JPS62216963A - Humidity sensor - Google Patents

Humidity sensor

Info

Publication number
JPS62216963A
JPS62216963A JP61056226A JP5622686A JPS62216963A JP S62216963 A JPS62216963 A JP S62216963A JP 61056226 A JP61056226 A JP 61056226A JP 5622686 A JP5622686 A JP 5622686A JP S62216963 A JPS62216963 A JP S62216963A
Authority
JP
Japan
Prior art keywords
moisture
humidity
temperature
sensitive body
relationship
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61056226A
Other languages
Japanese (ja)
Other versions
JPH0218310B2 (en
Inventor
芳彦 定岡
酒井 義郎
石沢 健喜
黒島 浩
享 中山
雅 久保田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinagawa Refractories Co Ltd
Original Assignee
Shinagawa Refractories Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinagawa Refractories Co Ltd filed Critical Shinagawa Refractories Co Ltd
Priority to JP61056226A priority Critical patent/JPS62216963A/en
Publication of JPS62216963A publication Critical patent/JPS62216963A/en
Publication of JPH0218310B2 publication Critical patent/JPH0218310B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野) 本発明は、強誘電性を示す組成領域内(Pb、 La)
  (Zr、 Ti) Os焼結体よりなり、湿度の変
化に応じて電気容量値の変化する感湿体に関するもので
ある。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is directed to a composition that exhibits ferroelectricity (Pb, La).
(Zr, Ti) This relates to a moisture sensitive body made of an Os sintered body and whose capacitance value changes according to changes in humidity.

〔従来の技術〕[Conventional technology]

従来、雰囲気中の湿度に感応して電気抵抗値が変化する
感湿体としてA ’ z Os 、Z r S iOs
、MgA 120a 、MgCr20s 、Crz O
a、F e z Os 、T’i 01等の金属酸化物
の多孔質体やLiCl飽和溶液等の電解質塩、或いはセ
ルロースや疎水ポリマーと親水ポリマーとの共重合ポリ
マー等の有機物系のものがある。
Conventionally, A'zOs and ZrSiOs have been used as moisture-sensitive materials whose electrical resistance changes in response to the humidity in the atmosphere.
, MgA 120a , MgCr20s , CrzO
Porous bodies of metal oxides such as a, Fez Os, and T'i 01, electrolyte salts such as LiCl saturated solution, and organic substances such as cellulose and copolymer of hydrophobic and hydrophilic polymers are available. .

また、湿度の変化により電気容量値が変化するものとし
て有機ポリマー+FET型、薄膜A 120、及びTa
、o、−MnO,型感湿体等が開発されている。
In addition, organic polymer + FET type, thin film A 120, and Ta
, o, -MnO type moisture sensitive elements have been developed.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、湿度に感応して抵抗値が変化する金属酸
化物は、熱的、化学的安定性に優れ、多孔質焼結体を容
易に得られるという感温体としての利点を有しているも
のの、湿度変化に対する電気抵抗値変化特性における温
度対湿度の係数が、全温度−湿度領域で変化し、そのた
め温度補正回路が複雑となり精度も悪くなる欠点がある
However, metal oxides whose resistance value changes in response to humidity have the advantage of being excellent in thermal and chemical stability and making it easy to obtain porous sintered bodies. The coefficient of temperature vs. humidity in the electrical resistance value change characteristic with respect to humidity change changes over the entire temperature-humidity region, which has the disadvantage that the temperature correction circuit becomes complicated and accuracy deteriorates.

これに対し電気容量値が湿度に応じて変化する特性をも
つ感温体は、一般に温度対湿度の係数が温度又は湿度に
依存しない利点があるが、主流の有機系材料の感湿体は
経時変化、使用温度等の安定性に欠けている。また、無
機系材料の感湿体はその構造、形状の複雑さの点から製
造等にかなりの工夫を必要とする。
On the other hand, temperature sensitive materials whose capacitance value changes depending on humidity generally have the advantage that the coefficient of temperature vs. humidity does not depend on temperature or humidity, but the mainstream of organic material humidity sensitive materials Lack of stability in terms of changes, operating temperature, etc. Furthermore, a moisture sensitive body made of an inorganic material requires considerable ingenuity in manufacturing due to the complexity of its structure and shape.

この様に従来の材質は各種それぞれに一面における欠点
を有していた。
As described above, each of the conventional materials has some drawbacks.

本発明は上記問題点を解決するためのもので、感湿体の
調製、感湿素子の構成が簡単であり、検出怒度が高く、
温度特性に優れ、経時変化も小さく安定した感湿体を提
供することを目的とる。
The present invention is intended to solve the above-mentioned problems; the preparation of the humidity sensing body and the structure of the humidity sensing element are simple, the detected anger level is high, and
The purpose is to provide a stable moisture sensitive body with excellent temperature characteristics and little change over time.

〔問題点を解決するための手段〕[Means for solving problems]

そのために本発明は、基本組成が (Pbl−x Lax )  (Zr、 Tt+−y 
) l−X/40z 。
For this purpose, the present invention has a basic composition of (Pbl-x Lax) (Zr, Tt+-y
) l-X/40z.

0<X工0.25.0  < y<1 なる強誘電性金属酸化物の焼結体を主成分とする感湿体
を特徴とする。
The present invention is characterized by a moisture sensitive body whose main component is a sintered body of a ferroelectric metal oxide where 0<X0.25.0<y<1.

〔作用〕[Effect]

本発明は、基本組成が (Pbl−x Lag )  (ZryTi+−y )
 +−wya Os、0< x <0.25 、O<、
  <1なる強誘電性金属酸化物を主成分とする仮焼品
及び焼結晶を粉砕し、粉砕して得た感湿体を成形した後
、厚さQ、5m、3m3mmの仮伏に加工し、200〜
800℃で熱処理し、両面に対向電極を構成したサンド
イッ型、感温体を櫛型電極上に構成した表面型、或いは
感温体を一対の電極をもつ容器に充填しその一面を透湿
性膜で包み構成した電極挿入型に形成する。この感湿体
は温度対湿度の係数が全温度−湿度領域で一定であり、
かつ経時変化も小さく安定である。また、ヒステリシス
及び急激な吸湿、脱湿時の応答性も商品化しているもの
に劣らない。
In the present invention, the basic composition is (Pbl-x Lag) (ZryTi+-y)
+-wya Os, 0< x <0.25 , O<,
The calcined products and calcined crystals containing ferroelectric metal oxides of , 200~
A sandwich type heat-treated at 800°C with counter electrodes on both sides, a surface type with a temperature sensing element on a comb-shaped electrode, or a temperature sensing element packed in a container with a pair of electrodes and one side covered with a moisture permeable membrane. It is formed into an electrode insertion type that is wrapped with. The temperature-humidity coefficient of this moisture-sensitive body is constant over the entire temperature-humidity region,
Moreover, the change over time is small and stable. In addition, hysteresis and responsiveness during rapid moisture absorption and dehumidification are comparable to commercially available products.

〔実施例〕〔Example〕

以下、実施例を図面を参照しつつ説明する。 Examples will be described below with reference to the drawings.

第1表に示す割合で酸化鉛、酸化ランタン、酸化ジルコ
ニウム、酸化チタンを配合後、振動ミルを用い粉砕混練
、乾燥、仮焼の操作で感湿体の仮焼品原料が得られる。
After blending lead oxide, lanthanum oxide, zirconium oxide, and titanium oxide in the proportions shown in Table 1, a raw material for a calcined moisture sensitive element is obtained by pulverizing, kneading, drying, and calcining using a vibrating mill.

仮焼品を更に1000kr/−で圧縮成形し、Ol、P
bO雰囲気中、1150℃で20〜40時間常圧焼結す
る。その焼成品を粉砕機を用いて粉砕し、乾燥したもの
を感湿体原料とする。
The calcined product is further compression molded at 1000kr/- to form Ol, P
Normal pressure sintering is performed at 1150° C. for 20 to 40 hours in a bO atmosphere. The fired product is pulverized using a pulverizer, and the dried product is used as a raw material for the moisture sensitive body.

第1表 x=9.)’−65.1  y=35の感湿体原料を圧
縮機により加圧力200kg/cnlで、厚さ0.5m
m、径20龍の成形体を作る。これを3×3flに切出
し第2表に示す条件200℃、400℃、600℃、s
oo℃各2時間熱処理し、感湿体とした。
Table 1 x=9. )'-65.1 y = 35 moisture sensitive material raw material was compressed by a compressor at a pressure of 200 kg/cnl to a thickness of 0.5 m.
A molded body with a diameter of 20 m and a diameter of 20 mm is made. This was cut into 3 x 3 fl under the conditions shown in Table 2: 200°C, 400°C, 600°C, s
The sample was heat-treated at oo°C for 2 hours each to obtain a humidity sensitive body.

第2表 第1図はこのような感湿体に電極とリード線を取り付け
て構成した感湿素子の斜視図で、それぞれ同図(A)は
サンドイッチ型1、同図(B)は表面型、同図(C)は
電極挿入型の感湿素子を示す図である0図中、lは感湿
体、2は電極、3はリード線、4は基板、5は容器、6
は透湿膜であ第1図(A)の感湿素子では、板状に加工
した感湿体lの表面にAuを蒸着して電極を構成してこ
れにリード線3を取り付けている。Au電極2は透湿性
があり、感湿体1は電極2を通して吸湿し、リード線3
を通して電極間容量を測定することにより湿度を測定す
ることができる。
Figure 1 of Table 2 is a perspective view of a humidity sensing element constructed by attaching electrodes and lead wires to such a humidity sensing element, where (A) is the sandwich type 1 and (B) is the surface type. , the same figure (C) is a diagram showing an electrode insertion type moisture sensing element.
In the moisture sensing element shown in FIG. 1(A), Au is vapor-deposited on the surface of a moisture sensing element l processed into a plate shape to form an electrode, to which a lead wire 3 is attached. The Au electrode 2 has moisture permeability, and the moisture sensitive body 1 absorbs moisture through the electrode 2, and the lead wire 3
Humidity can be measured by measuring the capacitance between the electrodes.

第1図(B)の感湿素子では、絶縁体基板4上に櫛型電
極2を形成し、この上に感湿体lを構成する。感湿体1
は直接雰囲気に触れて吸湿し、図(A)の場合と同様に
リード′H3を通して電極間容量を測定することにより
湿度を測定することができる。
In the humidity sensing element shown in FIG. 1(B), a comb-shaped electrode 2 is formed on an insulating substrate 4, and a humidity sensing element 1 is formed thereon. Humidity sensing body 1
directly contacts the atmosphere and absorbs moisture, and the humidity can be measured by measuring the capacitance between the electrodes through the lead 'H3, as in the case of Figure (A).

第1図(C)の感湿素子では、′rM、極2を中に設け
た絶縁性の箱状容器5に感湿体1を充填し、容器5の一
面を透湿性膜6で包んでいる。感湿体1は透湿性膜6を
通して吸湿し、図(A)の場合と同様にリード線3を通
して電極間容量を測定することにより湿度を測定するこ
とができる。
In the moisture-sensitive element shown in FIG. 1(C), a moisture-sensitive element 1 is filled in an insulating box-shaped container 5 in which a pole 2 is provided, and one side of the container 5 is wrapped with a moisture-permeable membrane 6. There is. The moisture sensitive element 1 absorbs moisture through the moisture permeable membrane 6, and the humidity can be measured by measuring the capacitance between the electrodes through the lead wire 3, as in the case of FIG.

第2図はこうして作成した感湿素子の雰囲気温度30℃
、測定周波数IKHzにおける相対湿度O〜90%対電
気容量値の関係を示す。
Figure 2 shows the atmospheric temperature of the moisture-sensitive element created in this way at 30°C.
, shows the relationship between relative humidity 0~90% and capacitance value at a measurement frequency of IKHz.

この図より試料No、1の特性は湿度O〜90%RHに
対応して電気容量値が大きく変化しており、検出感度が
高い。
This figure shows that the characteristics of sample No. 1 are that the capacitance value changes greatly depending on the humidity from 0 to 90% RH, and the detection sensitivity is high.

第3図は相対湿度O〜95%対各電気対量電気容量度θ
%における電気容量との差の対数値の関係を示す。
Figure 3 shows the relative humidity O~95% versus each electrical capacity θ
The relationship between the logarithm of the difference and the capacitance in % is shown.

各試料とも30〜95%の範囲でよい直線性を示してい
る。
Each sample shows good linearity in the range of 30 to 95%.

第4図は試料No、1の20〜90%の各相対湿度にお
ける測定雰囲気温度対電気容量値の関係を示し、第5図
は試料No、1の30〜45℃の各測定雰囲気温度にお
ける相対湿度対電気容量値の関係を示す。
Figure 4 shows the relationship between the measured ambient temperature and capacitance value at each relative humidity of 20 to 90% for sample No. 1, and Figure 5 shows the relationship between the measured ambient temperature and the capacitance value for sample No. 1 at each measured ambient temperature of 30 to 45°C. The relationship between humidity and capacitance value is shown.

第4図、第5図より、得られた直線の傾きが温度又は湿
度により変化しないことが認められ、この感湿体の温度
対湿度の係数が全温度−湿度領域で一定していることが
分かる。その温度係数は6%RH/10℃である。
From Figures 4 and 5, it is recognized that the slope of the obtained straight line does not change depending on temperature or humidity, and the coefficient of temperature versus humidity of this humidity sensor is constant over the entire temperature-humidity region. I understand. Its temperature coefficient is 6%RH/10°C.

第6図は、雰囲気温度30℃での電気容量値の0〜90
%の各相対湿度における経時変化を示す。
Figure 6 shows the capacitance value between 0 and 90 at an ambient temperature of 30°C.
% change over time at each relative humidity.

図より経時変化が小さく安定していることが分かる。ま
た、この感湿体のヒステリシス及び急激な吸湿、脱湿時
の応答性は商品化されている感湿体に劣らない。
The figure shows that the change over time is small and stable. In addition, the hysteresis and responsiveness of this moisture sensitive body during rapid moisture absorption and dehumidification are comparable to those of commercially available moisture sensitive bodies.

試料N002、N013についても試料No、lと同様
に、%RH対log(C−CJの関係の傾きは温度に依
存せず一定であり、温度係数は6%RH,/ 10℃で
ある。また試料N014についても各温度での%RH対
log (CCo)は良い直線性を示し、低温度側で若
干傾きが大きくなる傾向が見られるものの、湿度センサ
としては充分許容できる程度のものである。なお、経時
変化は、全ての試料で3日後に安定となり、その後は殆
ど変化は認められない。
For samples N002 and N013, similarly to samples No. 1, the slope of the relationship between %RH and log (C-CJ is constant regardless of temperature, and the temperature coefficient is 6%RH, / 10℃. Sample No. 014 also shows good linearity in %RH vs. log (CCo) at each temperature, and although there is a tendency for the slope to become slightly larger on the low temperature side, it is sufficiently acceptable as a humidity sensor. Note that the changes over time became stable for all samples after 3 days, and almost no changes were observed after that.

〔比較例〕[Comparative example]

焼結体の比誘電率600程度で、基本組成(Pb+−x
 Lax )  (Zr、 Tit−y ) I−X/
403x = 0. 3’ =0.65. 1− V 
=0.35とx−0゜y =0.35. 1− y =
0.65の場合について、実施例の場合と同様に成形体
を作り、第3表に示すように400℃、600℃各2時
間熱処理して感湿体とし、これに電極Au設けて第1図
(A)のように構成した。
The dielectric constant of the sintered body is about 600, and the basic composition (Pb+-x
Lax) (Zr, Tit-y) I-X/
403x = 0. 3'=0.65. 1-V
=0.35 and x-0°y =0.35. 1-y=
For the case of 0.65, a molded body was made in the same manner as in the example, and as shown in Table 3, heat treated at 400°C and 600°C for 2 hours each to obtain a humidity sensitive body. It was configured as shown in Figure (A).

第3表 * (Pb+−x Lax )  (Zr、 Tit−
y )+−++z4oz実施例と同じく雰囲気温度30
℃、測定周波数1KHzにおけろ相対湿度O〜90%対
電気容量値の関係を第7図に示し、相対湿度対答電気容
量と相対湿度O%における電気容量との差の対数値の関
係を第8図に示す。
Table 3* (Pb+-x Lax) (Zr, Tit-
y) +-++z4oz Same as the example, ambient temperature 30
Figure 7 shows the relationship between the relative humidity 0~90% and the capacitance value at a measurement frequency of 1 KHz at a measurement frequency of 1 KHz, and the relationship between the logarithm of the difference between the relative humidity and the capacitance at a relative humidity of 0%. It is shown in FIG.

第8図に示す関係は、実施例の場合と同様に相対湿度3
0〜95%の範囲で良い直線性を示す。
The relationship shown in FIG.
Good linearity is shown in the range of 0 to 95%.

また、温度対湿度の係数も全温度−湿度領域ではぼ一定
である。しかし、第7図からも分かるように、相対湿度
O%と90%での電気容量値の差は150pF程度で、
実施例の試料No、1.NO,2、No、3の場合の3
00〜500pFに較べるとその差が小さい。そのため
、感度の面が問題になる。
Further, the coefficient of temperature versus humidity is also approximately constant over the entire temperature-humidity region. However, as can be seen from Figure 7, the difference in capacitance between 0% and 90% relative humidity is about 150 pF.
Example sample No. 1. 3 in case of NO, 2, No, 3
The difference is small compared to 00 to 500 pF. Therefore, sensitivity becomes an issue.

このようなことから、(Pb、 LaX)  (Zr、
 Ti) 0、系の感湿体では誘電率の高いものが適し
ている。
From this, (Pb, LaX) (Zr,
For Ti) 0, type moisture sensitive materials, those with a high dielectric constant are suitable.

〔発明の効果〕〔Effect of the invention〕

以上の説明から明らかなように、本発明によれば、惑・
湿体の調製及び感湿素子の構成が容易であり、温度を電
気容量値で検出するタイプの感湿体として、検出感度が
高く、湿度対電気容量値が直線関係を示し、温度対湿度
の係数が全温度−湿度領域で一定しているものが得られ
、従って、温度補正回路等が簡素化され、精度が向上す
る。さらに、経時変化も小さく安定した感湿体となし得
るので、その工業的価値は大なるものである。
As is clear from the above explanation, according to the present invention,
It is easy to prepare the wet body and configure the humidity sensing element, and as a type of humidity sensing body that detects temperature using capacitance, it has high detection sensitivity, shows a linear relationship between humidity and capacitance, and shows a linear relationship between temperature and humidity. It is possible to obtain coefficients that are constant over the entire temperature-humidity region, thus simplifying the temperature correction circuit, etc., and improving accuracy. Furthermore, since it can be made into a stable moisture-sensitive material with little change over time, its industrial value is great.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は感湿素子の斜視図で、同図(A)はサンドイン
チ型1、同図(B)は表面型、同図(C)は電極挿入型
の感湿素子を示す図、第2図は相対温度対電気容量値の
関係を示す図、第3図は相対湿度対答電気容量と相対湿
度O%における電気容量との差の対数値の関係を示す図
、第4図は試料NO,1の20〜90%の各相対湿度に
おける測定雰囲気温度対電気容量値の関係を示す図、第
5図は試料N011の30〜45℃の各測定雰囲気温度
における相対湿度対電気容量値の関係を示す図、第6図
は雰囲気温度30℃での電気容量値の0〜90%の各相
対湿度における経時変化を示す図、第7図は相対湿度O
〜90%対電気容量値の関係を示す図、第8図は相対湿
度対答電気容量と相対湿度O%における電気容量との差
の対数値の関係を示す図である。 1・・・感湿体、2・・・電極、3・・・リード線、4
・・・基板、5・・・容器、6・・・透湿収 出 願 人  品川白煉瓦株式会社 代理人弁理士 蛭 川 昌 信(2名)第1図 <A) (8,) (り 第2図 Iη#湿友C4) 相 ズナ湿力し (7−) 第5図 5、;乙、刀t (’Cン 第+図 招対工度(Z) 第5図 日&(8) 第6図 8汀厘度砿) 和対温Ii(幡) 第8図
Fig. 1 is a perspective view of a humidity sensing element, in which (A) shows a sandwich type 1, (B) shows a surface type, and (C) shows an electrode insertion type moisture sensing element. Figure 2 is a diagram showing the relationship between relative temperature and capacitance value, Figure 3 is a diagram showing the relationship between the logarithm of the difference between the capacitance versus relative humidity and the capacitance at relative humidity 0%, and Figure 4 is a diagram showing the relationship between the relative humidity and the capacitance at 0% relative humidity. Figure 5 shows the relationship between the measured ambient temperature and the capacitance value at each relative humidity of 20 to 90% for sample No. 1. A diagram showing the relationship, Figure 6 is a diagram showing the change over time at each relative humidity of 0 to 90% of the capacitance value at an ambient temperature of 30°C, and Figure 7 is a diagram showing the relative humidity O
FIG. 8 is a diagram showing the relationship between the capacitance value and the relative humidity relative to 90%, and FIG. 1... Humidity sensitive body, 2... Electrode, 3... Lead wire, 4
... Substrate, 5... Container, 6... Moisture permeability collection application Person: Shinagawa Shirorenga Co., Ltd. Representative Patent Attorney Masanobu Hirukawa (2 people) Figure 1<A) (8,) (ri) Fig. 2 Iη# wet friend C4) Phase Zuna wet power (7-) Fig. 5 Figure 6 8 汀厘degree砿) Japanese vs. On Ii (幡) Figure 8

Claims (5)

【特許請求の範囲】[Claims] (1)基本組成が (Pb_1_−_xLa_x)(Zr_yTi_1_−
_y)_1_−_x_/_4O_3、0<x<0.25
、0<y<1 なる強誘電性金属酸化物の焼結体を主成分とする感湿体
(1) The basic composition is (Pb_1_-_xLa_x)(Zr_yTi_1_-
_y)_1_-_x_/_4O_3, 0<x<0.25
, 0<y<1.
(2)前記強誘電性金属酸化物の焼結体の比誘電率が1
000以上である特許請求の範囲第1項記載の感湿体。
(2) The relative dielectric constant of the sintered body of the ferroelectric metal oxide is 1
000 or more, the moisture sensitive body according to claim 1.
(3)前記感湿体は、板状に加工され、その両面に対向
して一対の電極が設けられている特許請求の範囲第1項
記載の感湿体。
(3) The moisture-sensitive body according to claim 1, wherein the moisture-sensitive body is processed into a plate shape, and a pair of electrodes are provided facing each other on both sides of the plate-shaped body.
(4)前記感湿体は、板状に加工され、基板上に形成さ
れた櫛型電極上に設けられている特許請求の範囲第1項
記載の感湿体。
(4) The moisture sensitive body according to claim 1, wherein the moisture sensitive body is processed into a plate shape and is provided on a comb-shaped electrode formed on a substrate.
(5)前記感湿体は、一対の電極を有する容器に充填さ
れ、前記容器の一面は透湿性膜で覆われている特許請求
の範囲第1項記載の感湿体。
(5) The moisture sensitive body according to claim 1, wherein the moisture sensitive body is filled in a container having a pair of electrodes, and one surface of the container is covered with a moisture permeable membrane.
JP61056226A 1986-03-14 1986-03-14 Humidity sensor Granted JPS62216963A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61056226A JPS62216963A (en) 1986-03-14 1986-03-14 Humidity sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61056226A JPS62216963A (en) 1986-03-14 1986-03-14 Humidity sensor

Publications (2)

Publication Number Publication Date
JPS62216963A true JPS62216963A (en) 1987-09-24
JPH0218310B2 JPH0218310B2 (en) 1990-04-25

Family

ID=13021188

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61056226A Granted JPS62216963A (en) 1986-03-14 1986-03-14 Humidity sensor

Country Status (1)

Country Link
JP (1) JPS62216963A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007127612A (en) * 2005-11-07 2007-05-24 Denso Corp Humidity sensor device and its manufacturing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007127612A (en) * 2005-11-07 2007-05-24 Denso Corp Humidity sensor device and its manufacturing method

Also Published As

Publication number Publication date
JPH0218310B2 (en) 1990-04-25

Similar Documents

Publication Publication Date Title
JPH0242429B2 (en)
Nenov et al. Ceramic sensor device materials
US4280115A (en) Humidity sensor
JPS62216963A (en) Humidity sensor
JPS6344701A (en) Moisture-sensitive element
JPH02151753A (en) Laminated structure type humidity sensor element
JPH0378761B2 (en)
WO1991013447A1 (en) Moisture sensor
JP3074968B2 (en) Humidity sensor
JPS6140339B2 (en)
JPS5835901A (en) Moisture sensitive element
JPS6351363B2 (en)
JPS62244102A (en) Humidity sensitive element
JPS6322601B2 (en)
JP2719830B2 (en) Moisture sensitive element
JPS6117945A (en) Humidity element
JPH01196558A (en) Humidity sensor
JP2898730B2 (en) Moisture sensitive element
JPH04132653A (en) Humidity sensor element
JPH0552795A (en) Humidity sensitive element
JPS59142448A (en) Humidity sensor
JPS60251164A (en) Humidity sensitive material
JPS6351364B2 (en)
JPS5856301A (en) Moisture sensitive element
JPS6235058B2 (en)