JPS62223647A - Foreign matter monitor - Google Patents

Foreign matter monitor

Info

Publication number
JPS62223647A
JPS62223647A JP61065646A JP6564686A JPS62223647A JP S62223647 A JPS62223647 A JP S62223647A JP 61065646 A JP61065646 A JP 61065646A JP 6564686 A JP6564686 A JP 6564686A JP S62223647 A JPS62223647 A JP S62223647A
Authority
JP
Japan
Prior art keywords
light
foreign matter
foreign
light beam
scattered light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61065646A
Other languages
Japanese (ja)
Other versions
JPH0799354B2 (en
Inventor
Tadasuke Munakata
忠輔 棟方
Yoshitoshi Ito
嘉敏 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP61065646A priority Critical patent/JPH0799354B2/en
Priority to US07/030,436 priority patent/US4827143A/en
Publication of JPS62223647A publication Critical patent/JPS62223647A/en
Publication of JPH0799354B2 publication Critical patent/JPH0799354B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N21/49Scattering, i.e. diffuse reflection within a body or fluid
    • G01N21/51Scattering, i.e. diffuse reflection within a body or fluid inside a container, e.g. in an ampoule
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/02Investigating particle size or size distribution
    • G01N15/0205Investigating particle size or size distribution by optical means
    • G01N2015/0238Single particle scatter
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/94Investigating contamination, e.g. dust
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/08Optical fibres; light guides
    • G01N2201/0826Fibre array at source, distributing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/08Optical fibres; light guides
    • G01N2201/0833Fibre array at detector, resolving

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Weting (AREA)

Abstract

PURPOSE:To take a real-time measurement and a temporary measurement by preparing a solution whose foreign matter number per unit volume is already known and calibrating and using the relation between the intensity of scattered light and the density of foreign matter. CONSTITUTION:A foreign matter group 1a is irradiated with a light beam 5a. This beam 5a is formed through a cylindrical lens 6a, but this irradiated light is guided through an optical fiber bundle 16. A scattered light beam 7a from the foreign matter group 1a is converged through the cylindrical lens 6b to enter a fiber bundle 17, and guided out of the solution. The lenses 6a and 6b and the tip parts of the fiber bundles 16 and 17 are fixed at positions determined optically by using a holding box. then, the part consisting of the fiber bundles 16 and 17, lenses 6a and 7b, and holding box is reducible in size, so this part is put in the object solution to discriminate plural pieces of foreign matter in the area where beams 7a and 5a cross each other. Thus, the real-time measurement and temporary measurement are both taken.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、半導体素子製造工程におけるウェットプロセ
スで使用される各種溶液中の異物を、インライン、リア
ルタイムで計測する異物モニタに関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a foreign matter monitor that measures in-line and in real time foreign matter in various solutions used in wet processes in semiconductor device manufacturing processes.

〔従来の技術〕[Conventional technology]

半導体プロセスに限らず、一般に水や化学溶液中の異物
(通常ゴミと呼ばれている雑多な物質)は、有害である
ことはよく知られており、従って、従来から、溶液中の
異物を検査、計測する方法及び装置は、各社が開発、商
品化してきた。
It is well known that foreign substances (miscellaneous substances commonly referred to as dust) in water and chemical solutions are harmful, not only in semiconductor processes, but in general, foreign substances in water and chemical solutions have been inspected. , measurement methods and devices have been developed and commercialized by various companies.

従来の異物検査装置は、その使用目的により基本原理も
多岐にわたる。従来装置の立脚原理を整理すると、主要
方式に限ると(1)光方式、(2)電気抵抗方式、(3
)超音波方式の3種類に大別できる。
The basic principles of conventional foreign substance inspection devices vary depending on the purpose of use. If we summarize the basic principles of conventional equipment, the main methods are (1) optical method, (2) electrical resistance method, and (3)
) Ultrasonic methods can be roughly divided into three types.

超音波方式は、例えば特開昭57−19653号公報に
記載の如く、いわゆるソナーや超音波探傷の技法を液中
異物に適用したものであるが、異物が生物細胞の場合に
は超音波の反射効率が悪く、必ずしも一般的ではない。
The ultrasonic method is an application of sonar and ultrasonic flaw detection techniques to foreign objects in liquid, as described in, for example, Japanese Patent Application Laid-open No. 19653/1983. It has poor reflection efficiency and is not necessarily common.

電気抵抗方式は、例えば特開昭58−53738号公報
に記載の如く、小穴(ピンホール)を異物が通過する時
に穴の部分の溶液を排除することに起因する溶液の電気
抵抗の増大を検知するものである。
The electrical resistance method detects an increase in the electrical resistance of a solution caused by eliminating the solution in the hole when a foreign object passes through a small hole (pinhole), as described in, for example, Japanese Patent Application Laid-open No. 58-53738. It is something to do.

この方式は元来、血液中の赤血球を計測するため代 の開発された。赤血球の大きさはほぼ一定であるから、
赤血球より少し大きい小穴を用いれば、小穴の目づまり
は生じない6ところが、半導体プロセスに用いる溶液中
の異物は大きさが一定しないから、計測のための小穴が
場合によっては目づまりをおこす。そのため、異物の大
きさが一定していない半導体プロセスに常用するには不
便であり。
This method was originally developed to measure red blood cells in blood. Since the size of red blood cells is almost constant,
If a small hole that is slightly larger than a red blood cell is used, the small hole will not become clogged.6 However, since the size of foreign substances in the solution used in the semiconductor process is not constant, the small hole used for measurement may become clogged in some cases. Therefore, it is inconvenient for regular use in semiconductor processes where the size of foreign particles is not constant.

超音波方式同様必ずしも一般的ではない。Like the ultrasonic method, it is not necessarily common.

結局、異物検査方式として一般性が大きく、未知の大き
さの異物についても安心して用いられるのは、最初に述
べた光方式である。光方式の中を細分化すると、いくつ
かの方法があるが、ここでは、本発明と密接な関係にあ
る二つの方法について述べる。
In the end, the optical method mentioned above is the most general foreign object inspection method and can be safely used even for foreign objects of unknown size. If the optical method is subdivided, there are several methods, but here, two methods that are closely related to the present invention will be described.

光方式の注目すべき第1の方法は、例えば、特開昭51
−136475号公報に記載の如く、異物からの散乱光
を検知するものである。第5図に散乱光を用いる装置の
原理構成を示す。
The first notable optical method is, for example, Japanese Patent Application Laid-Open No.
As described in Japanese Patent No. 136475, it detects scattered light from foreign objects. FIG. 5 shows the principle configuration of an apparatus using scattered light.

第5図において、検出すべき異物1.1’(図中黒丸で
示す)は溶液2と共に特定の容器3に移入される。この
溶液2を加圧などの適当な手段(表示せず)で、ノズル
3aを通して細い噴射流2′とする。噴射流2′は受容
器4に入り、通常は廃棄される。異物量が比較的少ない
溶液(例えば半導体プロセスで最も多く用いられる純水
)の場合、噴射流2′の直径を数1,00μmとすれば
、異物1,1′は第5図に示すように1列に並んだ状態
で溶液2と共に噴射される。従って、噴射流2′と直交
して、光ビーム5を噴射流2′に照射しておくと、異物
1は個別に光ビーム5の照射を受けることになる。光ビ
ーム5は、レーザなどの光源からの光I@5′ をレン
ズ6で収束して形成している。
In FIG. 5, a foreign substance 1.1' (indicated by a black circle in the figure) to be detected is transferred together with a solution 2 into a specific container 3. This solution 2 is made into a narrow jet 2' through a nozzle 3a by suitable means (not shown) such as pressurization. The jet 2' enters the receiver 4 and is normally discarded. In the case of a solution with a relatively small amount of foreign matter (for example, pure water, which is most often used in semiconductor processes), if the diameter of the jet stream 2' is several 1,000 μm, the foreign matter 1,1' will be as shown in Figure 5. They are sprayed together with the solution 2 in a lined up state. Therefore, if the jet stream 2' is irradiated with the light beam 5 perpendicularly to the jet stream 2', the foreign matter 1 will be individually irradiated with the light beam 5. The light beam 5 is formed by converging light I@5' from a light source such as a laser with a lens 6.

第5図において、光ビーム5が異物1に照射されると、
二つの違った現象が発生する。第1は。
In FIG. 5, when the light beam 5 is irradiated onto the foreign object 1,
Two different phenomena occur. The first thing is.

光ビーム5を形成している光子が、異物1の表面で散乱
し、光ビーム5の進行方向とは違った方角にいわゆ6散
乱光7が放射される。第2は、光ビーム5がその進行を
妨げられて、すなわち遮断されて、噴射流2′の右方に
透過できなくなる。
Photons forming the light beam 5 are scattered on the surface of the foreign object 1, and so-called 6-scattered light 7 is emitted in a direction different from the traveling direction of the light beam 5. Second, the light beam 5 is prevented from traveling, ie is blocked, and cannot pass to the right of the jet stream 2'.

上に述べた散乱光7は異物1の存在により発生するから
、異物1が受容器4に向って流れ去ると散乱光7は消滅
する。従って、散乱光7を光検知器8で検知すれば、異
物1の通過を検出したことになる。
Since the above-mentioned scattered light 7 is generated by the presence of the foreign object 1, when the foreign object 1 flows away toward the receptor 4, the scattered light 7 disappears. Therefore, if the scattered light 7 is detected by the photodetector 8, it means that the passage of the foreign object 1 has been detected.

第6図(、)には、上記のようにして得られる異物1か
らの散乱光信号を電気信号波形に直した例を示す。同図
には3個の異物1を検知した例を示すにのように、散乱
光強度を電気パルスに変換すれば、良く知られた電気信
号処理技術を用いて、パルス数を計数し、異物1の個数
を計測することができる。溶液2を特定体積だけ用いれ
ば、結局、単位体積当りの異物数を定量的に知ることが
できる。
FIG. 6(,) shows an example in which the scattered light signal from the foreign object 1 obtained as described above is converted into an electrical signal waveform. As shown in the figure, which shows an example in which three foreign objects 1 are detected, if the scattered light intensity is converted into electrical pulses, the number of pulses can be counted using well-known electrical signal processing technology, and the foreign objects can be detected. 1 can be measured. If only a specific volume of solution 2 is used, the number of foreign substances per unit volume can be quantitatively determined.

光方式の第2の方法は光遮断方法と呼ばれ、透過光を検
知する。この方法の原理を、再び第5図を用いて述べる
The second optical method is called a light blocking method and detects transmitted light. The principle of this method will be described again using FIG.

第5図において、噴射流2′中に異物1が存在しない場
合を想定すると、障害物が存在しない為、光ビーム5は
噴射流2′を透過して、光ビーム5′を形成する。光検
知器9を用いて透過光ビーム5′を検知すると、異物1
の登場で、光ビーム5“の光量は減少する、もしくは光
ビーム51が遮断されることは明らかである。すなわち
、検出器9の出力波形は、第6図(b)に示すように、
散乱光の発生に呼応して減少する。第6図(b)には、
3個の異物が光ビーム5をよぎった場合に対応している
。この透過光信号は明らかに、第6図(a)に示す散乱
光信号波形と等価であり、これ迄の説明から理解される
ように、透過光信号からも溶液2中の異物数を求めるこ
とができる。
In FIG. 5, assuming that there is no foreign object 1 in the jet stream 2', the light beam 5 passes through the jet stream 2' and forms a light beam 5' since there is no obstacle. When the transmitted light beam 5' is detected using the photodetector 9, a foreign object 1 is detected.
It is clear that the light intensity of the light beam 5'' decreases or the light beam 51 is blocked by the appearance of the light beam 5''.In other words, the output waveform of the detector 9 is as shown in FIG. 6(b).
It decreases in response to the generation of scattered light. In Figure 6(b),
This corresponds to the case where three foreign objects cross the light beam 5. This transmitted light signal is clearly equivalent to the scattered light signal waveform shown in FIG. 6(a), and as understood from the previous explanation, the number of foreign substances in the solution 2 can also be determined from the transmitted light signal. I can do it.

第7図(a)には、透過光を利用して異物を検知する他
の従来例を示す。これは、特開昭50−11290号公
報に記載されている如く、汚水を清浄化する沈殿槽に適
用したものである。第5図に示す方法は対象溶液を少量
だけ抜き取って、実プロセスから離れて、いわゆるオフ
ライン(off−1,tne)で計測するものであるが
、当然ながら、実時間計測でないという欠点を有してい
る。これに対して、第7図(a)に示す方法は実時間計
測を可能にしたものである。
FIG. 7(a) shows another conventional example in which foreign objects are detected using transmitted light. This is applied to a sedimentation tank for purifying sewage, as described in Japanese Patent Application Laid-Open No. 50-11290. The method shown in Figure 5 extracts only a small amount of the target solution and measures it away from the actual process, so-called off-line (off-1, tne), but it naturally has the drawback that it is not a real-time measurement. ing. On the other hand, the method shown in FIG. 7(a) enables real-time measurement.

第7図(a)において、沈殿槽10内に溶液2があり、
異物1,1′が存在している0時間の経過と共に、槽1
0の上層部にあった異物1′は、槽10の底の方に落下
沈殿する。
In FIG. 7(a), there is a solution 2 in the settling tank 10,
With the passage of time 0 when foreign substances 1 and 1' exist, tank 1
The foreign matter 1' that was in the upper layer of the tank 10 falls to the bottom of the tank 10 and settles.

槽10は通常強化樹脂あるいは金属などの不透明物質で
形成されているため、外部から光ビームを導入できない
、そのため、槽10の側壁の一部分に穴をあけて、透明
物質(例えばアクリルなど)を充填し、窓11.11’
を形成しておく。このようにすれば、光ビーム5を槽1
0内の溶液2を貫通させることができ、もし、光ビーム
5と異物1とが交差すると、透過光ビーム5′の光量が
減少する。その結果光検知器9からは第7図(b)に示
すように異物に対応して減少した出力かえられ、既に説
明した原理により、異物数を計測することができる。な
お、光ビーム5は光ファイバ12で槽10の近傍迄伝送
されており、光ビーム5はレンズ6で形成される。
Since the tank 10 is usually made of an opaque material such as reinforced resin or metal, a light beam cannot be introduced from the outside.Therefore, a hole is made in a part of the side wall of the tank 10 and filled with a transparent material (for example, acrylic). and window 11.11'
Form it. In this way, the light beam 5 can be
If the light beam 5 intersects with the foreign object 1, the amount of transmitted light beam 5' decreases. As a result, as shown in FIG. 7(b), the output from the photodetector 9 is reduced in response to the presence of foreign objects, and the number of foreign objects can be measured according to the principle already explained. Note that the light beam 5 is transmitted to the vicinity of the tank 10 through an optical fiber 12, and is formed by a lens 6.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

溶液中の異物を計測する従来の方法及び装置は工業界の
要所で利用されてはいるものの、半導体プロセスへの適
用を考えたときには、いくつかの欠点を有する。
Although conventional methods and devices for measuring foreign matter in solutions are used at key points in industry, they have several drawbacks when applied to semiconductor processes.

第1の欠点は、実時間計測でないことである。The first drawback is that it is not a real-time measurement.

例えば、第5図に示した光散乱方法もしくは光遮断方法
の場合は、少量の溶液2を採取して計測装置内の容塁3
に入れて計測する。その間、プロセス中の溶液自体では
刻々に異物数が変化することになり、異物計測が終了し
た段階では、既にプロセス中の異物数は変ってしまって
いることになる。
For example, in the case of the light scattering method or light blocking method shown in FIG.
Put it in and measure. During this time, the number of foreign substances in the solution itself changes moment by moment, and by the time the measurement of foreign substances has been completed, the number of foreign substances in the process has already changed.

第7図(a)に示す光遮断方法では実時間計測とは云う
ものの、沈殿現象に適用して意味があるのであって、半
導体プロセスのように溶液がかくはんされている場合に
は同一異物を多重計測することになり、使えない、いず
れにせよ、異物1を時系列的に一個、−個識別して電気
パルスに変換する従来の方式は、 JM理的に実時間計
測ができないことは明らかである。
Although the light blocking method shown in Fig. 7(a) is a real-time measurement, it is meaningful when applied to precipitation phenomena, and when a solution is stirred, such as in a semiconductor process, it is possible to detect the same foreign matter. It cannot be used because it requires multiple measurements.In any case, it is clear that the conventional method of identifying one foreign object 1 in time series and converting it into an electric pulse cannot perform real-time measurement in JM theory. It is.

第2の欠点は、第1の欠点と密接に関連するが。Although the second drawback is closely related to the first.

従来方式は“その場”(、tn 5itu)計測でない
ことである。例えば、第7図(a)で、異物1の存在密
度は、沈殿槽10の底に近い程大きい。最終的には、沈
殿槽10の上面近傍では異物1が殆ど存在せず、いわゆ
るうわずみの比較的きれいな溶液2が太られる。従って
槽1oの底部の異物1を知る意味では、槽10の底部に
も第7図(a)に示すような透過光検出部を設ける必要
がある。このことは、沈殿槽10を追加加工することを
意味し、工業的には大きな損失となる。このように、任
意の部分での“その場″計測は、従来方式を用いる限り
、事実上できない。任意の部分から採取した溶液を第5
図に示すような方法で計測することは可能であるが、沈
殿のように時々刻々に状態が変化する対象の場合は、各
時間に対応した標本溶液を多種類採取しておく必要があ
り、結果かえられる迄に多大の時間を労力とを要し、実
用的ではない、したがって本発明の目的は上に述べた従
来方式の二つの重大な欠点を除去し、実時間計測とその
場計測を可能ならしめる異物モニタを提供することにあ
る。
The conventional method is not an "in situ" (tn 5 itu) measurement. For example, in FIG. 7(a), the density of foreign matter 1 is greater as it is closer to the bottom of the settling tank 10. Finally, there are almost no foreign substances 1 near the upper surface of the settling tank 10, and a relatively clean solution 2 with so-called turbidity is thickened. Therefore, in order to detect the foreign matter 1 at the bottom of the tank 1o, it is necessary to provide a transmitted light detection section as shown in FIG. 7(a) also at the bottom of the tank 10. This means that the sedimentation tank 10 must be additionally processed, resulting in a large industrial loss. In this way, "on-the-spot" measurement at any part is virtually impossible as long as conventional methods are used. The solution collected from any part is
Although it is possible to measure using the method shown in the figure, in the case of a subject whose state changes from moment to moment, such as precipitation, it is necessary to collect multiple types of sample solutions corresponding to each time. It takes a lot of time and effort to change the results and is not practical. Therefore, the purpose of the present invention is to eliminate the two serious drawbacks of the above-mentioned conventional methods and to provide real-time measurement and in-situ measurement. The object of the present invention is to provide a foreign substance monitor that makes it possible.

〔問題点を解決するための手段〕[Means for solving problems]

従来方式の第1の問題点である実時間計測を達成するた
めには、従来方式で用いられていた、異物の個別計数を
やめて、新しい計数方法を採用せねばならない、この目
的のため、本発明では、多数の異物を同時に計測する6
即ち、特定体積中に存在する複数の異物からの光散乱信
号を光学的に加算し、該加算信号を一つの光検知器で検
知する。
In order to achieve real-time measurement, which is the first problem with the conventional method, it is necessary to abandon the individual counting of foreign objects used in the conventional method and adopt a new counting method. In the invention, a large number of foreign objects can be measured simultaneously6.
That is, light scattering signals from a plurality of foreign objects present in a specific volume are optically added, and the added signal is detected by one photodetector.

従来方式の第2の問題点であるその場計測に関しては、
複数の異物に光を照射し、該異物からの散乱光を集光す
る部分を一体化かつ小型化し、これを対象溶液中に配置
してその目的を達する。この目的を達するために本発明
は光学ファイバを採用する。すなわち、対象溶液中に照
射光を導入し、かつ異物からの散乱数を溶液外に取り出
すために、光学ファイバ束(複数の光学ファイバ素線)
を用いる。
Regarding in-situ measurement, which is the second problem with the conventional method,
The purpose is achieved by irradiating light onto a plurality of foreign substances, integrating and miniaturizing the part that collects the scattered light from the foreign substances, and placing this in the target solution. To achieve this objective, the present invention employs optical fibers. That is, in order to introduce irradiation light into the target solution and take out the number of scatterings from foreign substances out of the solution, an optical fiber bundle (multiple optical fiber strands) is used.
Use.

理解を深めるために、第4図を用いて、本発明の基本原
理を述べる。同図で矢印13は異物を照射するための照
射光ビームの進行方向を示し、その本数は相対的な光量
を意味している0面ABCDとそれに対向した面A’ 
B’ C’ D’で規定される実線表示の直方体は、照
射光ビームが存在する領域を示している。照射光線は矢
印14の方向に進行するが、今上記直方体中に異物が存
在すると光は遮断されるから、光量は減少する(矢印1
4の本数が2本しかないのは減少を表現している;矢印
13は3本あることに注意)。もし、異物が面E’ F
’ G’ H’ と面E’ F’ G’ H’との間に
存在すると仮定すると、異物からの散乱光は矢印15の
方向に放射される。
For better understanding, the basic principle of the present invention will be described using FIG. 4. In the same figure, arrow 13 indicates the traveling direction of the irradiation light beam for irradiating the foreign object, and the number of arrows indicates the relative light amount, 0 plane ABCD and the opposite plane A'
The rectangular solid line defined by B'C'D' indicates the area where the irradiation light beam exists. The irradiation light beam travels in the direction of arrow 14, but if a foreign object is present in the rectangular parallelepiped, the light is blocked, and the amount of light decreases (as shown by arrow 1).
The fact that there are only two 4's represents a decrease; note that there are three arrows 13). If the foreign object is on the surface E'F
Assuming that the foreign object exists between 'G'H' and the plane E'F'G'H', the scattered light from the foreign object is emitted in the direction of arrow 15.

当然ながら、上記空間に異物の数が多いと、散乱光が増
大する。従って、矢印15に進む散乱光強度を光検知器
で測定すると、注目している空間の異物数を知ることが
でき、その空間の体積が分っていれば、単位体積当りの
異物数を知ることが可能となる。
Naturally, if there are many foreign objects in the space, the amount of scattered light will increase. Therefore, by measuring the intensity of the scattered light traveling in the direction of arrow 15 with a photodetector, it is possible to know the number of foreign objects in the space of interest, and if the volume of that space is known, the number of foreign objects per unit volume can be determined. becomes possible.

照射光方向と散乱光方向とのなす角Oは、例えば901
が有効であるが0°〜180@の範囲で選択可能である
The angle O between the irradiation light direction and the scattered light direction is, for example, 901
is effective, but it can be selected within the range of 0° to 180@.

〔作用〕[Effect]

本発明の第1の技術手段は、複数の異物からの散乱光を
同時に計測することであるから、従来方式のような異物
の時系列的配列動作は一切不要である。例えば、100
個の異物を同時に認識するから、応答時間が、例えば、
1μsの光検知器(従来の光電子増倍管はこの好例であ
る)を用いれば、事実上瞬時に計測は終了する。
The first technical means of the present invention is to simultaneously measure the scattered light from a plurality of foreign objects, so there is no need for the time-series arrangement of foreign objects as in the conventional method. For example, 100
Since multiple foreign objects are recognized simultaneously, the response time can be reduced, for example.
Using a 1 μs photodetector (a conventional photomultiplier tube is a good example), the measurement is completed virtually instantaneously.

本発明の第2の技術手段は、光照射部と散乱光集光部ト
を小型一体化しであるため、この部分を対象溶液中の任
意の部分に設置できる・例えば・沈殿槽の上部、中部、
底部たるを問わない。あるいは外部からは見えない凹部
にでもセットできる。
The second technical means of the present invention is that the light irradiation part and the scattered light condensing part are integrated in a small size, so this part can be installed in any part of the target solution, for example, in the upper part or middle part of the precipitation tank. ,
The bottom barrel does not matter. Alternatively, it can be set in a recess that is not visible from the outside.

上記のように、任意の場合にセットできるという本発明
の作用は、光ファイバによって照射光及び散乱光を伝送
していることに起因している。よく知られているように
、光ファイバは自由に曲折できるから、光の搬送を自在
の方角に設定できる。
As described above, the effect of the present invention that it can be set in any case is due to the fact that the irradiated light and the scattered light are transmitted through optical fibers. As is well known, since optical fibers can be bent freely, light can be transported in any direction.

〔実施例〕〔Example〕

第1図に本発明の一実施例要部を、第2図に本発明の他
の実施例要部を示す。
FIG. 1 shows the main part of one embodiment of the present invention, and FIG. 2 shows the main part of another embodiment of the invention.

第1図において、対象とする溶液中の異物群1aを点の
集合で示す。異物は溶液全体に存在するが、光学的に検
知領域が限定されるので、第1図には簡単のため、測定
対象領域内の異物群1aのみを示す。
In FIG. 1, a group of foreign substances 1a in the target solution is shown as a set of dots. Although foreign substances exist throughout the solution, the detection area is optically limited, so for the sake of simplicity, FIG. 1 shows only a group of foreign substances 1a within the measurement target area.

異物群1aには矩形断面を有する光ビーム5aが照射さ
れる。この光ビーム5aはいわゆる円筒レンズ6aで形
成されるが、この照射光は光ファイバ束16で供給され
る。異物群1aからの散乱光ビーム7aは円筒レンズ6
bで集光され、ファイバ束17に入り、溶液外に伝送さ
れる。円筒レンズ6a、6b及び光ファイバ束16.1
7の先端部は保持箱18を用いて光学的に定められた位
置に固定される。
The foreign matter group 1a is irradiated with a light beam 5a having a rectangular cross section. This light beam 5a is formed by a so-called cylindrical lens 6a, and the irradiation light is supplied by an optical fiber bundle 16. The scattered light beam 7a from the foreign object group 1a is transmitted through the cylindrical lens 6.
The light is focused at b, enters the fiber bundle 17, and is transmitted out of the solution. Cylindrical lenses 6a, 6b and optical fiber bundle 16.1
The distal end of 7 is optically fixed at a predetermined position using a holding box 18.

第1図に示すような、ファイバ束16.17、円筒レン
ズ6a、6b、保持[18からなる部分は例えば30a
a立方程度に小型化できるから、この部分(以下モニタ
ヘッド、もしくは単にヘッドと呼ぶ)を対象溶液中に入
れてやれば、散乱光ビーム7aと照射光ビーム5aとの
軌跡の交差する領域にある複数異物を識別することがで
きる。異物が存在しない場合は散乱光は零であることは
云う迄もない。
As shown in FIG.
Since it can be downsized to about a cubic inch, if this part (hereinafter referred to as the monitor head or simply head) is placed in the target solution, it will be located in the area where the trajectories of the scattered light beam 7a and the irradiated light beam 5a intersect. Multiple foreign objects can be identified. Needless to say, the amount of scattered light is zero if no foreign matter is present.

本発明においては、従来方式と違って、異物を個別的に
は計数しない6従って散乱光強度からすぐに、注目領域
中の異物数を知ることはできない。
In the present invention, unlike the conventional method, foreign objects are not counted individually6. Therefore, the number of foreign objects in the region of interest cannot be immediately determined from the scattered light intensity.

そのため、単位体積当りの異物数の既知な溶液を作って
、散乱光強度と異物密度との関係を較正して用いる。こ
の較正は、モニタヘッドの形状が憤らぬ限り、どのモニ
タヘッドに対しても成立つ力・ら、特に問題はない。
Therefore, a solution with a known number of foreign substances per unit volume is prepared, and the relationship between the scattered light intensity and the density of foreign substances is calibrated and used. There is no particular problem with this calibration since the force can be applied to any monitor head as long as the shape of the monitor head is not affected.

第2図に示す本発明の他の実施例は、第1図に示す実施
例と基本的には変らないが、二者の相違点は測定感度の
違いにある。第2図に示す実施例では、第1図に示す例
よりも、約2倍計測感度が上昇している。すなわち、照
射光ビーム5aによって発生する散乱光を鏡19 aの
みならず、鏡19bをも用いて反射させ、ファイバ束1
74.=導入している。119bがなくても、本実施例
は動作可能であるが、その場合には、fi19bの方位
に向う散乱光は、ファイバ束17に導入されることなく
失われる。しかし、II!19bにより、失われる筈の
散乱光は反射されて鏡19aに入り、こ、::で90’
反射されて円筒レンズ6bに入り、有効にファイバ束1
7に導かれる。
Another embodiment of the present invention shown in FIG. 2 is basically the same as the embodiment shown in FIG. 1, but the difference between the two lies in the difference in measurement sensitivity. In the embodiment shown in FIG. 2, the measurement sensitivity is approximately twice as high as in the example shown in FIG. That is, the scattered light generated by the irradiation light beam 5a is reflected not only by the mirror 19a but also by the mirror 19b, and the fiber bundle 1
74. =Introduced. Although this embodiment can operate without fi 119b, in that case the scattered light directed in the direction of fi 19b is lost without being introduced into the fiber bundle 17. But II! 19b, the scattered light that would otherwise be lost is reflected and enters the mirror 19a, and at 90'
It is reflected and enters the cylindrical lens 6b, effectively forming the fiber bundle 1.
Guided by 7.

上に述べた二つの実施例では、いずれも散乱光を検出し
た。しかし、異物検知の目的では、透過光を用いてもよ
いわけで、このことは、ヘッドの簡単な変更で容易に実
施可能であるから、詳細は・  省略する。
In both of the above-mentioned examples, scattered light was detected. However, for the purpose of foreign object detection, transmitted light may be used, and since this can be easily implemented by simply changing the head, the details will be omitted.

本発明では理解を早めるために照射光と散乱光との波長
は同一であるという暗黙の了解のもとに説明を続けてき
た。しかし、本発明は蛍光検知にも使用できることは明
らかである6例えば、波長400nm程度の照射光によ
って、約600nm程度の蛍光を検知することにより、
フェトレジストの粒子の検知が可能である。
In order to speed up understanding, the present invention has been described with the tacit understanding that the wavelengths of the irradiated light and the scattered light are the same. However, it is clear that the present invention can also be used for fluorescence detection6. For example, by detecting fluorescence of about 600 nm using irradiated light with a wavelength of about 400 nm,
It is possible to detect particles of fetresist.

本発明は溶液中の異物を対象に説明したが、気体あるい
は固体中の異物検査にも適用できることは明らかである
Although the present invention has been described with reference to foreign matter in a solution, it is clear that it can also be applied to foreign matter inspection in gases or solids.

蛍光を検知するにしろ、散乱光、あるいは透過光を用い
るにしろ、計測は可視域波長にまたがることが多い、従
って、場合によっては外来光(室内照射灯光;太陽光な
ど)が混入することがある。
Regardless of whether fluorescence is detected, scattered light, or transmitted light is used, measurements often span visible wavelengths, and therefore, in some cases, extraneous light (indoor light, sunlight, etc.) may be mixed in. be.

このような場合は適当なるフィルタを用いて、外来光の
影響を除くことができる。
In such a case, an appropriate filter can be used to eliminate the influence of extraneous light.

照射光は連続光であってもよいが、太陽光などの連続光
の影響を除去する目的で、照射光を適当な周波数、例え
ば2 K Hzで変調し、散乱光などの信号光をよく知
られている位相検波増幅して検知してもよい、このよう
にすることにより、照射光以外の外来光の効果を最小に
でき、SN比が著しく向上する。
The irradiation light may be continuous light, but in order to remove the influence of continuous light such as sunlight, the irradiation light is modulated at an appropriate frequency, for example 2 KHz, and the signal light such as scattered light is well-known. Detection may also be performed by amplifying the detected phase. By doing so, the effect of extraneous light other than the irradiation light can be minimized, and the S/N ratio can be significantly improved.

第1図、第2図には、本発明の主要部であるモニタヘッ
ドのみについて示したが、第3図(a)には、実際のプ
ロセスに適用した例を示す、半導体プロセスは目的に応
じて多岐にわたるが、第3図(a)には代表例として純
水による洗浄プロセスを示す、ウェハを洗浄するための
洗浄槽2oには給水パイプ21を通して波矢印22の方
向から純水が供給される。洗浄槽2oがらは水が矢印2
3.23’の方向にあふれ出し、流し場24に落ちこみ
、やがて排水される。洗浄槽2oは1脚25で流し場2
4に固定されている。洗浄槽2゜の所定の場所に、既に
第1図、第2図に示したモニタヘッド26を光ファイバ
束16.17でつり下げておく6光ファイバ束16.1
7は、光源。
Although FIGS. 1 and 2 only show the monitor head, which is the main part of the present invention, FIG. 3(a) shows an example in which it is applied to an actual process. Although there are many types of cleaning processes, FIG. 3(a) shows a typical example of a cleaning process using pure water.Pure water is supplied from the direction of a wave arrow 22 through a water supply pipe 21 to a cleaning tank 2o for cleaning wafers. Ru. The water from the cleaning tank 2o is arrow 2
3. Overflows in the direction of 23', falls into the sink 24, and is eventually drained. Washing tank 2o has one leg 25 and sink 2
It is fixed at 4. At a predetermined location in the cleaning tank 2°, the monitor head 26 shown in FIGS. 1 and 2 is already suspended by an optical fiber bundle 16.17. Six optical fiber bundles 16.1 are used.
7 is a light source.

光検知器、信号表示、信号記録等々の素子、装置を含む
計測部26に直結している。
It is directly connected to a measurement section 26 that includes elements and devices such as a photodetector, signal display, and signal recording.

第3図(b)には、散乱光強度の測定例を示す。FIG. 3(b) shows an example of measuring the intensity of scattered light.

時間tiで洗浄槽2oにウェハ(表示せず)を入れると
、ウェハのもちこむ異物により、散乱強度は増大する。
When a wafer (not shown) is placed in the cleaning tank 2o at time ti, the scattering intensity increases due to foreign matter brought in by the wafer.

一方、もちこまれた異物は純水の供給により、槽20外
に排出されるから、時間tzから、槽20内の異物は減
少し始める。このようにして1本発明によれば、槽2o
内の異物数の変化を実時間で計測できる。
On the other hand, foreign matter brought in is discharged outside the tank 20 by the supply of pure water, so the amount of foreign matter in the tank 20 starts to decrease from time tz. In this way, according to the invention, the tank 2o
Changes in the number of foreign objects inside can be measured in real time.

〔発明の効果〕〔Effect of the invention〕

以上述べた如く、本発明によれば、第3図(a)。 As described above, according to the present invention, FIG. 3(a).

(b)に示したように、対象溶液中の異物密度変化を実
時間で計測することができる。従って、例えば、ウェハ
洗浄などの終了を限界異物数を定めることにより定量的
に決定することができる。また、供給すべき純水の流量
の最適値を、計測結果から決定できる。従って、本発明
を用いて、給水流量の自動制御(異物の増大につれて給
水量を増やすなど)が可能となる。上に述べた実時間性
、即応性は、従来の方式では明らかに不可能である。
As shown in (b), changes in the density of foreign substances in the target solution can be measured in real time. Therefore, for example, the end of wafer cleaning can be determined quantitatively by determining the limit number of foreign particles. Furthermore, the optimum flow rate of pure water to be supplied can be determined from the measurement results. Therefore, using the present invention, it is possible to automatically control the water supply flow rate (eg, increase the water supply amount as foreign particles increase). The above-mentioned real-time performance and immediate response are clearly impossible with conventional methods.

ウェハ洗浄にあっては、ウェハ近傍の溶液中に異物が多
いと、この異物がウェハに再付着する。
During wafer cleaning, if there are many foreign substances in the solution near the wafer, these foreign substances will re-adhere to the wafer.

従って、ウェハから遠い部分で計測しても意味がない。Therefore, there is no point in measuring at a portion far from the wafer.

本発明によれば、モニタヘッドをウェハ近傍に移動させ
ることで、簡単に目的を達することができる。
According to the present invention, the objective can be easily achieved by moving the monitor head close to the wafer.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による異物モニタの概略構成図、第2図
は本発明による他の実施側の概略構成図、第3図(a)
は本発明による異物モニタの適用例を示す装置構成図、
第3図(b)はその計測結果を示すグラフ、第4図は本
発明による異物モニタの原理説明図、第5図は従来方式
の原理説明図、第6図(a)、(b)は異物通過に伴う
散乱光。 透過光強度の時間依存性を示すグラフ、第7図(a)は
もう1一つの従来方式のノボ理説明図、第7図(b)は
透過光強度の時間依存性を示すグラフである。 1a・・・異物群、5a・・・照射光(ビーム)、6a
。 6b・・・円筒レンズ、7a・・・散乱光(ビーム)。 16・・・光ファイバ束(照射光用)、17・・・光フ
ァイバ束(散乱光用)、1B・・・保持箱、19a、1
9b第 l圀 /α、異物群 sL:L:!’!、射も 7山1&tL /l、、/7 :  オニファイバ庫ミlユ、lb 円
筒レン入 /8縫、荷箱 第2図 躬 3 回 Cb) 1、    12 窮乙図 簑 7 図 (の) (b)
FIG. 1 is a schematic configuration diagram of a foreign object monitor according to the present invention, FIG. 2 is a schematic configuration diagram of another implementation side according to the present invention, and FIG. 3 (a)
is a device configuration diagram showing an example of application of the foreign object monitor according to the present invention;
FIG. 3(b) is a graph showing the measurement results, FIG. 4 is an explanatory diagram of the principle of the foreign object monitor according to the present invention, FIG. 5 is an explanatory diagram of the principle of the conventional method, and FIGS. 6(a) and (b) are Scattered light due to passage of foreign matter. FIG. 7(a) is a graph showing the time dependence of transmitted light intensity, and FIG. 7(b) is a graph showing the time dependence of transmitted light intensity. 1a... Foreign matter group, 5a... Irradiation light (beam), 6a
. 6b... Cylindrical lens, 7a... Scattered light (beam). 16... Optical fiber bundle (for irradiation light), 17... Optical fiber bundle (for scattered light), 1B... Holding box, 19a, 1
9b No. 1/α, foreign body group sL:L:! '! , 7 mountains 1 & tL /l,, /7: Onifiber warehouse Milyu, lb with cylindrical lens / 8 stitches, packing box 2nd figure 3 times Cb) 1, 12 Kyotozuzumon 7 figure (of) (b)

Claims (1)

【特許請求の範囲】 1、被検体に所定断面積を有する光ビームを照射する手
段と、上記被検体中に含まれる異物が上記光ビームの照
射を受けることによつて生ずる上記異物に基づく変化光
を検出する手段と、上記変化光量から上記被検体中に含
まれる異物の量を計測する手段とを備えてなることを特
徴とする異物モニタ。 2、上記光ビームが特定周波数で強度変調された光ビー
ムからなり、上記検出手段が上記変化光を上記周波数で
位相検波する手段からなることを特徴とする第1項の異
物モニタ。3、上記光ビーム照射手段および上記変化光
検出手段が光ファイバ束とレンズとから構成されている
ことを特徴とする第1項の異物モニタ。 4、上記被検体が液体からなることを特徴とする第1項
の異物モニタ。 5、上記変化光が上記異物からの散乱光、蛍光あるいは
上記異物で遮断されて減衰した透過光であることを特徴
とする第1項の異物モニタ。
[Scope of Claims] 1. Means for irradiating a subject with a light beam having a predetermined cross-sectional area, and a change caused by the foreign matter that occurs when the foreign matter contained in the subject is irradiated with the light beam. A foreign matter monitor comprising: means for detecting light; and means for measuring the amount of foreign matter contained in the subject from the changing amount of light. 2. The foreign object monitor according to item 1, wherein the light beam is a light beam whose intensity is modulated at a specific frequency, and the detection means includes means for phase-detecting the changed light at the frequency. 3. The foreign object monitor according to item 1, wherein the light beam irradiation means and the changed light detection means are comprised of an optical fiber bundle and a lens. 4. The foreign object monitor according to item 1, wherein the object to be examined is a liquid. 5. The foreign object monitor according to item 1, wherein the changed light is scattered light from the foreign object, fluorescence, or transmitted light that is blocked and attenuated by the foreign object.
JP61065646A 1986-03-26 1986-03-26 Foreign object detection method and apparatus Expired - Lifetime JPH0799354B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP61065646A JPH0799354B2 (en) 1986-03-26 1986-03-26 Foreign object detection method and apparatus
US07/030,436 US4827143A (en) 1986-03-26 1987-03-26 Monitor for particles of various materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61065646A JPH0799354B2 (en) 1986-03-26 1986-03-26 Foreign object detection method and apparatus

Publications (2)

Publication Number Publication Date
JPS62223647A true JPS62223647A (en) 1987-10-01
JPH0799354B2 JPH0799354B2 (en) 1995-10-25

Family

ID=13292979

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61065646A Expired - Lifetime JPH0799354B2 (en) 1986-03-26 1986-03-26 Foreign object detection method and apparatus

Country Status (1)

Country Link
JP (1) JPH0799354B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5766342A (en) * 1980-04-28 1982-04-22 Agency Of Ind Science & Technol Optical measuring method for suspension particles in medium
JPS5793240A (en) * 1980-11-29 1982-06-10 Matsushita Electric Works Ltd Light transmitting type checking device
JPS58158352U (en) * 1982-04-15 1983-10-22 松下電工株式会社 dirt detector
JPS5981559A (en) * 1982-07-12 1984-05-11 シバ・カンパニ− Counter for grain
JPS59168346A (en) * 1983-03-15 1984-09-22 Matsushita Electric Works Ltd Device for detecting defect in veneer

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5766342A (en) * 1980-04-28 1982-04-22 Agency Of Ind Science & Technol Optical measuring method for suspension particles in medium
JPS5793240A (en) * 1980-11-29 1982-06-10 Matsushita Electric Works Ltd Light transmitting type checking device
JPS58158352U (en) * 1982-04-15 1983-10-22 松下電工株式会社 dirt detector
JPS5981559A (en) * 1982-07-12 1984-05-11 シバ・カンパニ− Counter for grain
JPS59168346A (en) * 1983-03-15 1984-09-22 Matsushita Electric Works Ltd Device for detecting defect in veneer

Also Published As

Publication number Publication date
JPH0799354B2 (en) 1995-10-25

Similar Documents

Publication Publication Date Title
US4783599A (en) Particle detector for flowing liquids with the ability to distinguish bubbles via photodiodes disposed 180° apart
US4402607A (en) Automatic detector for microscopic dust on large-area, optically unpolished surfaces
US5245200A (en) Apparatus and method for preventing blockage of a measuring head for effecting measurements of suspended substances
US4827143A (en) Monitor for particles of various materials
US4876458A (en) Apparatus for measuring particles in liquid
EP0464337A2 (en) Measurement of size and refractive index of particles using the complex forward-scattered electromagnetic field
US6894778B2 (en) Low detection limit turbidimeter
US5456102A (en) Method and apparatus for particle counting and counter calibration
KR20120013297A (en) Method and system for analysing solid particles in a medium
US5012119A (en) Method and apparatus for monitoring particles using back-scattered light without interference by bubbles
US5033851A (en) Light scattering method and apparatus for detecting particles in liquid sample
CN101960292B (en) Total reflection attenuation type far-ultraviolet spectroscopy and concentration measurement device using the spectroscopy
JP4382141B2 (en) Fine particle detector
WO2021097910A1 (en) Detection device and method for tiny particles in liquid
JPH05172732A (en) Method and apparatus for detecting particle in liquid
JPS62223647A (en) Foreign matter monitor
US6844537B2 (en) Method and device for measuring the velocity of a moving surface
JP2002062249A (en) Method and device for measuring particle size of fine particulate in fluid
JP2005274216A (en) Fouling detection method of sensor, and cleaning method of sensor
JPH0792076A (en) Grain analyzing device
JPS62285042A (en) Monitor for foreign matter in liquid
JPH05332946A (en) Surface inspection instrument
JPS63231244A (en) Cell analysis instrument
JPH05240769A (en) Particle counter
JPH03150445A (en) Particle analyzing device