JPS58213606A - Preparation of titanium nitride powder - Google Patents

Preparation of titanium nitride powder

Info

Publication number
JPS58213606A
JPS58213606A JP9708282A JP9708282A JPS58213606A JP S58213606 A JPS58213606 A JP S58213606A JP 9708282 A JP9708282 A JP 9708282A JP 9708282 A JP9708282 A JP 9708282A JP S58213606 A JPS58213606 A JP S58213606A
Authority
JP
Japan
Prior art keywords
powder
titanium nitride
nitrogen
carbon
titanium oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9708282A
Other languages
Japanese (ja)
Other versions
JPS6221723B2 (en
Inventor
Taijiro Sugisawa
杉澤 泰次郎
Hironori Yoshimura
吉村 寛範
Hiroshi Doi
博司 土井
Takeo Otsuka
武夫 大塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON SHINKINZOKU KK
Mitsubishi Metal Corp
Original Assignee
NIPPON SHINKINZOKU KK
Mitsubishi Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON SHINKINZOKU KK, Mitsubishi Metal Corp filed Critical NIPPON SHINKINZOKU KK
Priority to JP9708282A priority Critical patent/JPS58213606A/en
Publication of JPS58213606A publication Critical patent/JPS58213606A/en
Publication of JPS6221723B2 publication Critical patent/JPS6221723B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • C01B21/076Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with titanium or zirconium or hafnium

Abstract

PURPOSE:To prepare TiN powder having high purity and uniform and fine particle size, at a low cost, by heating a mixture of TiO2 and a reducing agent in a nitrogen-containing atmosphere selecting the kinds of the raw materials, the mixing condition of the raw materials, and the reduction and nitriding condition, etc. CONSTITUTION:Anatase-type titanium oxide powder is mixed with amporphous carbon powder as a reducing agent, and thoroughly pulverized and mixed under wet condition. The mixture is dried and heated at 1,800-2,000 deg.C in a nitrogen- containing atmosphere to effect the simultaneous reduction and nitriding. The process affords the preparation of TiN powder having low oxygen content and carbon content, high nitrogen content, high purity, and uniform and fine particle size, at a low cost.

Description

【発明の詳細な説明】 この発明は、含有酸素量および含有炭素量が低く、しか
も含有窒素量の高い高純度かつ均粒微細な窒化チタン粉
末を製造する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing highly pure, uniformly grained, fine titanium nitride powder that has a low oxygen content, a low carbon content, and a high nitrogen content.

近年、粉末冶金用粉末、研磨材その他の用途に供するた
め碩簀粉末部材としての窒化チタン粉末の需要が増加の
一途をたどっている。
In recent years, the demand for titanium nitride powder as a slag powder member for powder metallurgy, abrasive materials, and other uses has been increasing.

従来、窒化チタン粉末の製”進法としては、酸化チタン
に還元剤として炭素源を混合し、これを含窒素雰囲気中
で加熱して還元・窒化を行なわしめる方法や、高純度の
金属チタン粉末あるいは水素化チタン粉末を含窒素雰囲
気中で、窒化反応によって発生する大きな発熱量をコン
トロールしながら加熱することによって製造する方法等
が、最も一般的なものとして知られていた。
Conventionally, methods for producing titanium nitride powder include mixing titanium oxide with a carbon source as a reducing agent and heating it in a nitrogen-containing atmosphere to reduce and nitride it; Alternatively, the most common method was known to produce titanium hydride powder by heating it in a nitrogen-containing atmosphere while controlling the large amount of heat generated by the nitriding reaction.

しかしながら、前者の方法では、窒化チタン粉末は酸素
を固溶する性質が強くて含有酸素量の低い粉末の製造が
困難で多ることや、また添加した炭素も窒化チタンに一
部固溶するので、残存炭素量を減少せしめることも容易
ではないという問題点があシ、特に含有酸素量を減少せ
しめるために炭素の添加量を増加することは残存炭素量
をさらに増加させることとなって、含有酸素量および残
存炭素量を同時に減少せしめることが極めて困難である
ので、不純物としての酸素および炭素含有量が低くて、
しかも窒素含有量が理論値に近い高純度窒化チタン粉末
を製造することは困難であった。また、この場合、含有
酸素量を低減させるためには加熱温度を一層高めるのが
効果的であることも報告されているが1例えば2000
℃以上において加熱保持することは、設備的にもエネル
ギー経済的にも好ましいものではなく、特に量産化が困
難で、しかも加熱温度を高くするほど粉末粒子の粗大化
が生じたシ、粒子間の焼結の進行によって固結化したシ
するために粉砕等の後処理が困難となるうえに1例えば
1μm以下の粉末を製造することは極めて難かしくなる
ものである。
However, with the former method, titanium nitride powder has a strong property of dissolving oxygen, making it difficult to produce powder with a low oxygen content, and also because some of the added carbon also dissolves in titanium nitride. However, there is a problem in that it is not easy to reduce the amount of residual carbon.In particular, increasing the amount of carbon added to reduce the amount of oxygen contained will further increase the amount of residual carbon. Since it is extremely difficult to reduce the amount of oxygen and the amount of residual carbon at the same time, the content of oxygen and carbon as impurities is low.
Moreover, it has been difficult to produce high-purity titanium nitride powder whose nitrogen content is close to the theoretical value. It has also been reported that in this case, it is effective to further increase the heating temperature in order to reduce the amount of oxygen contained.
Heating and holding at temperatures above ℃ is not preferable in terms of equipment or energy economy, and it is particularly difficult to mass produce.Moreover, the higher the heating temperature, the coarser the powder particles become, and the larger the particles become. As the powder solidifies as the sintering progresses, post-processing such as pulverization becomes difficult, and it is extremely difficult to produce powder with a size of, for example, 1 μm or less.

このように、酸化チタンを原料とした窒化チタン粉末の
製造は、特に純度の問題、すなわち含有酸素量および炭
素量が高く、したがって含有窒素が低いということから
、工業的にはほとんど適用されていないのが現状である
Thus, the production of titanium nitride powder using titanium oxide as a raw material is rarely applied industrially, especially due to purity issues, that is, high oxygen and carbon content, and therefore low nitrogen content. is the current situation.

他方、後者の方法、すなわち高純度の金属チタン粉末あ
るいは水素化チタン粉末を窒化する方法によれば、原料
および製造工程を十分に管理することによって高純度の
、すなわち低酸素、低炭素かつ高窒素含有量の窒化チタ
ン粉末を製造することが可能であり、現在量産化されて
いる市販の窒化チタン粉末はほとんどがこの方法による
ものである。しかしながら、この方法では、原料粉末で
ある金属チタン粉末あるいは水素化チタン粉末として角
ばった粒径の粉砕粉を使用するので、この原料の粒子形
状が窒化チタン粉末製品にも残存してその粉末特性に悪
影響を与えることとなり、しかもかかる原料粉末は微粉
化すると酸素含有量が増加することから一般には粗粒の
ままであシ、このため得られた窒化チタン粉末も数μm
以上と粗粒になるために、後処理として再度粉砕する必
要があった。したがって、この方法による窒化チタン粉
末は、角ばつ、た粒子ヤ状を有すると同時に。
On the other hand, according to the latter method, i.e., the method of nitriding high-purity metallic titanium powder or titanium hydride powder, high-purity, i.e., low oxygen, low carbon, and high nitrogen It is possible to produce titanium nitride powder with a high content, and most of the commercially available titanium nitride powders that are currently mass-produced are produced by this method. However, in this method, since a pulverized powder with an angular particle size is used as the raw material powder, titanium metal powder or titanium hydride powder, the particle shape of this raw material remains in the titanium nitride powder product, which affects its powder properties. Moreover, when the raw material powder is pulverized, the oxygen content increases, so it generally remains coarse, and for this reason, the titanium nitride powder obtained also has a particle size of several μm.
Since the particles became coarser, it was necessary to crush them again as a post-treatment. Therefore, the titanium nitride powder obtained by this method has a grain shape with sharp edges.

平均粒度においても粗粒であシ、かつ粒度分布の広いも
のでしかなかった。
The average particle size was coarse and had a wide particle size distribution.

本発明者等は、上述のような観点から、複雑な処理工程
を経ることなく、均粒微細な高純度窒化チタン粉末をコ
スト安く製造する方法を見出すべく、試行錯誤を繰返し
ながら研究を重ねた結果。
From the above-mentioned viewpoint, the present inventors conducted repeated research through trial and error in order to find a method of producing uniformly fine, high-purity titanium nitride powder at low cost without going through complicated processing steps. result.

これまでの常識とは裏腹に、還元剤を加えた酸化チタン
を窒素含有雰囲気中罠て加熱するという従来の錯化チタ
ン粉末の製造法において、原料品種の選定、原料混合条
pの設定、還元窒化条件の設定等を有機的に絡み合わせ
て管理することによシ、純度および粒度等の十分に満足
できる窒化チタン粉末を得ることができるとの知見を得
るに至ったのである。
Contrary to conventional wisdom, in the conventional manufacturing method of complexed titanium powder, which involves trapping and heating titanium oxide to which a reducing agent has been added in a nitrogen-containing atmosphere, selection of raw material types, setting of raw material mixing conditions, reduction, It has been found that titanium nitride powder with sufficiently satisfactory purity and particle size can be obtained by organically intertwining and managing the settings of nitriding conditions.

したがって、この発明は上記知見に基づいてなされたも
のであシ、酸化チタンに還元剤として炭素源を加え、こ
れを窒素含有雰囲気中で加熱することによって窒化チタ
ンを製造する方法において。
Therefore, the present invention has been made based on the above findings, and relates to a method for producing titanium nitride by adding a carbon source as a reducing agent to titanium oxide and heating the mixture in a nitrogen-containing atmosphere.

酸化チタンとしてアナターゼ型粉末を使用するとともに
、炭素源としては無定形炭素粉末の酸化チタン還元のた
めに必要かつ十分な量を加え、湿式で十分に粉砕・混合
し、乾燥した後、得られた混合粉末を窒素含有雰囲気で
1800〜2000℃の温度にて加熱することによシ、
還元と窒化とを同時に行なわしめ、含有酸素および残留
炭素がそれぞれ0.5−以下と低く、含有窒素量の高い
純度で、かつ5本質的に2μm以上の粗粒子を含有する
ことなしに2μm以下の平均粒度を有する均粒微細な窒
化チタン粉末を得ることに特徴を有するものである。
Anatase-type powder was used as titanium oxide, and a necessary and sufficient amount was added as a carbon source for titanium oxide reduction of amorphous carbon powder, thoroughly crushed and mixed in a wet process, and dried. By heating the mixed powder at a temperature of 1800 to 2000°C in a nitrogen-containing atmosphere,
Reduction and nitriding are carried out simultaneously, the oxygen content and residual carbon are as low as 0.5 or less, the nitrogen content is high in purity, and the particle size is 2 μm or less without essentially containing coarse particles of 2 μm or more. This method is characterized by obtaining uniformly fine titanium nitride powder having an average particle size of .

この発明の方法においては、上述のように、酸化チタン
としてアナターゼ型のものを、そして炭素源として無定
形炭素粉末を使用するものである。
In the method of this invention, as mentioned above, anatase type titanium oxide is used and amorphous carbon powder is used as the carbon source.

そして、酸化チタン粉末の工業的市販品としては、ルチ
ル型の結晶構造を持つものと、アナターゼ型の結晶構造
を持つものの2種類が存在していて。
There are two types of commercially available titanium oxide powder: one with a rutile crystal structure and one with an anatase crystal structure.

アナターゼ型め酸化チタン粉末を加熱していけば800
℃前後よりルチル型に変換し、これは炭素源の共存下に
おいても行なわれるものであることが知られておシ、一
方、炭素源たる高純度炭素の工業的市販品としては、黒
鉛(グラファイト)粉末と無定形炭素粉末(例えばカー
デン・ブラック)の2種類があり、無定形炭素は加熱す
れば約1300℃以上で黒鉛に変換していくものである
ことがそれぞれ知られているけれども、アナターゼ型の
酸化チタンと無定形炭素の組合せをとることによって、
還元・窒化反応が極めて良好に促進される具体的な理由
は未だ明らかではない。しかしながら、このようにアナ
タ゛−ゼ型酸化チタンは、炭素による還元開始温度以前
の約800℃程度からルチル型に結晶変換し始め、tた
無定形炭素であるカーがンブラックも、還元過程の低級
酸化チタン生成時の温度である約1300℃以上におい
て1例え完全な結晶変換はなくてもグラファイト化し始
めるものであることから考えれば1反応促進効果は、こ
のような特定の原料の混合時に、加熱の際の同相拡散反
応を促進せしめるような機構を生ずることによって奏せ
られるものであるとの推定が成り立ち、それは単なる粒
度の微細化による混合の改善、以外の機構1例えは−メ
カノケミカルのような現象が他の原料の組合せの場合よ
りもより一層太きく生じたものと思われる。このことは
、混合条件の影響の大きいことからも理解できるが、こ
の発明で杜、この最良の原料組合せにおいて反応促進の
効果を確保できたものであるとともに、これら原料の混
合条件によってさらに上記効果を高めることによって、
2000℃以下の温度においても十分に反応を促進させ
ることができ九とともに。
800 by heating anatase type titanium oxide powder
It is known that it converts to the rutile form at around 30°F (°C) even in the presence of a carbon source. ) powder and amorphous carbon powder (e.g. carden black), and it is known that amorphous carbon converts into graphite at temperatures above about 1300°C when heated, but anatase By combining titanium oxide and amorphous carbon,
The specific reason why the reduction/nitridation reaction is promoted so well is still not clear. However, in this way, anatase-type titanium oxide begins to crystallize into a rutile type at about 800°C, which is before the temperature at which reduction by carbon begins. Considering that graphitization begins even if complete crystal conversion does not occur at temperatures above approximately 1300°C, which is the temperature at which titanium oxide is produced, one reaction promotion effect is that when mixing such specific raw materials, heating It can be assumed that this is achieved by creating a mechanism that promotes the in-phase diffusion reaction during It is thought that this phenomenon occurred to a greater extent than in the case of other raw material combinations. This can be understood from the fact that the mixing conditions have a large influence, but with this invention, we were able to secure the effect of promoting the reaction with this best combination of raw materials, and the above effects were further improved by the mixing conditions of these raw materials. By increasing the
Together with 9, the reaction can be sufficiently promoted even at temperatures below 2000°C.

均一な反応が進行して均粒微細な窒化チタン粉末が得ら
れるものである伴考見られる。
It can be seen that the reaction progresses uniformly and titanium nitride powder with uniform grains and fine particles is obtained.

なお、原料の粉砕・混合学外を湿式としたのは、反応を
促進させるためには原料のよシ十分な混合を必要とする
ためであシ、乾式よシも湿式の方が。
The reason why we used a wet method for crushing and mixing the raw materials is because it is necessary to thoroughly mix the raw materials to promote the reaction, so a wet method is better than a dry method.

そして混合促進媒体の存在する方が良好な混合状態を得
られるからである。
This is because a better mixing state can be obtained with the presence of the mixing promoting medium.

また、加熱温度を1800〜2000℃の範囲と定めた
のは、加熱温度が高くなる程粗粒となって、その温度が
2000℃を越えると2.0μm以上の粒度となって再
粉砕の必要を生ずることとなシ、他方、1800℃未満
では含有酸素量が高くなって高品質の窒化チタン粉末を
得ることができないためでみる。
In addition, the heating temperature was set in the range of 1,800 to 2,000°C because the higher the heating temperature, the coarser the particles become, and when the temperature exceeds 2,000°C, the particle size becomes 2.0 μm or more, requiring re-grinding. On the other hand, if the temperature is lower than 1800° C., the amount of oxygen contained becomes high and high quality titanium nitride powder cannot be obtained.

そして、この発明の方法における窒化反応のためのガス
、すなわち加熱時の雰囲気社、還元および窒化反応を阻
害しない雰囲気であれば、窒素を含むいずれの雰囲気で
あっても良く、例えば;窒素と他の気体との混合ガスあ
るいはアンモニアガス等を十分に供給された雰囲気でも
実施が可能である。
The gas for the nitriding reaction in the method of this invention, that is, the atmosphere during heating, may be any atmosphere containing nitrogen as long as it does not inhibit the reduction and nitriding reactions, for example; It is also possible to conduct the process in an atmosphere sufficiently supplied with a mixed gas or ammonia gas.

つぎに、この発明を、実施例により比較例と対比しなが
ら説明する。
Next, the present invention will be explained using examples and comparing with comparative examples.

実施例 まず、市販のアナターゼ型酸化チタン粉末ニア7.1重
fjkSに同じく市販のカーボンブラック:22.9重
量′チを加えて超硬?−ル(5倍量)の入った7]?−
ルミルに装入し、アセトン添加による湿式混合を24時
間行なった。混合物社乾燥後、加圧成形し、N、ガスを
流しなから昇温加熱して。
Example First, commercially available anatase type titanium oxide powder near 7.1 weight fjkS was added with carbon black (22.9 weight), which was also commercially available. 7] with -ru (5 times the amount)? −
The mixture was placed in a Lumil and wet mixed by adding acetone for 24 hours. After drying the mixture, it was molded under pressure and heated to an elevated temperature without flowing nitrogen or gas.

1900℃において2時間保持した後粉砕して窒化チタ
ン粉末を得た。
The mixture was held at 1900° C. for 2 hours and then ground to obtain titanium nitride powder.

このようにして得られた窒化チタン粉末の分析値並びに
粒度を、その製造条件と共に試験番号1として第1表に
示した。
The analytical values and particle size of the titanium nitride powder thus obtained are shown in Table 1 as Test No. 1, along with the manufacturing conditions.

また、第1表には、使用酸化チタンがアナターゼ型かル
チル型かの別、炭素源がカーボンブラックかグラファイ
トかの別、゛混合条件が混合促進媒体たる超硬2I−ル
を添加したものか否かの別、湿式混合か乾些混合かの別
、加熱温度をそれぞれ特定のものに選択し、変化させ、
組合せた条件によって製造した窒化チタン粉末の分析値
と粒度をも、その製造条件と共に試験番号2〜14とし
て示した。
Table 1 also shows whether the titanium oxide used is anatase type or rutile type, whether the carbon source is carbon black or graphite, and whether the mixing conditions are such that carbide 2I-ru is added as a mixing promotion medium. Whether it is wet mixing or dry mixing, the heating temperature can be selected and varied.
The analytical values and particle sizes of titanium nitride powders produced under the combined conditions are also shown as test numbers 2 to 14, along with the production conditions.

力お、表中の略記号は、 A :アナターゼ型、Rニルチル型。The abbreviations in the table are A: Anatase type, R nilthyl type.

CB:力−?ンブラック。CB: Power-? Black.

G:グラファイト、 W:湿式、     D:乾式。G: graphite, W: Wet method, D: Dry method.

有:混合促進媒体あシ、 無二混合促進媒体なし、 を示すものであシ、また、平均粒度はFisher社5
ub −51eva 5izer測定値である。
Yes: No mixing accelerating medium, No: No mixing accelerating medium, Average particle size is Fisher company 5
These are the measured values for ub-51eva 5izer.

また、このよう圧して得られた本発明による窒化チタン
粉末と市販の窒化チタン粉末(水素化チタン粉末を原料
としたもの)の粒形を比較するために、それぞれの走査
型電子顕微鏡写真を第1図および第2図に示した。
In addition, in order to compare the particle shapes of the titanium nitride powder according to the present invention obtained by pressing in this manner and the commercially available titanium nitride powder (made from titanium hydride powder), scanning electron micrographs of each were taken as follows. It is shown in Figures 1 and 2.

第1表に示した結果からも明らかなように、原料たる酸
化チタンとしてアナターゼ型のものを。
As is clear from the results shown in Table 1, anatase type titanium oxide was used as the raw material.

そして炭素源と、してカーがンブラックを使用した組合
せにおいて、還元・窒化反応が最も促進されていること
が明らかであり、さらに、混合条件としては、湿式で混
合促進媒体を添加し、粉砕も加わった十分な混合を行な
うという条件を採用すれば、含有酸素量および残留炭素
量がそれぞれ0.5重量−以下と低く、したがって含有
窒素量が理論値(22,5重量%)に近い21.5重−
114以上と高い、高純度の窒化チタン粉末を得ること
ができるというbとも明白である。
It is clear that the reduction and nitriding reactions are most promoted in the combination of a carbon source and carbon black; If the condition of sufficient mixing is adopted, the oxygen content and residual carbon content will be as low as 0.5% by weight or less, and the nitrogen content will be close to the theoretical value (22.5% by weight). .5-
It is also clear from point b that it is possible to obtain titanium nitride powder with a high purity of 114 or higher.

また、本発明の方法による窒化チタン粉末の粒形および
粒度分布は、第1図および第2図から明らかなように、
従来法あるいは市販粉末(例えば。
Furthermore, as is clear from FIGS. 1 and 2, the particle shape and particle size distribution of the titanium nitride powder obtained by the method of the present invention are as follows.
Conventional methods or commercially available powders (e.g.

水素化チタン粉末を原料として窒化せしめた粉末等)の
ように角張った形状でしかも粒度が広い範囲にわたって
分布しているものではなく、丸みを帯びた形状で極めて
均一な粒度を有するものであった。
The powder had a rounded shape and an extremely uniform particle size, rather than the angular shape and particle size distributed over a wide range (such as powder made from nitrided titanium hydride powder). .

なお、上記実施例における無定形炭素の添加量は1式 %式% で計算される理論量の約98チ、であったが、添加量を
増加せしめても含有炭素量が増加するのみで。
The amount of amorphous carbon added in the above example was approximately 98% of the theoretical amount calculated by formula %, but even if the amount added was increased, the amount of carbon contained would only increase.

含有酸素量の減少社はとんど期待されず、また、理論量
の約98tsの添加は1種々の要因、例えば加熱雰囲気
中の含有酸素量とが、約1300 ’0以下の温度にお
りる昇温速度等の条件によって最適添加量が決められる
もので1L一定値に定めるべきものではなかった。
A decrease in the amount of oxygen content is hardly expected, and the addition of the theoretical amount of about 98ts is due to various factors, such as the amount of oxygen content in the heated atmosphere, which decreases at temperatures below about 1300'0. The optimum amount to be added is determined by conditions such as the rate of temperature increase, and should not be set at a constant value of 1 L.

上述のように、この発明によれば、格別な設備を要した
り、複雑な処理工程を経る仁となく、均一粒度で、微細
な、しかも高純度の窒化チタン粉末を低価格で製造する
ことができ、その用途がさらに拡大できるなど工業上有
用な効果がもたらされるのである。
As described above, according to the present invention, fine titanium nitride powder with uniform particle size and high purity can be produced at a low cost without requiring special equipment or undergoing complicated processing steps. This brings about industrially useful effects such as further expanding its uses.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の方法による窒化チタン粉末の走査型電
子顕微鏡による粒形写真、第2図は従来法である水素化
チタン粉末を原料とした窒化チタン粉末の走査型電子顕
微鏡による粒形写真である。 出願人  E 菱金属株式会社(ほか 1名)代理人 
  富  1) 和  夫 23−
Figure 1 is a grain shape photograph taken using a scanning electron microscope of titanium nitride powder obtained by the method of the present invention, and Figure 2 is a grain shape photograph taken using a scanning electron microscope of titanium nitride powder made using titanium hydride powder as a raw material, which is a conventional method. It is. Applicant E Ryokinzoku Co., Ltd. (and 1 other person) Agent
Wealth 1) Kazuo 23-

Claims (1)

【特許請求の範囲】[Claims] 酸化チタンに還元剤として炭素源を加え、窒素含有雰囲
気中で加熱することによって窒化チタンを製造する方法
において、酸化チタンとしてアナターゼ型酸化チタン粉
末を使用するとともに、炭素源として無定形炭素粉末を
用い、これらを湿式で十分に粉砕・混合してから乾燥し
、得られた混合粉末を窒素含有雰囲気中で1800〜2
000℃の温度にて加熱することによシ還元および窒化
を同時に行わしめることを特徴とする、高純度かつ均粒
微細な窒化、チタン粉末の製造法。
In a method of producing titanium nitride by adding a carbon source as a reducing agent to titanium oxide and heating it in a nitrogen-containing atmosphere, anatase-type titanium oxide powder is used as the titanium oxide, and amorphous carbon powder is used as the carbon source. , these were thoroughly ground and mixed in a wet method, and then dried, and the resulting mixed powder was heated to 1800 to 2
A method for producing nitrided and titanium powder with high purity and uniform grain size, characterized by simultaneously performing silica reduction and nitriding by heating at a temperature of 1,000°C.
JP9708282A 1982-06-07 1982-06-07 Preparation of titanium nitride powder Granted JPS58213606A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9708282A JPS58213606A (en) 1982-06-07 1982-06-07 Preparation of titanium nitride powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9708282A JPS58213606A (en) 1982-06-07 1982-06-07 Preparation of titanium nitride powder

Publications (2)

Publication Number Publication Date
JPS58213606A true JPS58213606A (en) 1983-12-12
JPS6221723B2 JPS6221723B2 (en) 1987-05-14

Family

ID=14182715

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9708282A Granted JPS58213606A (en) 1982-06-07 1982-06-07 Preparation of titanium nitride powder

Country Status (1)

Country Link
JP (1) JPS58213606A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5147831A (en) * 1990-03-14 1992-09-15 Treibacher Chemische Werke Aktiengesellschaft Method for producing a fine grained powder consisting of nitrides and carbonitrides of titanium
CN103601161A (en) * 2013-10-08 2014-02-26 河北联合大学 TiN powder preparation method combining nonhydrolytic sol-gel with carbon thermal reduction nitridation method
WO2016143172A1 (en) * 2015-03-09 2016-09-15 住友電気工業株式会社 Ceramic powder and boron nitride sintered body

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5782110A (en) * 1980-11-12 1982-05-22 Matsushita Electric Ind Co Ltd Preparation of titanium nitride and titanium carbide

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5782110A (en) * 1980-11-12 1982-05-22 Matsushita Electric Ind Co Ltd Preparation of titanium nitride and titanium carbide

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5147831A (en) * 1990-03-14 1992-09-15 Treibacher Chemische Werke Aktiengesellschaft Method for producing a fine grained powder consisting of nitrides and carbonitrides of titanium
CN103601161A (en) * 2013-10-08 2014-02-26 河北联合大学 TiN powder preparation method combining nonhydrolytic sol-gel with carbon thermal reduction nitridation method
WO2016143172A1 (en) * 2015-03-09 2016-09-15 住友電気工業株式会社 Ceramic powder and boron nitride sintered body
WO2016143693A1 (en) * 2015-03-09 2016-09-15 住友電気工業株式会社 Ceramic powder and boron nitride sintered body
KR20190086037A (en) 2015-03-09 2019-07-19 스미토모덴키고교가부시키가이샤 Ceramic powder and boron nitride sintered body
US10954166B2 (en) 2015-03-09 2021-03-23 Sumitomo Electric Industries, Ltd. Ceramic powder and boron nitride sintered material

Also Published As

Publication number Publication date
JPS6221723B2 (en) 1987-05-14

Similar Documents

Publication Publication Date Title
US6293989B1 (en) Method of producing nanophase WC/TiC/Co composite powder
CN107585768B (en) Method for preparing superfine tungsten carbide powder by oxidation-reduction method
US4454105A (en) Production of (Mo,W) C hexagonal carbide
JPS58213617A (en) Production of titanium carbonitride powder
JPS58213606A (en) Preparation of titanium nitride powder
JP3413625B2 (en) Method for producing titanium carbonitride powder
JPS58213618A (en) Production of powder of composite carbonitride solid solution
CN112846170B (en) (Ti, W) C solid solution powder and preparation method thereof
JP2008031016A (en) Tantalum carbide powder, tantalum carbide-niobium composite powder and their production method
CN107699779A (en) A kind of VN alloy and its production method
JPS58213619A (en) Production of powder of composite carbonitride solid solution
JP2958851B2 (en) Method for producing fine chromium carbide
JP4023711B2 (en) Method for producing high purity fine tungsten carbide powder without the need for a grinding step
JPH02271919A (en) Production of fine powder of titanium carbide
JPH0375485B2 (en)
JPS61102416A (en) Production of fibrous silicon carbide
JPS59445B2 (en) Method for producing composite carbonitride solid solution containing Ti and W
JPH07233406A (en) Production of superfine powdery composite starting material for cemented carbide
JPH05279002A (en) Production of al nitride powder
JPH0327481B2 (en)
JPH0225401B2 (en)
JPH04160012A (en) Production of fine born carbide powder
CN116397097A (en) Preparation method of high-density vanadium-nitrogen alloy balls
JPH05147909A (en) Production of aluminum nitride powder
JPS5891028A (en) Manufacture of silicon carbide powder