invention to remove most of the residual dissolved gas in the water and continuously remove it. It is possible to pass water to the downstream ion exchange resin cylinder. The water that has passed through the ion exchange resin cylinder has been softened or purified, and is distributed from an appropriate soft water storage tank to a downstream water distribution facility.
[0017]
The water treatment apparatus according to the present invention is configured by applying reduced pressure and, if necessary, ultrasonic treatment to water introduced from a water supply pipe. Cavity phenomenon A water pipe that collects and deaerates dissolved gas in the water by inducing water, a vacuum storage tank that temporarily stores the water degassed by the water pipe in a room that has been depressurized to below atmospheric pressure, and a lower part than the vacuum storage tank The basic feature is that it includes an ion exchange resin cylinder arranged and water supply means for introducing water stored in the decompression water storage tank into the ion exchange resin cylinder without coming into contact with the atmosphere.
[0018]
In the water treatment apparatus of the present invention, the water sucked and introduced into the water guide cylinder by decompression is used. Cavity phenomenon , And in some cases by causing boiling under reduced pressure, the dissolved gas in the water is ruptured as bubbles on the surface of the water, and this is sucked and collected as a gas in a reduced pressure source for degassing. In addition to being able to use reduced pressure to introduce water, no heating energy is required to boil the treated water.
[0019]
Water in water conduit Cavity phenomenon Ultrasonic vibration energy irradiation is effective for the induction of water, and in this case, an ultrasonic vibration applying device for causing cavitation in the water introduced from the water supply pipe is installed in the water guide tube, and the water is evacuated. Even if the degree of decompression is less than that caused by boiling under reduced pressure only by the pressure, it depends on the ultrasonic vibration energy. In cavitation in water Cavity phenomenon Can be induced and the bubble formation of the dissolved gas can be promoted. Of course, it is also effective to use ultrasonic irradiation in combination when the pressure is reduced to a sufficiently low level and water itself causes reduced-pressure boiling.
[0020]
In general, ultrasonic cavitation occurs when the sound pressure exceeds atmospheric pressure. Therefore, if the sound pressure of the ultrasonic wave is (p), the density of the water to be treated is (ρ), the vibration velocity of the particles is (u), and the wave propagation velocity is (c), then p = ρcu. The intensity of the sound wave, that is, the power density (I) is I = ρcu. 2 It is.
[0021]
Therefore, in the present invention, the density of the water to be treated is greatly affected by the content of impurities such as volatile components and organic substances in the water. Therefore, a plurality of ultrasonic vibrators are attached to the back side of the bottom surface of the water guide tube. The intensity of the ultrasonic wave is controlled by controlling the number of active and voltage power of the drive power supply, and cavitation occurs in the water column in the water guide tube before the vacuum reaches the saturated water vapor pressure of the water in the deaeration chamber. The components are efficiently bubbled, the bubbles are ruptured on the water surface and sucked and collected in a vacuum source, and the fine bubbles contained in the degassed water are further vacuumed by watering in the degassing chamber. It is removed by deaeration and replaced with deaerated water having a very weak oxidizing power, and then sent to the ion exchange resin cylinder to effectively prevent the deterioration of the ion exchange resin.
[0022]
The improvement of the deaeration effect by this ultrasonic vibration is remarkable, and in the present invention, unlike the ultrasonic vibration method under the condition that the water surface in the conventional general water receiving tank is open to the atmosphere, the upper part in the water guide tube is used in the present invention. Since it is performed under the condition where the space is depressurized, the gas corresponding to the equilibrium partial pressure is not dissolved again in the deaerated water from the atmosphere, and the purity is almost as high as that of pure water without chlorine odor. Deaerated water can be obtained.
[0023]
Particularly preferably, by selecting the dimensions of the water guide tube and the frequency of the ultrasonic vibration so that the standing wave of the ultrasonic vibration is given to the water filled in the water guide tube from the bottom of the water guide tube in an upright state, Ultrasonic standing waves are formed in the water column that fills the water bottle and complete reflection of the ultrasonic waves occurs on the water surface, so that the maximum ultrasonic vibration energy is transmitted, thereby generating cavitation instantaneously and the dissolved gas is active. The air bubbles are ruptured on the surface of the water and are collected and removed from the decompressed upper deaeration space in the water guide cylinder to the outside, thus further increasing the efficiency of deaeration.
[0024]
According to another preferable feature of the present invention, the water guide tube is provided with an expansion deaeration circulation system in which dissolved gas in water is rapidly expanded in the upper deaeration space in the water guide tube and degassed under reduced pressure. The expansion deaeration / circulation system includes a pump that sucks water from the lower part in the water guide tube, and a nozzle that injects water pressurized by the pump into the upper deaeration space in the water guide tube.
[0025]
That is, as described above, the pressure of the gas trapped in the cavitation cavity by the ultrasonic wave in the water guide tube is relatively small, and the bottom of the water guide tube is compressed by the water pressure of the water column to form fine bubbles and expand. However, depending on conditions such as temperature, it may remain on the surface of the water without rupturing and take time to be degassed. When the expansion deaeration / circulation system is attached, preferably the generated bubbles together with water from the portion immediately above the bubble generating portion at the bottom of the water guide tube, or in the case of applying ultrasonic vibration, from the portion immediately above the bubble generating portion on the vibration surface. By sucking and pressurizing with the pump and injecting it from the nozzle to the upper deaeration space of the water guide cylinder, the water sprayed from the nozzle can be degassed by rapidly decompressing and expanding in the upper space under reduced pressure. .
[0026]
In this case, it is more preferable that the water jetted from the nozzle collide with the inner wall surface of the water guide tube or the abutting wall member attached separately to forcibly rupture the bubbles contained in the water jet, thereby enabling more effective deaeration. is there. The gas separated by the burst of bubbles is collected and degassed from the upper deaeration space in the water guide tube to the outside, and the deaerated water is stored on the water surface in the water guide tube below by natural fall. A soot means for calming may be provided so that the deaerated water is gently introduced into the water surface.
[0027]
The combination of the pump and the nozzle used in this expansion / deaeration / circulation system constitutes a so-called water absorption jet pump, and its water absorption flow rate Q P Is the water supply flow rate Q by vacuum suction of the water treatment device itself. W Against Q P = MQ W Are in a relationship. Here, the deaeration efficiency becomes higher as the deaeration circulation coefficient m becomes larger by selecting the pump capacity, and the pump capacity can be variably set so that the water supply flow rate of the apparatus can be set. Q W Accordingly, a circulation system in which the deaeration ability can be arbitrarily set can be obtained.
[0028]
According to still another preferred feature of the present invention, the upper opening edge of the water guide tube is provided with overflow means for introducing the water stored in the water guide tube into the reduced pressure storage tank by overflow, in this case, the reduced pressure water storage The tank receives a water overflowing from the upper opening edge of the water guide tube, deaerates the chamber, introduces water from the bottom of the deaeration chamber, floats the remaining bubbles, and the first water reservoir. A second water storage chamber that introduces water from the chamber and leads it to the water supply means, and the deaeration chamber, the first and second water storage chambers, and the upper spaces of the water conduits communicate with each other to form a decompression chamber, An intake pressure reducing device for collecting deaerated gas is connected to the pressure reducing chamber.
[0029]
Further, in this case, when a watering means for sprinkling water overflowing from the upper opening edge of the water guide tube and a watering floor for splashing water by receiving water sprayed by the watering means are provided in the deaeration chamber of the decompression water storage tank, Vacuum degassing in the decompression water storage tank becomes more efficient.
[0030]
Such a depressurized water storage tank serves as both a vacuum degassing tank by sprinkling under reduced pressure and a temporary storage tank of degassed water. As described later, the inside of the cylindrical tank is divided into two partitions. By partitioning vertically with a plate, a deaeration chamber, a first water storage chamber, and a second water storage chamber can be formed.
[0031]
In this case, the ratio of the cross-sectional area of the three chambers can be determined as desired by the mounting position of the two partition plates, concrete An example of such a ratio is deaeration chamber: first water storage chamber: second water storage chamber = 0.675: 0.25: 0.075.
[0032]
The upper edge of the two partition plates forms a gap with the tank upper lid, and the upper space of the three chambers becomes a decompression chamber communicating with each other by this gap. This decompression chamber is connected to an external vacuum pump, and is kept in a decompressed state lower than atmospheric pressure during operation.
[0033]
Also, the lower edge of each partition plate is attached so as to form a gap between the tank bottom plate and the gap between the deaeration chamber and the first water storage chamber and between the first water storage chamber and the second water storage chamber. Form a passage.
[0034]
Here, the partition plate is arranged such that the gap forming the water passage between the deaeration chamber and the first water storage chamber faces the gap forming the water passage between the first water storage chamber and the second water storage chamber. In this case, the bottom plate in the first water storage chamber is arranged so that the water flowing into the first water storage chamber from the deaeration chamber does not go directly to the gap forming the water passage between the first water storage chamber and the second water storage chamber. A baffle plate having an appropriate height may be provided on the top.
[0035]
The water feeding means sucks water from the bottom of the second water storage chamber without touching the atmosphere, and sprays water into the upper space in the ion exchange resin cylinder with a pump. The inside of the ion exchange resin cylinder is shielded from the atmosphere, and an ion exchange resin filter medium bed is loaded below the upper space. The water softened by the exchange reaction while passing through the ion exchange resin filter material bed is sent from the bottom of the ion exchange resin cylinder to the soft water storage tank through the pipe, and from there to the downstream water distribution facility. .
[0036]
In the water treatment apparatus of the present invention, even if metal ions or metals are present in the water to be treated, the corrosive dissolved gas such as dissolved oxygen, free chlorine and carbon dioxide in the water is almost upstream of the ion exchange resin cylinder. The water that can be completely deaerated and passed through the ion exchange resin cylinder is water having weak oxidizing power. Therefore, oxidation of the ion exchange resin can be prevented without performing chemical injection, and the durability can be greatly improved.
[0037]
In addition, since there is no concern about the occurrence of irreversible swelling of the ion exchange resin due to oxidation, it is possible to use, for example, a strongly acidic cation exchange resin having a low degree of crosslinking, and exchange of large molecular ions at a high exchange reaction rate. The advantage that the property can be improved can also be obtained.
[0038]
Even if iron or copper oxides are mixed in the deoxidized water, the oxidative power of the water is weak so that the ion exchange resin is not easily oxidized. By arranging the filtration layer, it can be used as a copper removal layer for removing iron, and an advantage of increasing the durability of the ion exchange resin of the water softener can be obtained.
[0039]
Since it is considered that the water treatment apparatus of the present invention is often used by being installed in a narrow room such as a machine room or a boiler room, the apparatus structure is preferably an integrated structure. In applications where the installation floor area is desired to be as small as possible, the water treatment apparatus of the present invention can be configured so that the vacuum storage tank and the ion exchange resin cylinder are formed as an integrated tank having a two-stage upper and lower structure. In this case, the upper stage of the integrated tank Is configured as a decompression water storage tank, and the lower stage is configured as an ion exchange resin cylinder.
[0040]
In the case of such an integrated tank with an upper and lower two-stage structure, a pump for the water supply means is placed on the installation floor, and the head from the upper regulated control surface in the vacuum storage tank at the upper stage of the integrated tank is The pump can be used for a part of the suction head of the pump, so that water can be fed to the ion exchange resin cylinder with a normal pump without using a high-pressure pump as the pump.
[0041]
As described above, the water treatment apparatus of the present invention can be configured as a water treatment unit having a single structure in which a decompression water storage tank and an ion exchange resin cylinder are incorporated in an integrated tank, but the present invention is limited to this. Instead, it goes without saying that the decompression water storage tank and the ion exchange resin cylinder can be configured as separate can bodies, and each can body can be connected by piping to form a collective facility.
[0042]
In addition, it is desirable to prevent electrolytic corrosion by keeping the main structural member in contact with water of the water treatment apparatus according to the present invention at the same potential including the pipe under the third or more kinds of electrical grounding conditions.
[0043]
DETAILED DESCRIPTION OF THE INVENTION
A preferred embodiment of the present invention will be described below with reference to the drawings. In the illustrated embodiment, the water guided from the water receiving tank is guided to the water purification electrode cylinder disclosed in the aforementioned Japanese Patent Publication No. 6-38959, and ions of unionized metal salts in the treated water by the high frequency electric field are used. Although the apparatus of the structure which introduce | transduces the mineral component in treated water as non-adhesive free substance by non-adhesive free substance and introduce | transducing it into a water guide tube by promoting dissociation is illustrated, the water treatment apparatus of this invention is limited to this Example. In addition to direct water supply from the water receiving tank to the water conduit, it can be used in combination with the downstream side of other various water treatment devices.
[0044]
In FIG. 1, the water supply to the facility is performed by ionizing the water received in the water receiving tank 14 with the electrode cylinder 15 and then sending it to the water supply pipe 8. The electrode cylinder 15 is controlled by the controller 26. The mineral components in the water are precipitated and filtered as non-adhesive free substances by promoting the ionic dissociation of the non-ionized metal salt in the treated water by a high-frequency electric field, the details of which are described in Japanese Patent Publication No. 6-38959. I will not go into detail here.
[0045]
Note that an electromagnetic on-off valve 16 is interposed between the water-receiving layer 14 and the electrode cylinder 15, and this electromagnetic on-off valve 16 is opened during normal operation under the control of the controller 26. It is closed when it is necessary to stop water supply for the purpose.
[0046]
The water supply pipe 8 is connected to the lower part of the water guide tube 7, and this water guide tube 7 is for performing vacuum deaeration promoted by the generation of cavitation by ultrasonic waves, as will be described later. The water bottle 7 is attached to the outer surface of the cylindrical main body 1 in an upright posture.
[0047]
The cylindrical main body 1 is an integrated sealed tank that is hermetically sealed with an upper lid 6, and the inside of the cylindrical main body 1 is divided into two upper and lower stages by an intermediate partition wall 9, and the upper stage is a decompression water storage tank 10 for vacuum deaeration, The lower stage constitutes an ion exchange resin cylinder 11 for water softening.
[0048]
As shown in FIG. 2, the interior of the decompression water storage tank 10 is vertically divided into three chambers by two partition plates 5 a and 5 b welded to the inner peripheral surface of the cylindrical main body 1 at both side edges. A deaeration chamber 2, a first water storage chamber 3, and a second water storage chamber 4 are formed in order from the upstream.
[0049]
The upper edge of each partition plate 5a, 5b forms a gap with the upper lid 6, thereby constituting a decompression chamber in which the upper spaces of the three chambers 2, 3, 4 communicate with each other together with the upper space of the water guide tube 7. The decompression chamber is connected to a suction port of an external vacuum pump 27.
[0050]
In addition, a lower edge of each partition plate 5a, 5b forms a gap with the intermediate partition wall 9, and the water communication port 12 between the deaeration chamber 2 and the first water storage chamber 3 and the first water are formed by these gaps. A water communication port 13 between the water storage chamber 3 and the second water storage chamber 4 is formed. Immediately before the communication port 13, a baffle plate 5 c extending upward from the height of the communication port 13 is provided so that the water flow from the communication port 12 is not directly inserted into the communication port 13. The lower edge of the plate 5 c is welded to the intermediate partition wall 9, and both side edges are welded to the inner peripheral surface of the cylindrical main body 1.
[0051]
The deaeration chamber 2 communicates with the upper space of the water guide tube 7 through the overflow communication pipe 18 at the upper part, and an overflow weir 17 is provided at the end of the overflow communication pipe 18 in the water guide tube 7. ing. The overflow weir 17 is spaced from the ceiling surface of the water guide tube 7 so that a reduced pressure space is secured above the water guide tube 7.
[0052]
The overflow weir 17 forms an upper opening edge of the water guide tube 7, and the water overflowing from the overflow weir 17 is guided into the deaeration chamber 2 by the overflow communication pipe 18, and this introduced water is introduced into the deaeration chamber 2. In order to spray water over a wide area, a V-shaped overflow ridge 19 connected to the outlet of the overflow communication pipe 18 extends radially in the upper part of the deaeration chamber 2, and the overflow ridge 19 is disposed below the V-shaped overflow ridge 19. A sprinkling floor 20 that receives and drops the falling water is disposed.
[0053]
The arrangement height of the sprinkling floor 20 is set so that the sprinkling floor 20 is immersed in water to a midway depth when the water level in the decompression water storage tank 10 is at the upper limit water level HL. The height dimension is limited so that the upper edge is submerged in water. In order to measure the water level in the depressurized water storage tank 10, a water level detector 31a for detecting an upper limit water level and a water level detector 31b for detecting a lower limit water level are suspended from the upper lid 6 in the second storage chamber 4, The detection output is sent to the controller 26 and used for operation control of the electrode cylinder 15, the water guide cylinder 7, the vacuum pump 27, the pumping pump 23, the electromagnetic on-off valves 16 and 22, and the like.
[0054]
Now, a plurality of ultrasonic transducers 34 that radiate ultrasonic vibrations are attached to the bottom of the water guide tube 7 so as to be directed on the axis of the water guide tube 7, and these vibrators 34 are driven and controlled by the controller 26. Has been. In this case, the controller 26 variably controls the number of ultrasonic transducers 34 to be operated and the vibration output intensity by a program set in advance according to the water quality and the amount of water.
[0055]
The ultrasonic transducer 34 emits ultrasonic waves of several tens of kHz, and the distance from the effective vibration surface to the water surface of the water guide tube 7 (the upper edge of the overflow weir 17) is a quarter of the radiated ultrasonic vibration. It is determined in the vicinity of an odd multiple of a half wavelength. As a result, an ultrasonic standing wave is formed in the water column that fills the inside of the water guide tube 7, the change in density is large, and the ultrasonic vibration is almost completely reflected on the water surface to cause cavitation with high efficiency, As a result, the dissolved gas in the water is actively converted into bubbles and diffused into the upper space under reduced pressure. The upper space of the water guide cylinder 7 communicates with the upper space of the decompression water storage tank 10.
[0056]
By the way, the bottom surface of the water guide tube 7 is a vibration surface with an ultrasonic transducer 34 attached to the back surface, but in the cavitation cavity formed in the water column by the ultrasonic wave radiated into the tube from the vibration surface. Collection The particle size of the generated bubbles is generally very fine under normal use temperature conditions. For example, if the water column in the water guide tube 7 is placed under a reduced pressure of 40/760 mmHg and the temperature of the water column is 10 ° C., the volume V of bubbles generated by cavitation is
V = (n × 20 × 22.4 × 283) / (M × 273)
≈ 464 x n / M (where n / M is the molar ratio of the water column gas)
However, since the bubbles on the vibrating surface are compressed by the water pressure of the water column, the expansion is incomplete. In such a case, according to another feature of the present invention, the water guide tube is provided with an expansion deaeration circulation system.
[0057]
FIG. 3 shows a modified embodiment in the case where the expansion deaeration circulation system is attached to the water conduit. 3, the same reference numerals as those in FIG. 1 denote corresponding parts. In this modified embodiment, an expansion deaeration circulation system using a pump 74 and a nozzle 76 is attached instead of the water guide tube 7 in the embodiment of FIG. A water guide tube 70 is used, and other parts are the same as those in the embodiment of FIG. The overall shape of the water guide cylinder 70 is substantially the same as that of the embodiment of FIG. 1, but the upper space 71 inside thereof extends further upward than the communication opening with the overflow communication pipe 18. So that the total height is high. The upper deaeration space 71 communicates with the upper space of the deaeration chamber 2 via the overflow communication pipe 18 and is directly connected to the suction port of the vacuum pump 27 via the top pipe 72.
[0058]
A suction port 73 is provided in the vicinity of the bottom of the lower water storage portion of the water guide tube 70 so that water is sucked together with the bubbles while the bubbles generated by irradiating the water introduced from the water supply pipe 8 with ultrasonic waves. Is provided. A suction port of a pump 74 is connected to the suction port 73, and an injection nozzle 76 is connected to a discharge port of the pump 74 by a pipe 75. The injection nozzle 76 directs the injection port into the upper space of the water guide tube 70, and sprays in the form of a mist so that the discharge water pressurized by the pump 74 collides with the opposing inner wall surface in the upper space 71. Yes.
[0059]
When water is jetted from the nozzle 76 in the upper space 71 under reduced pressure, the bubbles in the water immediately lose the external pressure immediately after exiting the nozzle 76 and rapidly expand to separate the gas from the water. The separated gas is immediately collected and exhausted from the upper space 71 by the pipe 72 and the vacuum pump 27. On the other hand, the mist-like jet water degassed in this way freely falls in the upper space 71 and falls on the lower water surface. It will be piled up on top.
[0060]
In this way, the expansion and deaeration circulation system forcibly subdivides the water in the water guide cylinder 70 into a mist to release the restraint due to the pressure of the gas in the bubbles, and rapidly expands the bubbles using the force of the jet jet. Additional forced deaeration means for urging the circulation water flow rate Q by setting the discharge flow rate of the pump 74 P Supply water flow rate Q to the unit per unit time W If the circulation deaeration is performed by setting m times (m> 1), an additional deaeration effect can be obtained. However, if the coefficient m is further increased, the deaeration effect is increased accordingly. A fixed displacement pump or a variable displacement pump can be used as the pump 74, or a pump driven by an electric motor capable of adjusting the speed can be used.
[0061]
The pump 74 may be operated at a flow rate setting that is balanced with the feed water flow rate. When the pump 74 is operated at a higher feed water flow rate than the circulation flow rate by the pump 74, the degassed circulated water from the nozzle 76 is The water level in the water guide cylinder 70 is raised, but this eventually overflows the overflow weir 17 and is introduced from the overflow communication pipe 18 into the deaeration chamber 2, so there is no problem.
[0062]
The additional degassing system using the water guide tube 70 provided with the expansion degassing / circulation system as described above is suitable for degassing the gas in the liquid by itself, and has a relatively high density. In degassing, the ultrasonic irradiation intensity may be adjusted according to the liquid density, for example, degassing of toxic gases such as benzene contained in recovered water in oil plants and chlorine gas from washing wastewater in the washing bottle process. Since it can be used for deaeration and degassed gas can be recovered from the vacuum pump, it will be positioned as an indispensable system not only for water supply equipment but also for sewage treatment and wastewater treatment of various plants.
[0063]
Now, referring back to FIG. 1, the vacuum pump whose operation is controlled by the controller 26 for the dissolved gas in water diffused in the upper spaces of the water guide cylinder 7, the deaeration chamber 2, the first and second water storage chambers 3, 4. 27 is sucked out by the vacuum pump 27 and discharged from the exhaust line of the vacuum pump 27 to the outside. It is preferable to attach a deodorizing device to the exhaust line to prevent the odor from being diffused to the surrounding environment.
[0064]
The second water storage chamber 4 of the depressurized water storage tank 10 is connected from the bottom outlet to the upper inlet of the ion exchange resin cylinder 11 through the piping 21 via the electromagnetic on-off valve 22 and the pumping pump 23. The operations of the electromagnetic on-off valve 22 and the pumping pump 23 are also controlled by the controller 26.
[0065]
A lower ion exchange resin cylinder 11 in the cylindrical main body 1 is for softening water by an ion exchange reaction by flow-through, and a water spray nozzle 28 connected to an upper inlet and an ion exchange resin filter medium below the nozzle. A bottom outlet of the bottom of the filter medium bed 29 is connected to a soft water tank 33 through an on-off valve 32 by a pipe 30 and is supplied from the soft water tank 33 to a water distribution facility (not shown). ing.
[0066]
A backwash pump 37 is also connected to the bottom outlet of the ion exchange resin cylinder 11 via a check valve 35 and an open / close valve 36, and the backwash pump 37 sucks water from the soft water tank 33. It can be fed back to the ion exchange resin cylinder 11. The ion-exchange resin regenerated chemical solution required for backwashing can be injected from the chemical solution tank 38 to the suction line side of the backwash pump 37 through the chemical solution pump 39 and the valve 40. A pipe 25 to the drain pit is connected to the inlet of the ion exchange resin cylinder 11 via a valve 24 that is opened during backwashing. Further, a drain is provided between the bottom outlet of the ion exchange resin cylinder 11 and the drain pipe 25. It is connected via a valve 41 that is opened when discharging.
[0067]
The operation of the illustrated water treatment apparatus will be described. First, the electromagnetic on-off valve 16 is opened with the electromagnetic on-off valve 22 closed and the pumping pump 23 stopped, and the electrode cylinder 15 and the vacuum pump 27 are operated by the controller 26. As a result, water is sucked into the electrode cylinder 15 from the water receiving tank 14, and the mineral components in the water precipitate as non-adhesive free scales by promoting ion dissociation of the non-ionized metal salt in the treated water by the high-frequency electric field in the electrode cylinder 15. -Filtered off. The scale portion deposited in the electrode cylinder 15 is appropriately discharged from the lower drain of the electrode cylinder 15, and the descaled water dissolves oxygen, carbon dioxide gas, free chlorine gas, and the like. It sends to the decompression water storage tank 10 and deaerates.
[0068]
That is, since the inside of the water guide tube 7 and the decompression water storage tank 10 is negative pressure due to the decompression by the vacuum pump 27, the treated water in the electrode tube 15 is sucked into the water guide tube 7 through the water supply pipe 8, and this is gradually increased. When the water level is raised and finally the water guide cylinder 7 is filled and overflows from the overflow weir 17 at the upper opening edge, the overflow water is stored in the decompression water storage tank via the overflow communication pipe 18 and the overflow trough 19. The water is sprinkled into the 10 deaeration chambers 2.
[0069]
In the water guide tube 7, ultrasonic vibration from the ultrasonic vibrator 34 that is controlled by the controller 26 is applied to the water, and the strength thereof is before the reduced pressure by the vacuum pump 27 reaches the saturated water vapor pressure of the water. In addition, it is controlled so that cavitation occurs in the water by ultrasonic excitation. Thereby, generation | occurrence | production of an active bubble is induced in the water in the water conveyance pipe | tube 7, the dissolved gas in water will be bubbled instantaneously, it will rise in water, it loses external pressure on the surface of the water, it bursts, and it becomes gas, and the water conveyance cylinder 7 And is discharged from the upper space (decompression chamber) of the depressurized water storage tank 10 to the outside by suction of the vacuum pump 27. In addition, in the modified embodiment of FIG. 3, forcible deaeration by the expansion deaeration circulation system is additionally performed.
[0070]
Fine water bubbles still remain in the water overflowed from the overflow weir 17 at the upper edge of the water guide cylinder 7, but this water is placed on the water spray bed 20 in the deaeration chamber 2 by the overflow tank 19. The water is sprinkled and further deaerated in the decompressed room while flowing down on the sprinkling floor 20, and gradually fills the first and second water storage chambers 3 and 4 from the deaeration chamber 2.
[0071]
Thus, the water stored in the depressurized water storage tank 10 has already been sufficiently deaerated. When the water level rises in the tank 10, the first water storage chamber passes through the communication port 12 from the deaeration chamber 2. 3, and the flow direction is forced upward by the baffle plate 5 c at this time, so even if bubbles are accompanied by the flow flowing into the first water storage chamber 3 from the communication port 12, it is light. Bubbles grow when they collide with each other when the flow direction is changed upward, flow upward while riding on the upward flow while increasing buoyancy, and reach the water surface without being inserted into the second water storage chamber 4 from the communication port 13. It loses external pressure on the water surface and rapidly expands and bursts to become a gas, which is sucked by the vacuum pump 27.
[0072]
When the deaerated water reaches the preset upper limit water level HL in the first and second water storage chambers 3 and 4, the controller 26 opens the electromagnetic on-off valve 22 at the same time as the detection signal from the water level detector 31a. The pump 23 is activated. Thereby, deaerated water is sent from the outlet of the bottom of the second water storage chamber 4 to the lower ion exchange resin cylinder 11 through the electromagnetic on-off valve 22 and the pumping pump 23.
[0073]
During this time, water supply and deaeration to the water guide cylinder 7 and the depressurized water storage tank 10 by suction of the vacuum pump 27 are continued, and the pumping pump 23 detects the water level of the upper water storage chambers 3 and 4 by the detector 31b. If the water level is lower than the lower limit water level LL, the controller 26 stops the pumping pump 23 and the vacuum pump 27 is operated to operate in the depressurized water storage tank 10. Control is performed so as to wait for the water level to recover to the upper limit water level HL again.
[0074]
FIG. 4 is an explanatory diagram showing the relationship between the installation height of the cylindrical main body 1 and the pumping pump 23. In this example, the decompression water storage tank 10 is arranged on the upper stage, and the ion exchange resin cylinder 11 is arranged on the lower stage, The pumping head h1 on the suction side is given to the pump 23, thereby reducing the negative pressure resistance of the vacuum pump with respect to the pumping pump 23, and the actual pumping head has a relatively small h2.
[0075]
In the ion exchange resin cylinder 11, the deaerated water sent from the pumping pump 23 is sprinkled from the water spray nozzle 28 at the top of the cylinder to the ion exchange resin filtration bed 29 at the lower part thereof, and passes through the ion exchange resin filtration bed 29. The softened water is stored in the soft water tank 33 from the outlet at the bottom of the cylinder through the pipe 30 and the on-off valve 32, and is sent from there to a downstream drainage facility.
[0076]
Thus, while the deaerated water passes through the ion exchange resin cylinder from the decompression water storage tank 10, the treated water is cut off from contact with the outside air, so that the gas in the outside air is dissolved in the water according to the equilibrium partial pressure. Since it passes through the ion exchange resin in a weakly oxidative state, it can prevent the oxidation of the ion exchange resin and greatly improve its durability. Use an ion exchange resin with a low degree of crosslinking. Not only can the flow-through exchange capacity be increased, but also the cycle of backwashing the ion exchange resin can be extended.
[0077]
Moreover, since the depressurized water storage tank that contributes to deaeration is arranged in the upper stage and the ion exchange resin cylinder is arranged in the lower stage, it can be arranged in a machine room, a boiler room or the like with a relatively small installation area.
[0078]
In the example shown in the figure, the water treatment device is shown as a two-stage unitary structure unit. However, the decompression water storage tank and the ion exchange resin cylinder are configured as independent tanks, and these can be connected by a piping system. It can be set as the water treatment apparatus which functions to.
[0079]
【The invention's effect】
As described above, according to the present invention, it is possible to provide a vacuum degassing ion exchange type water softening water treatment apparatus that enables continuous water supply while using a vacuum degassing treatment container, Equipment maintenance is also relatively simple. For example, the controller can be realized with a simple on-off control device, eliminates the need for chemical injection, and effectively removes dissolved substances without heat treatment to produce soft water. Water can be sent.
[0080]
In addition, it eliminates corrosive dissolved components in water without chemical injection, and can achieve water softening with ion exchange resin, and since there is no chemical residue in the treated water, it can be used especially for boiler water management. It eliminates the need for harmful chemicals such as water and deoxidizers and prevents boiler corrosion, and since there are no chemicals in the steam of the boiler, there is no danger of chemical scattering due to its release. Can do.
[0081]
Furthermore, combined with the generation of cavitation by ultrasonic vibration, it promotes efficient vaporization of dissolved gas during vacuum degassing, and prevents re-contact of degassed water with air as much as possible to prevent oxygen from the atmosphere in the treatment system. Since water is passed through the ion exchange resin while preventing redissolving of carbon dioxide gas, deterioration due to oxidation of the ion exchange resin can be prevented. For example, even if a strongly basic ion exchange resin is used, water absorption is reduced due to oxidation of exchange groups In addition, the durability is remarkably improved without causing shrinkage, and the cleaning cycle of the ion exchange resin can be extended, so that the operation efficiency can be improved.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram showing an example of a preferred embodiment of the present invention.
2 is an explanatory view showing a cross-sectional structure of a decompression water storage tank of the apparatus of FIG. 1. FIG.
FIG. 3 is an explanatory diagram showing an example of a modified embodiment of the present invention.
FIG. 4 is an explanatory diagram showing the relationship between the installation height of a cylindrical main body and a pump.
[Explanation of symbols]
1: Cylindrical body
2: Deaeration chamber
3: First reservoir
4: Second reservoir
5a: Partition plate
5b: Partition plate
5c: baffle plate
6: Upper lid
7: Water guide tube
8: Water supply pipe
9: Intermediate partition
10: Depressurized water storage tank
11: Ion exchange resin cylinder
12: Communication port
13: Communication port
14: Water tank
15: Electrode tube
16: Solenoid valve
17: Overflow weir
18: Overflow communication pipe
19: Overflow
20: Watering floor
21: Piping
22: Electromagnetic on-off valve
23: Pumping pump
24: Open / close valve
25: Open / close valve
26: Controller
27: Vacuum pump
28: Watering nozzle
29: Ion exchange resin filter media bed
30: Piping
31a: Water level detector
31b: Water level detector
70: Water conduit
71: Upper space (upper deaeration space)
72: Piping
73: Suction port
74: Pump
75: Piping
76: Nozzle

Claims (5)

給水管から導入される筒内の水に、減圧下で超音波振動による空洞現象を生じさせて、水中の溶存気体を捕集脱気するための超音波振動付与装置と、前記筒内の水と気泡を、ポンプにより筒内の上部脱気空間内で、噴射ノズルにより導水筒内の壁面へ噴射衝突させて、噴射水に含まれる気泡を強制的に破裂させる脱気処理を行う膨張脱気循環系とを備えた導水筒と、導水筒で脱気された水を、導水筒の上部開口縁から大気圧以下に減圧された室内へ溢流させながら散水して、一時貯留する減圧貯水タンクと、減圧貯水タンクより下方に配置されたイオン交換樹脂筒と、減圧貯水タンクに蓄えられた水を大気に接触することなくイオン交換樹脂筒に導入する送水手段とを備えたことを特徴とする水処理装置。An ultrasonic vibration imparting device for collecting and degassing dissolved gas in water by causing a cavity phenomenon due to ultrasonic vibration under reduced pressure in water in a cylinder introduced from a water supply pipe , and water in the cylinder Expansion deaeration in which degassing is performed by forcibly rupturing bubbles contained in the jet water by causing a jet to collide with the air bubbles in the upper deaeration space in the cylinder with a pump to the wall surface in the water guide cylinder with an injection nozzle A water conveyance cylinder having a circulation system, and a depressurized water storage tank that temporarily stores the water degassed by the water conveyance cylinder while allowing the water degassed to overflow from the upper opening edge of the water conveyance cylinder into a room whose pressure is reduced to the atmospheric pressure or less. And an ion exchange resin cylinder disposed below the depressurized water storage tank, and water supply means for introducing the water stored in the depressurized water storage tank into the ion exchange resin cylinder without contacting the atmosphere. Water treatment equipment. 導水筒が上部開口縁から溢流によって減圧貯水タンクに水を導入する溢流手段を有し、減圧貯水タンクが、導水筒の上部開口縁から溢流する水を受け入れて脱気する脱気室と、脱気室の底部から水を導入して気泡を浮上させる第1貯水室と、第1貯水室から水を導入して送水手段に導出する第2貯水室とを備え、これら脱気室と第1および第2貯水室並びに導水筒の各上部空間は互いに連通して減圧室を形成し、減圧室には脱気ガス捕集用の吸気減圧装置が接続されていることを特徴とする請求項1の水処理装置。  A degassing chamber in which the water conveyance cylinder has overflow means for introducing water into the decompression water storage tank by overflow from the upper opening edge, and the decompression water storage tank accepts and deaerates the water overflowing from the upper opening edge of the water conveyance cylinder. A first water storage chamber that introduces water from the bottom of the deaeration chamber and floats bubbles, and a second water storage chamber that introduces water from the first water storage chamber and leads it to the water supply means, and these deaeration chambers And the first and second water storage chambers and the upper space of the water conduit communicate with each other to form a decompression chamber, and an intake decompression device for collecting deaerated gas is connected to the decompression chamber. The water treatment apparatus according to claim 1. 減圧貯水タンクの脱気室内に、導水筒の上部開口縁から溢流する水を散水する散水手段と、散水手段による散水を受けて水を飛散させる散水床とが設けられていることを特徴とする請求項に記載の水処理装置。The deaeration chamber of the decompression water storage tank is provided with watering means for spraying water overflowing from the upper opening edge of the water guide tube and a watering floor for splashing water by receiving water sprayed by the watering means. The water treatment apparatus according to claim 2 . 上下二段構造の一体型タンクを備え、一体型タンクの上部が減圧貯水タンクに、下部がイオン交換樹脂筒に構成されていることを特徴とする請求項1〜のいずれかに記載の水処理装置。The water according to any one of claims 1 to 3 , further comprising an integrated tank having an upper and lower two-stage structure, wherein the upper part of the integrated tank is configured as a decompression water storage tank and the lower part is configured as an ion exchange resin cylinder. Processing equipment. 導水筒の上流に、水に電界を作用させて水中の電解質を電解する電界処理筒を更に備えたことを特徴とす請求項1〜のいずれかに記載の水処理装置。The water treatment apparatus according to any one of claims 1 to 4 , further comprising an electric field treatment cylinder that electrolyzes an electrolyte in water by applying an electric field to water upstream of the water guide cylinder.
JP24026697A 1997-04-18 1997-08-22 Water treatment equipment Expired - Lifetime JP3825149B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24026697A JP3825149B2 (en) 1997-04-18 1997-08-22 Water treatment equipment

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP9-115052 1997-04-18
JP11505297 1997-04-18
JP24026697A JP3825149B2 (en) 1997-04-18 1997-08-22 Water treatment equipment

Publications (2)

Publication Number Publication Date
JPH11650A JPH11650A (en) 1999-01-06
JP3825149B2 true JP3825149B2 (en) 2006-09-20

Family

ID=26453663

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24026697A Expired - Lifetime JP3825149B2 (en) 1997-04-18 1997-08-22 Water treatment equipment

Country Status (1)

Country Link
JP (1) JP3825149B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4756759B2 (en) * 2001-03-28 2011-08-24 アサヒ飲料株式会社 Water treatment equipment
JP5027865B2 (en) * 2009-06-24 2012-09-19 川幸産業株式会社 Gas-liquid separator
JP5999857B1 (en) * 2015-06-18 2016-09-28 株式会社ブルー・スターR&D Degassing method and degassing device

Also Published As

Publication number Publication date
JPH11650A (en) 1999-01-06

Similar Documents

Publication Publication Date Title
JP3929472B2 (en) Gas dissolution amount adjusting device and system
JPH07256253A (en) Device for making water drinkable through sunk filter membrane
US20060289361A1 (en) Method and device for purifying water
CN104058480B (en) Low pressure discharge plasma body water treatment device and method
US20030127383A1 (en) Ozone oxidizing apparatus
JP6261814B2 (en) Washing apparatus and washing method, and membrane separation bioreactor
KR101751502B1 (en) Process system for treating food waste effluent
WO2007037646A1 (en) Plant for wastewater treatment
JP3825149B2 (en) Water treatment equipment
JP3464626B2 (en) Degassing sterilizer
RU2304561C2 (en) Installation for purification and decontamination of the water
JP4654134B2 (en) Purification system for soil contaminated with volatile organic compounds and purification method thereof
RU2524601C1 (en) Apparatus for reagentless purification and disinfection of water
CN207227216U (en) A kind of industrial waste water disposal device
JP2007144340A (en) Method and apparatus for decomposing diluted organic substance in waste water
KR100473651B1 (en) Wastewater treatment apparatus and method using ultrasonic generator and photo-catalytic material
JP2003334432A (en) Gas dissolving device and water treatment device and water treatment apparatus having these
JP2005007378A (en) Charcoal type water purification device
RU2355648C1 (en) Drinking water preparation plant
JP6429827B2 (en) Raw water treatment equipment
JP3961649B2 (en) Deaerator
JP2821887B2 (en) Ultrasonic cleaning equipment
KR101493962B1 (en) Apparatus for treating water using ozone and ultrasonic wave
RU167564U1 (en) DEVICE FOR DEWASING OF ACTIVE Sludge
JPH07116648A (en) Removal of volatile silicon in water and prevention of clogging of ultrafiltration membrane

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040526

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20050421

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050422

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051213

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060606

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060629

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090707

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090707

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090707

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090707

Year of fee payment: 3

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090707

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100707

Year of fee payment: 4