JPS62219553A - Resistor - Google Patents

Resistor

Info

Publication number
JPS62219553A
JPS62219553A JP61063322A JP6332286A JPS62219553A JP S62219553 A JPS62219553 A JP S62219553A JP 61063322 A JP61063322 A JP 61063322A JP 6332286 A JP6332286 A JP 6332286A JP S62219553 A JPS62219553 A JP S62219553A
Authority
JP
Japan
Prior art keywords
carrier concentration
concentration
carrier
electric field
resistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61063322A
Other languages
Japanese (ja)
Inventor
Yasuo Ono
泰夫 大野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP61063322A priority Critical patent/JPS62219553A/en
Publication of JPS62219553A publication Critical patent/JPS62219553A/en
Pending legal-status Critical Current

Links

Landscapes

  • Non-Adjustable Resistors (AREA)
  • Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To maintain the excellent linearity of resistance up to higher electric field without raising the carrier temperature by a method wherein semiconductor layers with the same conductivity type but different carrier concentration are alternately laminated in the current flowing direction. CONSTITUTION:A resistor is composed by alternately laminating semiconductor layers 3, 4 with the same conductivity type but different carrier concentration in the current flowing direction. Joule's heat is generated as usual in the low carrier concentration layer 4 comprising N-type Si 0.1mum thick in the current flowing direction in impurity concentration of 1X10<17>cm<-3> but less heat is generated due to weak electric field in the high carrier concentration layer 3 comprising N-type Si also 0.1mum thick in the current direction in impurity concentration of 1X10<18>cm<-3> to be let off in lattice efficiently due to the high carrier concentration. Through these procedures, the heat generated in the low carrier concentration is let off in the lattice not only on the spot but also through the high concentration carrier layer 3 not to raise the electron temperature. In other words, the linearity of resistance can be maintained up to the electric field higher than usual field.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は半導体よりなる抵抗体の構造に関する。[Detailed description of the invention] (Industrial application field) The present invention relates to the structure of a resistor made of a semiconductor.

(従来技術とその問題点) 半導体よりなる抵抗体に高電界を印加するといわゆるホ
ットエレクトロンのためキャリア移動度が低下し、抵抗
が非線型となり応用上不都合が生じる。この現象はキャ
リアの温度が上がるためで、抵抗体即ち、結晶格子を冷
却しても発生する。
(Prior art and its problems) When a high electric field is applied to a resistor made of a semiconductor, the carrier mobility decreases due to so-called hot electrons, and the resistance becomes nonlinear, causing problems in terms of application. This phenomenon occurs because the temperature of the carrier increases, and it occurs even if the resistor, that is, the crystal lattice, is cooled.

第2図(a)は通常の抵抗体を示す概略1析面図で、電
極1から電極2へ向けて電流を流すと低キヤリア濃度層
4でジュール熱が発生する。この熱は主に結晶格子に逃
げるが、両電極へはその距離が遠いため逃げない。その
ため第2図(b)に示すように内部での電子温度は上昇
し、キャリア移動度が低下し、I X 10’v/cm
以上の電界で非線型な抵抗を示す。
FIG. 2(a) is a schematic cross-sectional view showing a typical resistor. When a current is passed from electrode 1 to electrode 2, Joule heat is generated in the low carrier concentration layer 4. FIG. This heat mainly escapes to the crystal lattice, but does not escape to the two electrodes because they are far apart. Therefore, as shown in FIG. 2(b), the internal electron temperature rises, carrier mobility decreases, and I
It exhibits nonlinear resistance in electric fields above.

本発明は上記欠点を除去し、ホットエレクトロンにより
抵抗が非線型になりにくい抵抗体の構造を提供すること
にある。
The object of the present invention is to eliminate the above drawbacks and provide a resistor structure in which the resistance is less likely to become non-linear due to hot electrons.

(問題点を解決するための手段) 本発明は電流の流れる方向に同一導電型でキャリア濃度
の異なる半導体層が交互に重ねられてなる抵抗体で構成
される。
(Means for Solving the Problems) The present invention is composed of a resistor in which semiconductor layers of the same conductivity type and different carrier concentrations are alternately stacked in the direction of current flow.

(実施例) 第1図(a)は本発明の抵抗体の一実施例を示す断面!
である。電流方向の厚さが0.1pm不純物濃度1×1
017cm−3のn型8iからなる低キヤリア濃度層4
では前記の従来例と同様にジュール熱が発生する。
(Example) FIG. 1(a) is a cross section showing an example of the resistor of the present invention!
It is. Thickness in current direction: 0.1 pm Impurity concentration: 1×1
Low carrier concentration layer 4 made of n-type 8i of 017 cm-3
In this case, Joule heat is generated as in the conventional example.

しかし電流方向の厚さが0.1pm不純物濃度lXl0
18cm−3のn型Siからなる高キャリア濃度層3で
は電界が弱いため発熱は少なく、かつ、高いキャリア濃
度のため効率良く格子へ熱を逃がすことができる。その
ため低キヤリア濃度層4で発生した熱はその場で格子に
逃げるのみならず高濃度キャリア層3を通しても格子へ
逃げるので、第1図(b)に示すように電子温度は余り
あがらない。つまり従来例より、より高電界まで抵抗の
直線性が保たれる。本実施例では2X104v/cmま
で直線性が保たれた。
However, if the thickness in the current direction is 0.1 pm, the impurity concentration lXl0
In the high carrier concentration layer 3 made of n-type Si of 18 cm -3 , the electric field is weak, so there is little heat generation, and the high carrier concentration allows heat to be efficiently released to the lattice. Therefore, the heat generated in the low carrier concentration layer 4 not only escapes to the lattice on the spot, but also escapes to the lattice through the high concentration carrier layer 3, so that the electron temperature does not rise much as shown in FIG. 1(b). In other words, the linearity of resistance is maintained up to higher electric fields than in the conventional example. In this example, linearity was maintained up to 2×10 4 v/cm.

このような構造はMBE技術を用いれば高キャリア濃度
層3、低キヤリア濃度層4をともに100人程度の厚さ
から制御良く積層して作ることができる。
Such a structure can be made by laminating the high carrier concentration layer 3 and the low carrier concentration layer 4 with a thickness of about 100 layers in a controlled manner using MBE technology.

また前記実施例ではキャリアが電子の場合について述べ
たが、キャリアがホールの場合も本発明に含まれる。ま
た前記実施例では交互に配置した複数の高、低キヤリア
濃度層3,4がそれぞれ同じ濃度であったがこれに限ら
ず、例えば隣りあう高キャリア濃度層が異なる濃度であ
ってもよい。
Further, in the above embodiments, the case where the carrier is an electron has been described, but the present invention also includes a case where the carrier is a hole. Further, in the above embodiment, the plurality of high and low carrier concentration layers 3 and 4 arranged alternately have the same concentration, but the present invention is not limited to this, and for example, adjacent high carrier concentration layers may have different concentrations.

(発明の効果) 3°、2) 以上の説明で明らかなように、本発明によればキャリア
の温度を」二げることなくより高い電界まで直線性の良
い抵抗が実現できる。
(Effects of the Invention) 3°, 2) As is clear from the above explanation, according to the present invention, a resistance with good linearity can be realized up to a higher electric field without lowering the carrier temperature.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)は本発明による半導体抵抗の模式的断面図
で、1,2は電極、3は高キャリア濃度層、4は低キヤ
リア濃度層、第1図(b)は第1図(a)の抵抗体中で
の電子温度の分布図である。 第2図(a)は従来構造の半導体抵抗の概略断面図であ
る。第2図(b)は第2図(a)中での電子温度の分布
図である。
FIG. 1(a) is a schematic cross-sectional view of a semiconductor resistor according to the present invention, 1 and 2 are electrodes, 3 is a high carrier concentration layer, 4 is a low carrier concentration layer, and FIG. 1(b) is a schematic cross-sectional view of a semiconductor resistor according to the present invention. FIG. 3 is a distribution diagram of electron temperature in the resistor of a). FIG. 2(a) is a schematic cross-sectional view of a semiconductor resistor having a conventional structure. FIG. 2(b) is a distribution diagram of the electron temperature in FIG. 2(a).

Claims (1)

【特許請求の範囲】[Claims]  電流の流れる方向に同一導電型でキャリア濃度の異な
る半導体層が交互に重ねられてなることを特徴とする抵
抗体。
A resistor characterized in that semiconductor layers of the same conductivity type but with different carrier concentrations are stacked alternately in the direction of current flow.
JP61063322A 1986-03-19 1986-03-19 Resistor Pending JPS62219553A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61063322A JPS62219553A (en) 1986-03-19 1986-03-19 Resistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61063322A JPS62219553A (en) 1986-03-19 1986-03-19 Resistor

Publications (1)

Publication Number Publication Date
JPS62219553A true JPS62219553A (en) 1987-09-26

Family

ID=13225911

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61063322A Pending JPS62219553A (en) 1986-03-19 1986-03-19 Resistor

Country Status (1)

Country Link
JP (1) JPS62219553A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0553204U (en) * 1991-12-19 1993-07-13 ソニー株式会社 In-pipe resistance

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61168952A (en) * 1985-01-22 1986-07-30 Nec Corp Semiconductor integrated circuit device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61168952A (en) * 1985-01-22 1986-07-30 Nec Corp Semiconductor integrated circuit device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0553204U (en) * 1991-12-19 1993-07-13 ソニー株式会社 In-pipe resistance

Similar Documents

Publication Publication Date Title
JP5961865B2 (en) Semiconductor element
JPS6271271A (en) Electrode structure of silicon carbide semiconductor
JPH01103876A (en) Insulated-gate semiconductor device
JP2954124B2 (en) Superconducting current limiting element
JPS62219553A (en) Resistor
JP5336086B2 (en) Manufacturing method of semiconductor device
JPS6359272B2 (en)
JPS60128651A (en) Semiconductor device
JPS5963769A (en) High-speed semiconductor element
JP2001024244A (en) Single-electron tunnel transistor using laminated structure
JPS59132671A (en) Vertical type metal oxide semiconductor transistor
US6479882B2 (en) Current-limiting device
JP4017763B2 (en) Static induction transistor
JPS60236265A (en) Conductive modulation type mosfet
JPS5934147Y2 (en) Gate turn-off thyristor
JPS6127686A (en) Light receiving element having superlattice of amorphous semiconductor
JPS62144365A (en) Laminated structure
JP2007311440A (en) Peltier module, and manufacturing method thereof
JP3248210B2 (en) Superconducting element
JPS6143474A (en) Semiconductor device
JPH0444363A (en) Gate turn-off thyristor
JPS6310428A (en) Cold cathode device
JPH05175238A (en) Junction type field-effect transistor
JPS6390863A (en) Semiconductor device
JPS62210674A (en) Semiconductor device