JPS6221723B2 - - Google Patents

Info

Publication number
JPS6221723B2
JPS6221723B2 JP57097082A JP9708282A JPS6221723B2 JP S6221723 B2 JPS6221723 B2 JP S6221723B2 JP 57097082 A JP57097082 A JP 57097082A JP 9708282 A JP9708282 A JP 9708282A JP S6221723 B2 JPS6221723 B2 JP S6221723B2
Authority
JP
Japan
Prior art keywords
powder
titanium nitride
carbon
nitride powder
titanium oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57097082A
Other languages
Japanese (ja)
Other versions
JPS58213606A (en
Inventor
Taijiro Sugisawa
Hironori Yoshimura
Hiroshi Doi
Takeo Ootsuka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Metal Corp
Original Assignee
Mitsubishi Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Metal Corp filed Critical Mitsubishi Metal Corp
Priority to JP9708282A priority Critical patent/JPS58213606A/en
Publication of JPS58213606A publication Critical patent/JPS58213606A/en
Publication of JPS6221723B2 publication Critical patent/JPS6221723B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • C01B21/076Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with titanium or zirconium or hafnium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Products (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は、含有酸素量および含有炭素量が低
く、しかも含有窒素量の高い高純度かつ均粒微細
な窒化チタン粉末を製造する方法に関するもので
ある。 近年、粉末冶金用粉末、研磨材その他の用途に
供するため硬質粉末部材としての窒化チタン粉末
の需要が増加の一途をたどつている。 従来、窒化チタン粉末の製造法としては、酸化
チタンに還元剤として炭素源を混合し、これを含
窒素雰囲気中で加熱して還元・窒化を行なわしめ
る方法や、高純度の金属チタン粉末あるいは水素
化チタン粉末を含窒素雰囲気中で、窒化反応によ
つて発生する大きな発熱量をコントロールしなが
ら加熱することによつて製造する方法等が、最も
一般的なものとして知られていた。 しかしながら、前者の方法では、窒化チタン粉
末は酸素を固溶する性質が強くて含有酸素量の低
い粉末の製造が困難であることや、また添加した
炭素も窒化チタンに一部固溶するので、残存炭素
量を減少せしめることも容易ではないという問題
点があり、特に含有酸素量を減少せしめるために
炭素の添加量を増加することは残存炭素量をさら
に増加させることとなつて、含有酸素量および残
存炭素量を同時に減少せしめることが極めて困難
であるので、不純物としての酸素および炭素含有
量が低くて、しかも窒素含有量が理論値に近い高
純度窒化チタン粉末を製造することは困難であつ
た。また、この場合、含有酸素量を低減させるた
めには加熱温度を一層高めるのが効果的であるこ
とも報告されているが、例えば2000℃以上におい
て加熱保持することは、設備的にもエネルギー経
済的にも好ましいものではなく、特に量産化が困
難で、しかも加熱温度を高くするほど粉末粒子の
粗大化が生じたり、粒子間の焼結の進行によつて
固結化したりするために粉砕等の後処理が困難と
なるうえに、例えば1μm以下の粉末を製造する
ことは極めて難かしくなるものである。 このように、酸化チタンを原料とした窒化チタ
ン粉末の製造は、特に純度の問題、すなわち含有
酸素量および炭素量が高く、したがつて含有窒素
が低いということから、工業的にはほとんど適用
されていないのが現状である。 他方、後者の方法、すなわち高純度の金属チタ
ン粉末あるいは水素化チタン粉末を窒化する方法
によれば、原料および製造工程を十分に管理する
ことによつて高純度の、すなわち低酸素、低炭素
かつ高窒素含有量の窒化チタン粉末を製造するこ
とが可能であり、現在量産化されている市販の窒
化チタン粉末はほとんどがこの方法によるもので
ある。しかしながら、この方法では、原料粉末で
ある金属チタン粉末あるいは水素化チタン粉末と
して角ばつた粒径の粉砕粉を使用するので、この
原料の粒子形状が窒化チタン粉末製品にも残存し
てその粉末特性に悪影響を与えることとなり、し
かもかかる原料粉末は微粉化すると酸素含有量が
増加することから一般には粗粒のままであり、こ
のため得られた窒化チタン粉末も数μm以上と粗
粒になるために、後処理として再度粉砕する必要
があつた。したがつて、この方法による窒化チタ
ン粉末は、角ばつた粒子形状を有すると同時に、
平均粒度においても粗粒であり、かつ粒度分布の
広いものでしかなかつた。 本発明者等は、上述のような観点から、複雑な
処理工程を経ることなく、均粒微細な高純度窒化
チタン粉末をコスト安く製造する方法を見出すべ
く、試行錯誤を繰返しながら研究を重ねた結果、
これまでの常識とは裏腹に、還元剤を加えた酸化
チタンを窒素含有雰囲気中にて加熱するという従
来の窒化チタン粉末の製造法において、原料品種
の選定、原料混合条件の設定、還元窒化条件の設
定等を有機的に絡み合わせて管理することによ
り、純度および粒度等の十分に満足できる窒化チ
タン粉末を得ることができるとの知見を得る至つ
たのである。 したがつて、この発明は上記知見に基づいてな
されたものであり、酸化チタンに還元剤として炭
素源を加え、これを窒素含有雰囲気中で加熱する
ことによつて窒化チタンを製造する方法におい
て、酸化チタンとしてアナダーゼ型粉末を使用す
るとともに、炭素源としては無定形炭素粉末の酸
化チタン還元のために必要かつ十分な量を加え、
例えば超硬ボールなどの混合促進媒体と一緒に、
湿式で十分に粉砕・混合し、乾燥した後、得られ
た混合粉末を窒素含有雰囲気で1800〜2000℃の温
度にて加熱することにより、還元と窒化とを同時
に行なわしめ、含有酸素および残留炭素がそれぞ
れ0.5%以下と低く、含有窒素量の高い純度で、
かつ、2μm以下の平均粒度を有する均粒微細な
窒化チタン粉末を得ることに特徴を有するもので
ある。 この発明の方法においては、上述のように、酸
化チタンとしてアナターゼ型のものを、そして炭
素源として無定形炭素粉末を使用するものであ
る。そして、酸化チタン粉末の工業的市販品とし
ては、ルチル型の結晶構造を持つものと、アナタ
ーゼ型の結晶構造を持つものの2種類が存在して
いて、アナターゼ型の酸化チタン粉末を加熱して
いけば800℃前後よりルチル型に変換し、これは
炭素源の共存下においても行なわれるものである
ことが知られており、一方、炭素源たる高純度炭
素の工業的市販品としては、黒鉛(グラフアイ
ト)粉末と無定形炭素粉末(例えばカーボン・ブ
ラツク)の2種類があり、無定形炭素は加熱すれ
ば約1300℃以上で黒鉛に変換していくものである
ことがそれぞれ知られているけれども、アナター
ゼ型の酸化チタンと無定形炭素の組合せをとるこ
とによつて、還元・窒化反応が極めて良好に促進
される具体的な理由は末だ明らかではない。しか
しながら、このようにアナターゼ型酸化チタン
は、炭素による還元開始温度以前の約800℃程度
からルチル型に結晶変換し始め、また無定形炭素
であるカーボンブラツクも、還元程度の低級酸化
チタン生成時の温度である約1300℃以上におい
て、例え完全な結晶変換はなくてもグラフアイト
化し始めるものであることから考えれば、反応促
進効果は、このような特定の原料の混合時に、加
熱の際の固相拡散反応を促進せしめるような機構
を生ずることによつて奏せられるものであるとの
推定が成り立ち、それは単なる粒度の微細化によ
る混合の改善以外の機構、例えばメカノケミカル
のような現象が他の原料の組合せの場合よりもよ
り一層大きく生じたものと思われる。このこと
は、混合条件の影響の大きいことからも理解でき
るが、この発明では、この最良の原料組合せにお
いて反応促進の効果を確保できたものであるとと
もに、これら原料の混合条件によつてさらに上記
効果を高めることによつて、2000℃以下の温度に
おいても十分に反応を促進させることができたと
ともに、均一な反応が進行して均粒微細な窒化チ
タン粉末が得られらるものであると考えられる。 なお、原料の粉砕・混合条件を湿式としたの
は、反応を促進させるためには原料のより十分な
混合を必要とするためであり、乾式よりも湿式の
方が、そして混合促進媒体の存在する方が良好な
混合状態を得られるからである。 また、加熱温度を1800〜2000℃の範囲と定めた
のは、加熱温度が高くなる程粗粒となつて、その
温度が2000℃を越えると2.0μm以上の粒度とな
つて再粉砕の必要を生ずることとなり、他方、
1800℃未満では含有酸素量が高くなつて高品質の
窒化チタン粉末を得ることができないためであ
る。 そして、この発明の方法における窒化反応のた
めのガス、すなわち加熱時の雰囲気は、還元およ
び窒化反応を阻害しない雰囲気であれば、窒素を
含むいずれの雰囲気であつても良く、例えば、窒
素と他の気体との混合ガスあるいはアンモニアガ
ス等を十分に供給された雰囲気でも実施が可能で
ある。 つぎに、この発明を、実施例により比較例と対
比しながら説明する。 実施例 まず、市販の平均粒度:0.5μmを有するアナ
ターゼ型酸化チタン粉末:77.1重量%に同じく市
販の平均粒径:0.4μmを有するカーボンブラツ
ク:22.9重量%を加えて超硬ボール(5倍量)の
入つたボールミルに装入し、アセトン添加による
湿式混合を24時間行なつた。混合物は乾燥後、加
圧成形し、N2ガスを流しながら昇温加熱して、
1900℃において2時間保持した後粉砕して窒化チ
タン粉末を得た。 このようにして得られた窒化チタン粉末の分析
値並びに粒度を、その製造条件と共に試験番号1
として第1表に示した。 また、第1表には、使用酸化チタンがアナター
ゼ型かルチル型かの別、炭素源がカーボンブラツ
クかグラフアイトかの別、混合条件が混合促進媒
体たる超硬ボールを添加したものか否かの別、湿
式混合か乾式混合かの別、加熱温度をそれぞれ特
定のものに選択し、変化させ、組合せた条件によ
つて製造した窒化チタン粉末の分析値と粒度を
も、その製造条件と共に試験番号2〜14として示
した。 なお、表中の略記号は、 A :アナターゼ型、R:ルチル型、 CB:カーボンブラツク、 G:グラフアイト、 W:湿式、 D:乾式、 有:混合促進媒体あり、 無:混合促進媒体なし、 を示すものであり、また、平均粒度はFisher社
Sub―Sieve Sizer測定値である。
The present invention relates to a method for producing highly pure titanium nitride powder having a low oxygen content, a low carbon content, and a high nitrogen content. In recent years, the demand for titanium nitride powder as a hard powder member for powder metallurgy, abrasive materials, and other uses has been increasing. Conventional methods for producing titanium nitride powder include mixing titanium oxide with a carbon source as a reducing agent and heating it in a nitrogen-containing atmosphere to reduce and nitride it, or using high-purity metallic titanium powder or hydrogen. The most common method was known to produce titanium oxide powder by heating it in a nitrogen-containing atmosphere while controlling the large amount of heat generated by the nitriding reaction. However, in the former method, titanium nitride powder has a strong property of dissolving oxygen, making it difficult to produce powder with a low oxygen content, and the added carbon also partially dissolves in the titanium nitride. There is a problem that it is not easy to reduce the amount of residual carbon, and in particular, increasing the amount of carbon added to reduce the amount of oxygen contained will further increase the amount of residual carbon, and the amount of oxygen contained will increase. Since it is extremely difficult to simultaneously reduce the amount of oxygen and residual carbon, it is difficult to produce high-purity titanium nitride powder that has low oxygen and carbon content as impurities and has a nitrogen content close to the theoretical value. Ta. Additionally, in this case, it has been reported that it is effective to further increase the heating temperature in order to reduce the amount of oxygen contained, but for example, heating and maintaining the temperature at 2000°C or higher is not efficient in terms of equipment and energy efficiency. It is not preferable in terms of quality, and it is particularly difficult to mass-produce.Moreover, the higher the heating temperature, the coarser the powder particles become, and the progress of sintering between particles causes them to solidify, so pulverization, etc. In addition to making post-processing difficult, it is also extremely difficult to produce powder with a particle size of 1 μm or less, for example. Thus, the production of titanium nitride powder using titanium oxide as a raw material is rarely applied industrially, especially due to purity issues, that is, high oxygen and carbon content, and therefore low nitrogen content. The current situation is that this is not the case. On the other hand, according to the latter method, that is, the method of nitriding high-purity metallic titanium powder or titanium hydride powder, high purity, that is, low oxygen, low carbon, and It is possible to produce titanium nitride powder with a high nitrogen content, and most of the commercially available titanium nitride powders that are currently mass-produced are produced by this method. However, in this method, pulverized powder with an angular particle size is used as the raw material powder, which is titanium metal powder or titanium hydride powder, so the particle shape of this raw material remains in the titanium nitride powder product, resulting in its powder characteristics. In addition, when such raw material powder is pulverized, the oxygen content increases, so it generally remains coarse, and the obtained titanium nitride powder also becomes coarse, with a size of several μm or more. In addition, it was necessary to re-pulverize as post-processing. Therefore, the titanium nitride powder obtained by this method has an angular particle shape, and at the same time
The average particle size was also coarse, and the particle size distribution was wide. From the above-mentioned viewpoint, the present inventors conducted repeated research through trial and error in order to find a method of producing uniformly fine, high-purity titanium nitride powder at low cost without going through complicated processing steps. result,
Contrary to conventional wisdom, in the conventional manufacturing method of titanium nitride powder, which involves heating titanium oxide to which a reducing agent has been added in a nitrogen-containing atmosphere, selection of raw material types, setting of raw material mixing conditions, reduction nitriding conditions, etc. We have come to the conclusion that by managing the settings of these factors in an organically intertwined manner, it is possible to obtain titanium nitride powder with sufficiently satisfactory purity and particle size. Therefore, the present invention was made based on the above findings, and includes a method for producing titanium nitride by adding a carbon source as a reducing agent to titanium oxide and heating it in a nitrogen-containing atmosphere. Anadase type powder is used as titanium oxide, and as a carbon source, a necessary and sufficient amount is added for titanium oxide reduction of amorphous carbon powder.
together with a mixing promoting medium, e.g. carbide balls.
After thorough grinding and mixing in a wet process and drying, the resulting mixed powder is heated at a temperature of 1800 to 2000°C in a nitrogen-containing atmosphere to simultaneously reduce and nitride the oxygen and residual carbon. is low at less than 0.5% each, and has a high purity nitrogen content.
In addition, the present invention is characterized in that titanium nitride powder with uniform and fine grains having an average particle size of 2 μm or less can be obtained. In the method of this invention, as mentioned above, anatase type titanium oxide is used and amorphous carbon powder is used as the carbon source. There are two types of commercially available titanium oxide powder: one with a rutile crystal structure and one with an anatase crystal structure. It is known that the conversion to rutile form occurs at around 800°C, even in the presence of a carbon source. There are two types of powder: graphite) powder and amorphous carbon powder (e.g. carbon black), and it is known that amorphous carbon converts to graphite at temperatures above about 1300℃ when heated. The specific reason why the combination of anatase-type titanium oxide and amorphous carbon promotes reduction and nitridation reactions extremely well is not yet clear. However, in this way, anatase-type titanium oxide begins to crystallize into rutile-type at about 800℃, which is before the temperature at which reduction by carbon begins, and carbon black, which is amorphous carbon, also changes when lower titanium oxide is produced at a reduction level. Considering that at temperatures above approximately 1300°C, graphitization begins even if complete crystal conversion does not occur, the reaction acceleration effect is due to the increase in solidity during heating when mixing these specific raw materials. It can be assumed that this is achieved by generating a mechanism that promotes phase diffusion reactions, and it is assumed that this is achieved by a mechanism other than the improvement of mixing by simply reducing particle size, such as a mechanochemical phenomenon. This appears to be much larger than in the case of the combination of raw materials. This can be understood from the fact that the mixing conditions have a large influence, but in this invention, the effect of promoting the reaction was secured with this best combination of raw materials, and the above-mentioned effects were further achieved by the mixing conditions of these raw materials. By increasing the effect, it was possible to sufficiently promote the reaction even at temperatures below 2000℃, and the reaction progressed uniformly, resulting in titanium nitride powder with even and fine grains. Conceivable. The reason why the raw materials were crushed and mixed under wet conditions was that the raw materials needed to be mixed more thoroughly in order to promote the reaction, and the wet method was better than the dry method, and the presence of a mixing promoting medium. This is because a better mixed state can be obtained by doing so. In addition, the reason why the heating temperature was set in the range of 1800 to 2000℃ is because the higher the heating temperature, the coarser the particles become, and when the temperature exceeds 2000℃, the particle size becomes 2.0 μm or more, making it necessary to re-grind. On the other hand,
This is because if the temperature is lower than 1800°C, the amount of oxygen content becomes high and high quality titanium nitride powder cannot be obtained. The gas for the nitriding reaction in the method of this invention, that is, the atmosphere during heating, may be any atmosphere containing nitrogen as long as it does not inhibit the reduction and nitriding reactions. It is also possible to conduct the process in an atmosphere sufficiently supplied with a mixed gas or ammonia gas. Next, the present invention will be explained using examples and comparing with comparative examples. Example First, 77.1% by weight of commercially available anatase-type titanium oxide powder having an average particle size of 0.5 μm and 22.9% by weight of carbon black having an average particle size of 0.4 μm, which is also commercially available, were added to form a carbide ball (5 times the amount ), and wet mixing by adding acetone was carried out for 24 hours. After drying, the mixture was pressure-molded and heated while flowing N2 gas.
The mixture was held at 1900°C for 2 hours and then ground to obtain titanium nitride powder. The analytical values and particle size of the titanium nitride powder obtained in this way, together with its manufacturing conditions, are shown in test number 1.
It is shown in Table 1 as follows. Table 1 also lists whether the titanium oxide used is anatase type or rutile type, whether the carbon source is carbon black or graphite, and whether the mixing conditions include the addition of carbide balls as a mixing promotion medium. The analysis value and particle size of titanium nitride powder manufactured under different combinations of conditions, including wet mixing or dry mixing, and heating temperature, were also tested along with the manufacturing conditions. Shown as numbers 2-14. The abbreviations in the table are: A: anatase type, R: rutile type, CB: carbon black, G: graphite, W: wet type, D: dry type, with: with mixing accelerator, without: without mixing accelerating medium. , and the average particle size is
This is the Sub-Sieve Sizer measurement value.

【表】 また、このようにして得られた本発明による窒
化チタン粉末と市販の窒化チタン粉末(水素化チ
タン粉末を原料としたもの)の粒形を比較するた
めに、それぞれの走査型電子顕微鏡写真を第1図
および第2図に示した。 第1表に示した結果からも明らかなように、原
料たる酸化チタンとしてアナターゼ型のものを、
そして炭素源としてカーボンブラツクを使用した
組合せにおいて、還元・窒化反応が最も促進され
ていることが明らかであり、さらに、混合条件と
しては、湿式で混合促進媒体を添加し、粉砕も加
わつた十分な混合を行なうという条件を採用すれ
ば、含有酸素量および残留炭素量がそれぞれ0.5
重量%以下と低く、したがつて含有窒素量が理論
値(22.5重量%)に近い21.5重量%以上と高い、
高純度の窒化チタン粉末を得ることができるとい
うことも明白である。 また、本発明の方法による窒化チタン粉末の粒
形および粒度分布は、第1図および第2図から明
らかなように、従来法あるいは市販粉末(例え
ば、水素化チタン粉末を原料として窒化せしめた
粉末等)のように角張つた形状でしかも粒度が広
い範囲にわたつて分布しているものではなく、丸
みを帯びた形状で極めて均一な粒度を有するもの
であつた。 なお、上記実施例における無定形炭素の添加量
は、式 TiO2+2C+1/2N2→TiN+2CO で計算される理論量の約98%であつたが、添加量
を増加せしめて含有炭素量が増加するのみで、含
有酸素量の減少はほとんど期待されず、また、理
論量の約98%の添加は、種々の要因、例えば加熱
雰囲気中の含有酸素量とか、約1300℃以下の温度
における昇温速度等の条件によつて最適添加量が
決められるものであり、一定値に定めるべきもの
ではなかつた。 上述のように、この発明によれば、格別な設備
を要したり、複数な処理工程を経ることなく、均
一粒度で、微細な、しかも高純度の窒化チタン粉
末を低価格で製造することができ、その用途がさ
らに拡大できるなど工業上有用な効果がもたらさ
れるのである。
[Table] In addition, in order to compare the particle shapes of the titanium nitride powder according to the present invention obtained in this way and the commercially available titanium nitride powder (made from titanium hydride powder), the respective scanning electron microscopes were used. Photographs are shown in Figures 1 and 2. As is clear from the results shown in Table 1, anatase type titanium oxide is used as the raw material.
It is clear that the reduction and nitriding reactions are most promoted in the combination using carbon black as the carbon source.Furthermore, the mixing conditions are wet, with the addition of a mixing promotion medium, and sufficient pulverization. If the conditions of mixing are adopted, the amount of oxygen content and amount of residual carbon will each be 0.5
The nitrogen content is low at less than 21.5% by weight, which is close to the theoretical value (22.5% by weight), and high at 21.5% by weight or more.
It is also clear that titanium nitride powder of high purity can be obtained. Furthermore, as is clear from FIGS. 1 and 2, the particle shape and particle size distribution of the titanium nitride powder obtained by the method of the present invention are different from those obtained by the conventional method or commercially available powder (for example, powder obtained by nitriding titanium hydride powder as a raw material). ), which had an angular shape and particle size distributed over a wide range, but had a rounded shape and extremely uniform particle size. In addition, the amount of amorphous carbon added in the above example was about 98% of the theoretical amount calculated by the formula TiO 2 + 2C + 1/2N 2 → TiN + 2CO, but by increasing the amount added, the amount of carbon contained increases. However, the addition of approximately 98% of the theoretical amount is dependent on various factors, such as the amount of oxygen contained in the heating atmosphere and the rate of temperature increase at temperatures below approximately 1300°C. The optimum amount to be added is determined by such conditions and should not be set at a fixed value. As described above, according to the present invention, it is possible to produce fine titanium nitride powder with uniform particle size and high purity at a low cost without requiring special equipment or going through multiple processing steps. This brings about industrially useful effects such as further expanding its uses.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の方法による窒化チタン粉末の
走査型電子顕微鏡による粒形写真、第2図は従来
法である水素化チタン粉末を原料とした窒化チタ
ン粉末の走査型電子顕微鏡による粒形写真であ
る。
Figure 1 is a grain shape photograph taken using a scanning electron microscope of titanium nitride powder obtained by the method of the present invention, and Figure 2 is a grain shape photograph taken using a scanning electron microscope of titanium nitride powder made using titanium hydride powder as a raw material, which is a conventional method. It is.

Claims (1)

【特許請求の範囲】[Claims] 1 酸化チタンに還元剤として炭素源を加え、窒
素含有雰囲気中で加熱することによつて窒化チタ
ンを製造する方法において、酸化チタンとしてア
ナターゼ型酸化チタン粉末を使用するとともに、
炭素源として無定形炭素粉末を用い、これらを混
合促進媒体と一緒に、湿式で十分に粉砕・混合し
てから乾燥し、得られた混合粉末を窒素含有雰囲
気中で1800〜2000℃の温度にて加熱することによ
り還元および窒化を同時に行わしめ、含有酸素量
および残留炭素量がそれぞれ0.5重量%以下にし
て、2μm以下の平均粒径を有する窒化チタン粉
末を製造することを特徴とする高純度かつ均粒微
細な窒化チタン粉末の製造法。
1. In a method for producing titanium nitride by adding a carbon source as a reducing agent to titanium oxide and heating it in a nitrogen-containing atmosphere, anatase-type titanium oxide powder is used as titanium oxide, and
Using amorphous carbon powder as a carbon source, these are sufficiently pulverized and mixed together with a mixing promoting medium in a wet process, and then dried, and the resulting mixed powder is heated to a temperature of 1800 to 2000°C in a nitrogen-containing atmosphere. A high-purity titanium nitride powder characterized by reducing and nitriding at the same time by heating with water, reducing the oxygen content and residual carbon content to 0.5% by weight or less, and producing titanium nitride powder having an average particle size of 2 μm or less. A method for producing titanium nitride powder with uniform and fine grains.
JP9708282A 1982-06-07 1982-06-07 Preparation of titanium nitride powder Granted JPS58213606A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9708282A JPS58213606A (en) 1982-06-07 1982-06-07 Preparation of titanium nitride powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9708282A JPS58213606A (en) 1982-06-07 1982-06-07 Preparation of titanium nitride powder

Publications (2)

Publication Number Publication Date
JPS58213606A JPS58213606A (en) 1983-12-12
JPS6221723B2 true JPS6221723B2 (en) 1987-05-14

Family

ID=14182715

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9708282A Granted JPS58213606A (en) 1982-06-07 1982-06-07 Preparation of titanium nitride powder

Country Status (1)

Country Link
JP (1) JPS58213606A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT394188B (en) * 1990-03-14 1992-02-10 Treibacher Chemische Werke Ag METHOD FOR THE PRODUCTION OF FINE-GRINED, SINTER-ACTIVE NITRIDE AND CARBONITRIDE POWDERS OF TITANIUM
CN103601161A (en) * 2013-10-08 2014-02-26 河北联合大学 TiN powder preparation method combining nonhydrolytic sol-gel with carbon thermal reduction nitridation method
WO2016143172A1 (en) 2015-03-09 2016-09-15 住友電気工業株式会社 Ceramic powder and boron nitride sintered body

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5782110A (en) * 1980-11-12 1982-05-22 Matsushita Electric Ind Co Ltd Preparation of titanium nitride and titanium carbide

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5782110A (en) * 1980-11-12 1982-05-22 Matsushita Electric Ind Co Ltd Preparation of titanium nitride and titanium carbide

Also Published As

Publication number Publication date
JPS58213606A (en) 1983-12-12

Similar Documents

Publication Publication Date Title
CN107585768B (en) Method for preparing superfine tungsten carbide powder by oxidation-reduction method
US6293989B1 (en) Method of producing nanophase WC/TiC/Co composite powder
JP6912238B2 (en) Manufacturing method of fine tungsten carbide powder
JP2617140B2 (en) Ultrafine WC powder and method for producing the same
JP4172622B2 (en) Lithium-containing composite oxide and method for producing the same
JP3636370B2 (en) Aluminum nitride powder and method for producing the same
CN1242924C (en) Methods of making a niobium metal oxide
JPH021761B2 (en)
JPS6221723B2 (en)
JP2008031016A (en) Tantalum carbide powder, tantalum carbide-niobium composite powder and their production method
JP3413625B2 (en) Method for producing titanium carbonitride powder
CN1485450A (en) Method for producing WC-Fe composite powder of ultra fine grain by tungsten alloy scrap
JPH021762B2 (en)
JP6953157B2 (en) Fine Tungsten Carbide Powder
JPS58213619A (en) Production of powder of composite carbonitride solid solution
CN111547724A (en) Superfine titanium carbide powder and preparation method thereof
JP2958851B2 (en) Method for producing fine chromium carbide
JPH07233406A (en) Production of superfine powdery composite starting material for cemented carbide
JPS623007A (en) Production of aluminum nitride powder
JPH05279002A (en) Production of al nitride powder
JPH04160012A (en) Production of fine born carbide powder
JPH05147909A (en) Production of aluminum nitride powder
JP4051732B2 (en) Method for producing nuclear fuel particles
JP3838691B2 (en) Silicon nitride grinding aid and its use
JPS6152081B2 (en)