JPS62219B2 - - Google Patents

Info

Publication number
JPS62219B2
JPS62219B2 JP58024301A JP2430183A JPS62219B2 JP S62219 B2 JPS62219 B2 JP S62219B2 JP 58024301 A JP58024301 A JP 58024301A JP 2430183 A JP2430183 A JP 2430183A JP S62219 B2 JPS62219 B2 JP S62219B2
Authority
JP
Japan
Prior art keywords
temperature
present
magnetic material
shows
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58024301A
Other languages
Japanese (ja)
Other versions
JPS59162255A (en
Inventor
Shunichi Nishama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP58024301A priority Critical patent/JPS59162255A/en
Publication of JPS59162255A publication Critical patent/JPS59162255A/en
Publication of JPS62219B2 publication Critical patent/JPS62219B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Hard Magnetic Materials (AREA)
  • Soft Magnetic Materials (AREA)

Description

【発明の詳細な説明】 本発明は、例えば熱スイツチ素子あるいは整磁
素子として用いられる感温磁性材料に関するもの
で、周囲温度に対する応答を狭い温度巾で迅速に
可能ならしめる様改良を目的としたものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a temperature-sensitive magnetic material used, for example, as a thermal switch element or magnetic shunt element. It is something.

従来感温磁性材料としては、酸化物磁性体であ
るMn―Znフエライト等が使用されてきたが、
熱伝導率が小さく周囲温度の変化に対する応答が
鈍いこと、熱スイツチ素子として具備すべきキ
ユリー点近傍の磁気時性の温度変化が緩かなため
に、熱スイツチとしてon―offの動作をする温度
巾が広くなつてしまうという欠点があつた。
Conventionally, Mn-Zn ferrite, which is an oxide magnetic material, has been used as a temperature-sensitive magnetic material.
The thermal conductivity is low, the response to changes in ambient temperature is slow, and the temperature change in the magnetic field near the Curie point, which is required for a thermal switch element, is gradual, so the temperature range for on-off operation as a thermal switch is low. The disadvantage was that it became too wide.

本発明は熱伝導率の大きい金属磁性材料で、か
つキユリー点近傍の磁気特性の変化が急峻である
材料に関する。
The present invention relates to a metallic magnetic material with high thermal conductivity and whose magnetic properties change sharply near the Curie point.

まず本発明の組成によるキユリー点の変化につ
いて説明する。
First, changes in the Curie point depending on the composition of the present invention will be explained.

実施例 1 Ni40、Cu2.0、Si0.5、Mn0.5、Cr5〜20wt、%
残部Feを真空中溶解後0.5mm厚さに圧延し、真空
中1000℃にて焼鈍した。これらの試料のキユリー
点とCr量の関係を第1図に示す。第1図より明
らかなように広範な温度範囲でキユリー点を変え
ることの出来る磁性材料が得られ、本発明材は広
範な温度範囲で熱スイツチ素子として使用出来る
ことが判る。本発明の組成では他にNi、Mnおよ
びFe量を変えてもキユリー点は変化するが、そ
の割合はCr量を変えた場合より小さい。
Example 1 Ni40, Cu2.0, Si0.5, Mn0.5, Cr5~20wt, %
The remaining Fe was melted in vacuum, rolled to a thickness of 0.5 mm, and annealed at 1000°C in vacuum. Figure 1 shows the relationship between the Curie point and Cr content of these samples. As is clear from FIG. 1, a magnetic material whose Curie point can be changed over a wide temperature range was obtained, and it can be seen that the material of the present invention can be used as a thermal switch element over a wide temperature range. In the composition of the present invention, the Curie point changes even if the amounts of Ni, Mn, and Fe are changed, but the rate of change is smaller than when the amount of Cr is changed.

次に本発明材の特徴を従来材と比較し説明す
る。
Next, the characteristics of the present invention material will be explained in comparison with conventional materials.

実施例 2 Ni40.2、Cr10.0、Cu1.99、Si0.41、
Mn0.48wt、%残部Feを真空中溶解後1mm厚さに
圧延し、1000℃で真空中焼鈍した。この試料の
10Oeでの磁束密度B10の温度変化を第2図に示
す。従来用いられてきた酸化物磁性体であるMn
―Znフエライトに比べキユリー点近くのB10の変
化率は著しく大きく、感温素子として周囲温度に
対し鋭くon―offさせ得る特性を具備している。
Example 2 Ni40.2, Cr10.0, Cu1.99, Si0.41,
0.48wt Mn and % balance Fe were melted in vacuum, rolled to a thickness of 1 mm, and annealed in vacuum at 1000°C. of this sample
Figure 2 shows the temperature change of magnetic flux density B 10 at 10 Oe. Mn, a conventionally used oxide magnetic material
- Compared to Zn ferrite, the rate of change of B 10 near the Curie point is significantly larger, and as a temperature-sensitive element, it has the property of being able to be turned on and off sharply depending on the ambient temperature.

実施例 3 Ni39.5、Cr14.5、Cu2.05、Si0.40、
Mn0.45wt、%残部Feを実施例2と同様に処理し
た試料のB10の温度特性を第3図に示す。実施例
2と同様にB10の変化は急峻であり、感温素子と
して望ましい特性である。
Example 3 Ni39.5, Cr14.5, Cu2.05, Si0.40,
FIG. 3 shows the temperature characteristics of B 10 of a sample treated with 0.45 wt Mn and % balance Fe in the same manner as in Example 2. As in Example 2, the change in B 10 was steep, which is a desirable characteristic for a temperature sensing element.

以上の如く本発明による磁性材料は、狭い温度
範囲内で鋭くon―offの動作をさせる例えば、熱
スイツチ、整磁素子用の感温素子として価値大で
ある。さらに本発明による磁性材料はマイクロ波
素子用温度補償材としても有益である。サーキユ
レータに適用した例を以下に示す。
As described above, the magnetic material according to the present invention is of great value as a temperature-sensitive element for, for example, a thermal switch or a magnetic shunt element that can perform sharp on-off operations within a narrow temperature range. Furthermore, the magnetic material according to the present invention is useful as a temperature compensating material for microwave devices. An example of application to a circulator is shown below.

実施例 4 第4図は本発明の感温磁性材料を適用したサー
キユレータの概略構造を示す断面図であり、8は
ケース、3,3aはフエライト磁石、5はガーネ
ツト型軟磁性材料であり導体と組合せて用いられ
る。4,4aは、フエライト磁石3,3aにより
発生しガーネツト5に印加される磁界分布を平担
にするために、取り付けられた軟鉄板である。本
発明の感温磁性材料6,7は一例として図4に示
すようにフエライト磁石3,3aの周囲にハチマ
キ状に取り付けられる。フエライト磁石は温度上
昇に伴ない直線的に磁束密度が低下する。従つて
ガーネツト5に印加される磁界は第5図イの曲線
で示すように温度上昇に伴ない大きく変化する。
ガーネツトとして4πMs=700GのGd―Ca―V
系ガーネツトを用いたがこの飽和磁化4πMs
温度変化は第6図に示すごとくであり極大点TN
は約20℃である。この4πMsの平担部温度範囲
において印加される磁界を第4図イの曲線より平
担にすることで、広い温度範囲に渡り特性の安定
なサーキユレーターを実現出来ると考えられる。
第5図ロの曲線は感温磁性材としてNi40、
Cu2.0、Si0.5、Mn0.5、Cr15wt%残部Feよりな
るキユリー点20℃のものを厚さ0.5mmでフエライ
ト磁石の周囲にハチマキ状に巻き付けたものであ
る。該感温磁性材料を巻き付けた場合の磁界の温
度変化は第5図ロに示す様に、巻き付けない場合
のイに比べ著しく平担性が改良された。サーキユ
レーターの特性としてIsolation Lossを各温度で
測定した所第7,8図に示すごとくであつた。第
7図はフエライト磁石のみの場合であり、イは20
℃ロは80℃ハは−20℃における測定値である。
Example 4 FIG. 4 is a cross-sectional view showing the schematic structure of a circulator to which the temperature-sensitive magnetic material of the present invention is applied, in which 8 is a case, 3 and 3a are ferrite magnets, and 5 is a garnet-type soft magnetic material, which acts as a conductor. Used in combination. 4 and 4a are soft iron plates attached to flatten the distribution of the magnetic field generated by the ferrite magnets 3 and 3a and applied to the garnet 5. As an example, the temperature-sensitive magnetic materials 6 and 7 of the present invention are attached to the periphery of the ferrite magnets 3 and 3a in the form of a headband, as shown in FIG. The magnetic flux density of ferrite magnets decreases linearly as the temperature increases. Therefore, the magnetic field applied to the garnet 5 changes greatly as the temperature rises, as shown by the curve in FIG. 5A.
As a garnet, 4πM s = 700G of Gd-Ca-V
The temperature change of this saturation magnetization 4πM s is as shown in Fig. 6, and the maximum point T N
is approximately 20℃. It is thought that by making the magnetic field applied in this flat part temperature range of 4πM s more flat than the curve in FIG. 4A, it is possible to realize a circulator with stable characteristics over a wide temperature range.
The curve in Figure 5 (b) shows Ni40 as the temperature-sensitive magnetic material.
It is made of Cu2.0, Si0.5, Mn0.5, Cr15wt% balance Fe and has a Kyrie point of 20°C, and is wound around a ferrite magnet in a 0.5mm thickness in the form of a headband. The temperature change in the magnetic field when the temperature-sensitive magnetic material was wound, as shown in Figure 5 (b), showed that the flatness was significantly improved compared to (a) when it was not wound. As a characteristic of the circulator, Isolation Loss was measured at various temperatures and was as shown in Figures 7 and 8. Figure 7 shows the case of only ferrite magnets, and A is 20
℃B is the measured value at 80℃C is -20℃.

第8図は本発明による上記磁性材を巻き付けた
場合の結果であり、イ〜ハは第7図と同じ温度で
の測定結果であり、Isolation Lossの温度特性と
して変化の少ない極めて改良された素子であるこ
とを示している。用いるガーネツトとして4πM
sの極大点TNが異なればそれに応じキユリー点を
変えた組成の感温磁性材を用いれば良く、従つて
本発明の材料はマイクロ波素子の温度補償用とし
ても利用価値大である。
Figure 8 shows the results when the above-mentioned magnetic material according to the present invention is wound, and A to C are the measurement results at the same temperature as in Figure 7, indicating a highly improved element with little change in temperature characteristics of isolation loss. It shows that. 4πM as the garnet used
If the maximum point T N of s differs, it is sufficient to use a temperature-sensitive magnetic material whose composition has a different Curie point accordingly, and the material of the present invention is therefore of great utility for temperature compensation of microwave elements.

なおCr量をさらに変えることにより、一層広
範囲のキユリー点を有する材料を得ることも可能
であるが応用性に乏しく現実的でない。また他元
素の含有量については特許請求の範囲を超えても
同様の材料を得ることは不可能ではないが熱処理
が困難となり好ましくない。
Although it is possible to obtain a material having a wider range of Curie points by further changing the Cr content, this is not practical due to poor applicability. Further, even if the content of other elements exceeds the claimed range, it is not impossible to obtain a similar material, but it is not preferable because heat treatment becomes difficult.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はCr量とキユリー点の関係を示す図、
第2図、第3図はB10と温度との関係を示す図で
ある。 1…本発明材、2…Mn―Znフエライトの場
合。 第4図は本発明材を用いた実施例のサーキユレ
ータの概略図、第5図はガーネツトに印加される
磁界の温度変化を示す図、イはフエライト磁石の
みの場合、ロは本発明材を巻き付けた場合を表わ
す。第6図はガーネツトの4πMsの温度特性を
示す図、第7図は従来のサーキユレータの
Isolation Lossの周波数特性を示す図、第8図は
本発明材を用いた場合のIsolation Lossの周波数
特性を示す図である。 3,3a…フエライト磁石、5…ガーネツト、
6,7…本発明材。
Figure 1 shows the relationship between the amount of Cr and the Curie point.
FIGS. 2 and 3 are diagrams showing the relationship between B 10 and temperature. 1...Inventive material, 2...Mn-Zn ferrite. Figure 4 is a schematic diagram of an example circulator using the material of the present invention, Figure 5 is a diagram showing the temperature change of the magnetic field applied to the garnet, A is for the case of only ferrite magnets, and B is for the case of winding the material of the present invention. represents the case. Figure 6 shows the temperature characteristics of garnet at 4πM s , and Figure 7 shows the temperature characteristics of a conventional circulator.
A diagram showing the frequency characteristics of Isolation Loss. FIG. 8 is a diagram showing the frequency characteristics of Isolation Loss when the material of the present invention is used. 3, 3a... ferrite magnet, 5... garnet,
6,7...Material of the present invention.

Claims (1)

【特許請求の範囲】[Claims] 1 Ni35〜45、Cu1〜5、Si0.2〜1.0、Mn0.2〜
1.0、Cr5〜18wt、%で残部Feよりなることを特
徴とする感温磁性材料。
1 Ni35~45, Cu1~5, Si0.2~1.0, Mn0.2~
1.0, Cr5~18wt%, balance Fe.
JP58024301A 1983-02-16 1983-02-16 Temperature-sensitive magnetic material Granted JPS59162255A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58024301A JPS59162255A (en) 1983-02-16 1983-02-16 Temperature-sensitive magnetic material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58024301A JPS59162255A (en) 1983-02-16 1983-02-16 Temperature-sensitive magnetic material

Publications (2)

Publication Number Publication Date
JPS59162255A JPS59162255A (en) 1984-09-13
JPS62219B2 true JPS62219B2 (en) 1987-01-06

Family

ID=12134347

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58024301A Granted JPS59162255A (en) 1983-02-16 1983-02-16 Temperature-sensitive magnetic material

Country Status (1)

Country Link
JP (1) JPS59162255A (en)

Also Published As

Publication number Publication date
JPS59162255A (en) 1984-09-13

Similar Documents

Publication Publication Date Title
US4038073A (en) Near-zero magnetostrictive glassy metal alloys with high saturation induction
US4537517A (en) Temperature sensitive amorphous magnetic alloy
US2636860A (en) Magnetic core
JP2004247603A (en) MnZn-BASED FERRITE WAVE ABSORBER
JP2917706B2 (en) Oxide magnetic material
US2685568A (en) Soft ferromagnetic mixed ferrite material
US4277356A (en) Soft lithium-titanium-zinc ferrite
JPH06310320A (en) Oxide magnetic substance material
JPS62219B2 (en)
Hasegawa et al. A high permeability Fe‐Ni base glassy alloy containing Mo
US3125472A (en) Process for the production of magnetic materials
JP2004247602A (en) MnZn-BASED FERRITE WAVE ABSORBER
JPH11186020A (en) Zero-phase current transformer
JP4586215B2 (en) Method for controlling intermodulation product of nonreciprocal circuit element, ferrimagnetic material, and nonreciprocal circuit element using the same
JP3597666B2 (en) Mn-Ni ferrite material
JP3597665B2 (en) Mn-Ni ferrite material
Murthy et al. Effect of magnetic field and temperature on the elastic behaviour of cobalt-zinc ferrites
JPH10233308A (en) Polycrystalline magnetic ceramic material preparation thereof, and nonrevesible circuit element using the same
JPH07130527A (en) Oxide magnetic material
JPS5815923B2 (en) Microha Millihayo Ferrite
US3180833A (en) Molybdenum oxide containing high permeability zinc-manganese ferrite
JPS61101458A (en) Manganese base ferrite composition
JP2000191368A (en) Magnetic material for high-frequency and high-frequency irreversible circuit element using the same
JPH03293705A (en) Oxide magnetic material and manufacture thereof
JPS6238411B2 (en)