JPH02151753A - Laminated structure type humidity sensor element - Google Patents

Laminated structure type humidity sensor element

Info

Publication number
JPH02151753A
JPH02151753A JP30561588A JP30561588A JPH02151753A JP H02151753 A JPH02151753 A JP H02151753A JP 30561588 A JP30561588 A JP 30561588A JP 30561588 A JP30561588 A JP 30561588A JP H02151753 A JPH02151753 A JP H02151753A
Authority
JP
Japan
Prior art keywords
humidity
humidity sensor
sensor element
electrode layers
laminated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30561588A
Other languages
Japanese (ja)
Inventor
Kenki Ishizawa
石澤 健喜
Hiroshi Kuroshima
黒島 浩
Susumu Nakayama
享 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinagawa Refractories Co Ltd
Original Assignee
Shinagawa Refractories Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinagawa Refractories Co Ltd filed Critical Shinagawa Refractories Co Ltd
Priority to JP30561588A priority Critical patent/JPH02151753A/en
Publication of JPH02151753A publication Critical patent/JPH02151753A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To simplify a measuring circuit and to impart excellent water resistance to said circuit by laminating an inner electrode layer and a humidity- sensitive layer and further providing an outer electrode. CONSTITUTION:Inner electrode layers 1 and humidity-sensitive layers 3 are alternately laminated to form a multilayer structure and external electrode layers 2 are provided to one sets of the opposed surfaces crossing the laminated surfaces of the formed laminate and the electrode layers 1 are alternately connected to the electrode layers 2. By this constitution, detection sensitivity is enhanced and humidity-to-electrostatic capacity shows excellent linearity. Further, since a temp.-to-humidity coefficient is constant in a usual total temp.- humidity region, a measuring circuit is simplified and reduced in its change with the elapse of time, and stability and excellent water resistance can be imparted to said circuit.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、感湿体層に(Pb、 La)(Zr、 Ti
)Os焼結体を用い、湿度の変化に応じて静電容量が変
化する積層構造型湿度センサ素子に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention provides a moisture sensitive layer containing (Pb, La) (Zr, Ti).
) The present invention relates to a laminated structure humidity sensor element that uses an Os sintered body and whose capacitance changes according to changes in humidity.

〔従来の技術〕[Conventional technology]

従来、雰囲気中の湿度に感応して電気抵抗が変化する温
度センサ素子と、静電容量が変化する温度センサ素子が
ある。そのうち静電容量型湿度センサ素子として、有機
高分子系では酢酸セルロース、酪酸酢酸セルロース、ポ
リイミド等が、また無機系では、薄膜A 1 z03、
TazOs−MnOz等がある。
Conventionally, there are temperature sensor elements whose electrical resistance changes in response to atmospheric humidity and temperature sensor elements whose capacitance changes in response to atmospheric humidity. As capacitive humidity sensor elements, organic polymers include cellulose acetate, cellulose acetate butyrate, polyimide, etc., and inorganic types include thin film A 1 z03,
There are TazOs-MnOz and the like.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来の静電容量型湿度センサ素子は、湿度に感応して静
電容量が変化する測定領域が1〜90pF付近で静電容
量の変化幅が小さく、精度の高い測定が困難なものが多
い。一方、この静電容量の変化幅を解決しようとすると
、湿度センサ素子の構造、形状を複雑にせざるをえず、
製造方法等にかなりの工夫を必要としたり、また強度面
で問題となるものがある。また従来の湿度センサ素子は
全般に経時変化が大きく、耐塩性に乏しいという問題も
ある。
In conventional capacitive humidity sensor elements, the measurement range in which capacitance changes in response to humidity is around 1 to 90 pF, and the range of change in capacitance is small, making it difficult to measure with high precision in many cases. On the other hand, if we try to solve the range of change in capacitance, we have to complicate the structure and shape of the humidity sensor element.
There are some that require considerable ingenuity in manufacturing methods, etc., and that pose problems in terms of strength. Furthermore, conventional humidity sensor elements generally suffer from large changes over time and have poor salt resistance.

本発明はこれらの問題点の解決を目的とすると共に、本
発明者等が先に出願した単層型(Pb、 La)(Zr
、 Ti)Oz系焼結体(特開昭62−216963号
公報)を使用した湿度センサ素子を更に発展させるもの
であって、更に強度があり、かつ検出感度が商い湿度セ
ンサ素子の提供を課題とするものである。
The present invention aims to solve these problems, and also utilizes a single layer type (Pb, La) (Zr
, Ti)Oz-based sintered body (Japanese Unexamined Patent Publication No. 62-216963) is further developed, and the objective is to provide a humidity sensor element that is stronger and has better detection sensitivity. That is.

〔課題を5決するための手段〕 そのために本発明の積層構造型湿度センサ素子は、内部
電極層と感湿体層とを交互に積層して多層構造とし、該
積層体の積層面に直交する一組の対向面に外部電極層を
設けると共に、該対向する外部電極層に前記内部電極層
を交互に接続させたことを特徴とするものであり、また
その感湿体層としては、有機高分子系では酢酸セルロー
ス、酪酸酢酸セルロース、ポリイミド等が、また無機系
では、薄膜A l z03 、TazOs−MnOz等
を使用することができるが、感湿特性の観点から基本組
成(Pb1−XLax ) (Zr、 Tt+−y )
 l−X/40sO<x≦0.25    Q < y
 < 1からなる強誘電性金属酸化物焼結体を使用する
ことが好ましい。
[Means for solving the problems] For this purpose, the laminated structure type humidity sensor element of the present invention has a multilayer structure in which internal electrode layers and moisture sensitive layers are alternately laminated, and a layer that is perpendicular to the laminated surface of the laminated body is provided. It is characterized in that external electrode layers are provided on a pair of opposing surfaces, and the internal electrode layers are alternately connected to the opposing external electrode layers, and the moisture sensitive layer is made of an organic polymer. For molecular systems, cellulose acetate, cellulose acetate butyrate, polyimide, etc. can be used, and for inorganic systems, thin films Al z03, TazOs-MnOz, etc. can be used, but from the viewpoint of moisture sensitivity, the basic composition (Pb1-XLax) ( Zr, Tt+-y)
l-X/40sO<x≦0.25 Q<y
< 1 is preferably used.

また上記基本組成を有する強誘電性金属酸化物焼結体に
は、re、 Si、 Na等を含有していてもいいが、
少なくとも上記基本組成からなる金属酸化物は98%以
上含有させることが望ましい。
Further, the ferroelectric metal oxide sintered body having the above basic composition may contain re, Si, Na, etc.
It is desirable to contain at least 98% or more of the metal oxide having the above basic composition.

感湿体層の積層数は特に限定はないが、湿度センサ素子
として例えば第1図に示すような積層数が少なく、積層
面の面積が広い場合には電極層形成材料としては酸化ル
テニウムペーストの焼付は膜や金、白金等の蒸着膜等の
電極形成時に透湿性を有する導電性材料を電極材料とし
て使用し、積層面からの透湿性を持たせた形状とすると
よく、また第2図に示すように積層数を多くし、積層面
の狭い形状とし、透湿性を外部電極を設けていない積層
体側面に持たせる場合には、電極層形成材料に特に制限
はない。湿度センサ素子の形状は立方体形状が好ましい
が、本発明の要旨を変更しない限り任意の形状を採用す
ることができ、湿度センサ素子の使用形態に応じてその
形状、積層数、積層面の面積、電極層形成材料を適宜選
択しうるちのである。
There is no particular limitation on the number of laminated humidity sensor layers, but if the humidity sensor element has a small number of laminated layers and a large laminated surface area as shown in Figure 1, ruthenium oxide paste may be used as the electrode layer forming material. For baking, it is best to use a conductive material with moisture permeability as the electrode material when forming the electrode, such as a film or a vapor deposited film of gold, platinum, etc., and create a shape that has moisture permeability from the laminated surface. As shown in the figure, when the number of laminated layers is increased, the laminated surface is formed into a narrow shape, and moisture permeability is imparted to the side surface of the laminated body where no external electrode is provided, there is no particular restriction on the electrode layer forming material. The shape of the humidity sensor element is preferably cubic, but any shape can be adopted as long as it does not change the gist of the present invention, and the shape, number of laminated layers, area of the laminated surface, etc. The material for forming the electrode layer can be selected appropriately.

感湿体層、電極層の積層方法としては、成形した感湿体
上にペースト状の電極材料をコーティングし、更に感湿
体を積層していくことにより積層するか、または感湿体
形成材料をバインダーによりペースト状として、ペース
ト状の電極材料と交互にコーティングすることにより積
層することができる。
The method for laminating the humidity sensitive body layer and electrode layer is to coat a molded humidity sensitive body with a paste-like electrode material and then layer the humidity sensitive body, or to stack the humidity sensitive body layer by coating the pasted electrode material on the molded humidity sensitive body, and then stacking the humidity sensitive body layer by coating the pasted electrode material on the molded humidity sensitive body and then laminating the humidity sensitive body layer. It can be made into a paste with a binder and laminated by alternately coating it with a paste electrode material.

このように形成した積層体は積層面方向で圧着させ、そ
の積層体の一組の対向する側面に、内部電極材料と同一
か、または異なってもよい導電性材料により外部電極を
コーティングにより形成し、第1図に示すように対向す
る外部電極層に内部電極層を交互に接続させ、焼成する
ことにより本発明の湿度センサ素子とすることができる
The thus formed laminate is pressed in the direction of the laminated surfaces, and external electrodes are formed on a pair of opposing sides of the laminate by coating with a conductive material that may be the same as or different from the internal electrode material. The humidity sensor element of the present invention can be obtained by alternately connecting internal electrode layers to opposing external electrode layers and firing as shown in FIG.

感湿体層の厚さとしては薄い程よいが、電極間が導通し
ない程度とするとよい。
The thinner the thickness of the moisture sensitive layer is, the better, but it is preferable to set the thickness to such a level that there is no electrical conduction between the electrodes.

〔作用〕[Effect]

本発明の積層構造型湿度センサ素子の静電容量は下式に
より示される。
The capacitance of the laminated structure type humidity sensor element of the present invention is expressed by the following formula.

C=εX ε:感湿体層の比誘電率(吸湿時を含むtn:積層数 S:内部電極面積 dニー層あたりの感湿体層の厚さ 即ち、湿度センサ素子の小型化は絶対的な要件であるた
め、一定容積のもので高い静電容量を得、これにより湿
度変化に対する変化幅を大きくするためには、積層数n
を増加させ、感湿体層の厚さdを薄くシ、更に比誘電率
の高い材料を用いるとよいこととなる。
C = ε Therefore, in order to obtain high capacitance with a constant volume and thereby increase the range of change in response to humidity changes, the number of laminated layers n should be increased.
It is better to increase the temperature, reduce the thickness d of the moisture sensitive layer, and use a material with a high dielectric constant.

本発明は、湿度センサ素子の構造を多層構造とし、感湿
体材料として強誘電性で、かつ感湿体として使用した時
経時変化の非常に小さい金属酸化物である(Pb、 L
a)(Zr、 Ti)03系焼結体を特に使用すること
によって上式を満足させる湿度センサ素子とすることが
できことを見出したものである。
The present invention has a multilayer structure as a humidity sensor element, and uses metal oxides (Pb, L
a) It has been found that a humidity sensor element that satisfies the above formula can be obtained by specifically using a (Zr, Ti)03-based sintered body.

感湿体層が単層の場合には多くの水分を取り込めるよう
に表面積を大きくするために焼成温度を低くせざるを得
す、またそのために強度が不足するという問題点がある
が、本発明のように多層構造とすることにより焼成温度
が低くても強度を確保することができ、また焼成温度を
高くし、表面積が若干小さくなっても実質の電極面積が
大きいために感度幅は広いという利点がある。したがっ
て本発明の湿度センサ素子は、検出感度が高く、製造が
容易で、強度があり、更に経時変化の小さく、かつ耐水
性に優れたものとなしえるものである。
If the moisture sensitive layer is a single layer, the firing temperature must be lowered in order to increase the surface area so that it can take in more moisture, and as a result, the strength is insufficient.However, the present invention By creating a multilayer structure like this, it is possible to ensure strength even at low firing temperatures, and even if the surface area is slightly smaller due to higher firing temperatures, the actual electrode area is large, so the sensitivity range is wide. There are advantages. Therefore, the humidity sensor element of the present invention has high detection sensitivity, is easy to manufacture, has strength, has little change over time, and has excellent water resistance.

以下、図面を参照しつつ実施例を説明する。Examples will be described below with reference to the drawings.

〔実施例1〕 第1図は本発明の積層構造型湿度センサ素子の斜視図、
第2図は本発明の積層構造型湿度センサ素子の他の形態
を示す斜視図、第3図は本発明の積層構造型湿度センサ
素子の、30°Cでの各周波数毎の感湿特性を示す図、
第4図、第5図は20″C130″C,40’Cでの各
相対湿度での静電容量Cと相対湿度0%での静電容量C
0との差の対数値と相対湿度との関係を示す図であり、
図中1は内部電極、2は外部電極、3は感湿体層、4は
リード線を示す。
[Example 1] FIG. 1 is a perspective view of a laminated structure type humidity sensor element of the present invention,
FIG. 2 is a perspective view showing another form of the laminated structure type humidity sensor element of the present invention, and FIG. 3 shows the humidity sensitivity characteristics of the laminated structure type humidity sensor element of the present invention at each frequency at 30°C. The figure shown,
Figures 4 and 5 show the capacitance C at each relative humidity at 20''C, 130''C and 40'C, and the capacitance C at 0% relative humidity.
It is a diagram showing the relationship between the logarithm value of the difference from 0 and relative humidity,
In the figure, 1 is an internal electrode, 2 is an external electrode, 3 is a moisture sensitive layer, and 4 is a lead wire.

出発原料として、PbO、(、at03、Zr0z、、
Ti0zを0.91:0.45:0.64:0.34の
モル比で配合後、振動ミルを使用して混練、乾燥した後
、700°Cで仮焼し、まず仮焼品原料を得た。この仮
焼品原料を更に1000kg/cm2で圧縮成形し、次
いで酸素およびpbo雰囲気中、1150’Cで20〜
40時間常圧焼結させた。尚、pbo雰囲気は上記出発
原料に更に0.06モル多く添加しておくことにより形
成させることができる。
As starting materials, PbO, (, at03, Zr0z, ,
After mixing Ti0z in a molar ratio of 0.91:0.45:0.64:0.34, kneading and drying using a vibration mill, calcining at 700°C, first, the calcined product raw material Obtained. This calcined product raw material was further compression molded at 1000 kg/cm2, and then heated at 1150'C for 20 to 20 minutes in an oxygen and PBO atmosphere.
It was sintered under normal pressure for 40 hours. Incidentally, the pbo atmosphere can be formed by adding 0.06 mol more to the above starting materials.

この焼結晶を粉砕機を用いて粉砕し、乾燥させて感湿体
原料とし、ついでこの感湿体原料をバインダーを使用し
て6X6nu++角、厚さ0.5IIII+の形状に、
200 kg/cm”で加圧成形して成形体とし、次い
で1000’Cで2時間焼成することにより平板状の乾
湿体とした。
This baked crystal is crushed using a crusher and dried to obtain a raw material for a humidity sensitive body, and then this raw material for a humidity sensitive body is shaped into a shape of 6×6nu++ square and 0.5III+ thick using a binder.
A molded body was formed by pressure molding at 200 kg/cm'', and then baked at 1000'C for 2 hours to form a flat plate-shaped wet and dry body.

この焼成品の比表面積について、BET法による窒素吸
着法により、また細孔容積は水銀圧入法により測定し、
その結果を次に示す。
The specific surface area of this fired product was measured by the nitrogen adsorption method using the BET method, and the pore volume was measured by the mercury intrusion method.
The results are shown below.

比表面積     0.50  m”/g細孔容積  
   0.04m1g 尚、焼成体を一旦粉砕後、再焼成すると均一な組成が得
られ、長期間安定した感湿特性を保持しうるちのするこ
とができる。
Specific surface area 0.50 m”/g pore volume
0.04ml/g Note that once the fired product is pulverized and then re-fired, a uniform composition can be obtained, and it is possible to maintain stable moisture sensitivity characteristics for a long period of time.

次いでこの感湿体面に、第1図に示すようにRuO2ペ
ーストを塗布し、その塗布面に更に感湿体を積層するこ
とを繰り返すことにより感湿体層が5層からなる積層体
を組み立て、積層体の上下両面にも4X4+w+++角
で内部電極1を塗布する。尚電極層を形成するにあたっ
ては、第1図に示すように感湿体層全面に塗布せず、対
向する感湿体側面端部まで交互に塗布していく。次いで
この積層体の両側面にRuO□ペーストを塗布すること
により外部電極層2を形成する。このようにして外部電
極層と内部電極層は交互に対向する外部電極層に接続さ
せることができる。
Next, as shown in FIG. 1, RuO2 paste was applied to the surface of the moisture sensitive body, and further moisture sensitive bodies were laminated on the coated surface, which was repeated to assemble a laminate consisting of five moisture sensitive body layers. Internal electrodes 1 are applied to both the upper and lower surfaces of the laminate at a 4×4+w+++ angle. In forming the electrode layer, as shown in FIG. 1, the electrode layer is not coated on the entire surface of the moisture sensitive element layer, but is applied alternately up to the ends of the opposing sides of the moisture sensitive element. Next, external electrode layers 2 are formed by applying RuO□ paste to both sides of this laminate. In this way, the external electrode layers and the internal electrode layers can be alternately connected to opposing external electrode layers.

得られた積層体を積層面から圧着し、850 ’C11
5分間焼成し、最後に外部電極層2にリード線を取りつ
け、本発明の積層構造型湿度センサ素子を作製しうる。
The obtained laminate was crimped from the laminate surface and heated to 850'C11.
After baking for 5 minutes, a lead wire is finally attached to the external electrode layer 2 to produce a laminated structure type humidity sensor element of the present invention.

この素子の感湿特性についての測定結果を第3.4.5
図に示すや まず第3図は30°Cでの100Hz 、IKIIz、
 10Kllz 。
The measurement results regarding the moisture sensitivity characteristics of this element are shown in Section 3.4.5.
Figure 3 shows 100Hz at 30°C, IKIIz,
10Kllz.

100にHzの各周波数毎の感湿特性を示す図であるが
、これによると本発明の湿度センサ素子は通常使用され
るIKIIz等の低周波数の変化幅が大きく実用に適し
ていることがわかり、またその静電容量も相対湿度0%
時での初期値において約1nF以上と高く、静電容量の
変化を容易に測定しうるちのである。
This is a diagram showing the humidity sensitivity characteristics for each frequency of 100 Hz, and it can be seen that the humidity sensor element of the present invention has a large variation range at low frequencies such as IKIIz, which is commonly used, and is suitable for practical use. , and its capacitance is also 0% relative humidity.
The initial value of capacitance is as high as about 1 nF or more, making it easy to measure changes in capacitance.

また第4図はI KHzの周波数、また第5図は10 
KHzの周波数において、それぞれ20°C130°C
140°Cでの相対湿度と、その各相対湿度での静電容
量Cと相対湿度O%での静電容量C,(感湿体の有する
静電容量)との差の対数値との関係を示す図であるが、
本発明の湿度センサ素子は周波数IMHzで測定した場
合30%RH以上で良い直線性が得られ、また周波数1
0KIIzで測定した場合lO%RH以上でよい直線性
が得られることがわかる。また感湿体材料として特に(
Pb、 La)(Zr、 Ti)03系焼結体を使用す
ると各測定温度における相対湿度毎の静電容量の変化幅
(勾配)が等しく、各温度で安定した湿度センサとする
ことができ、またこれにより筒車な固定回路構成により
湿度計を構成することができるものである。尚、温度特
性についてはIKHz 、  10KIIzいずれの場
合も0゜6%RH/’Cであった。
Also, Fig. 4 shows the frequency of I KHz, and Fig. 5 shows the frequency of 10 KHz.
20°C and 130°C respectively at a frequency of KHz
Relationship between relative humidity at 140°C and the logarithm of the difference between the capacitance C at each relative humidity and the capacitance C (capacitance of the humidity sensitive body) at 0% relative humidity This is a diagram showing
The humidity sensor element of the present invention can obtain good linearity at 30% RH or higher when measured at a frequency of 1 MHz, and
It can be seen that when measured at 0KIIz, good linearity can be obtained at 1O%RH or higher. In addition, especially as a moisture-sensitive material (
When a Pb, La) (Zr, Ti) 03-based sintered body is used, the range of change (gradient) in capacitance for each relative humidity at each measurement temperature is the same, making it possible to create a humidity sensor that is stable at each temperature. Moreover, this allows the hygrometer to be configured with a fixed circuit configuration such as an hour wheel. The temperature characteristics were 0°6% RH/'C for both IKHz and 10KIIz.

また本発明の湿度センサ素子は、30→90%RH1ま
た90→30%RHの湿度変化に対して、いずれも2分
以内で応答し、更に水中に60分間浸漬しても感湿特性
が変化しない優れた湿度センサ素子であることも判明し
た。
In addition, the humidity sensor element of the present invention responds to humidity changes from 30 to 90% RH1 and from 90 to 30% RH within 2 minutes, and even when immersed in water for 60 minutes, the humidity sensitivity characteristics change. It was also found that it is an excellent humidity sensor element that does not.

尚第2図に示すように積層数を20とすると共−ストを
使用し上記実施例同様にして湿度センサ素子を作製した
ところ、同様の感湿特性を示した。
As shown in FIG. 2, when the number of laminated layers was set to 20, a humidity sensor element was manufactured using a co-stamp in the same manner as in the above example, and it exhibited similar moisture sensitivity characteristics.

〔比較例〕[Comparative example]

上記実施例と同様の操作により得た感湿体(6×611
I11角、厚さ0. 5+wm)  1枚の上下両面に
Ru0zペーストを4Xb 15分間焼成し、多孔性RuO□電極を形成させた。
A moisture-sensitive body (6 x 611
I11 corner, thickness 0. 5+wm) A Ru0z paste was fired at 4Xb on both the upper and lower surfaces of one sheet for 15 minutes to form a porous RuO□ electrode.

次いで外部電極にリード線を取りつけた後、第3図に図
示した場合と同じ条件で感湿特性を測定した。その結果
を第6図に示す。
Next, after attaching lead wires to the external electrodes, the moisture sensitivity characteristics were measured under the same conditions as shown in FIG. The results are shown in FIG.

第6図かられかるように、単層型湿度センサ素子は本発
明の積層型)易度センサ素子に比較して静電容量が低く
、湿度の変化に対する変化幅も小さい。
As can be seen from FIG. 6, the single-layer humidity sensor element has a lower capacitance than the laminated humidity sensor element of the present invention, and the range of change with respect to changes in humidity is also smaller.

また第4.5図に対応する相対湿度と静電容量との関係
を求めたところ、60%R0以上でしかよい直線性は得
られないことが判明した。
Further, when the relationship between relative humidity and capacitance corresponding to FIG. 4.5 was determined, it was found that good linearity could only be obtained at 60% R0 or more.

(発明の効果〕 本発明は静電容量型湿度センサ素子において、内部電極
層と感湿体層とを交互に積層して多層構造とし、該積層
体の積層面に直交する一組の対向面に外部電極層を設け
ると共に、該対向する外部電極層に前記内部電極層を交
互に接続させた形状とした積層構造型湿度センサ素子と
することにより、検出感度が高く、また湿度対静電容量
が広範囲で優れた直線性を示し、更に温度対湿度係数が
通常の全温度−湿度領域で一定しているために測定回路
の簡素化が図れると共に、経時変化が小さ(、かつ安定
し、また耐水性の優れた湿度センサ素子とすることがで
きるものである。
(Effects of the Invention) The present invention provides a capacitive humidity sensor element in which internal electrode layers and moisture sensitive layers are alternately laminated to form a multilayer structure, and a set of opposing surfaces perpendicular to the laminated surface of the laminated body. By providing a laminated structure humidity sensor element in which an external electrode layer is provided and the internal electrode layers are alternately connected to the opposing external electrode layers, the detection sensitivity is high and the humidity versus capacitance is shows excellent linearity over a wide range, and the temperature vs. humidity coefficient is constant over the entire normal temperature-humidity range, making it possible to simplify the measurement circuit, and to ensure that the change over time is small (and stable). This allows a humidity sensor element with excellent water resistance.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の積層構造型湿度センサ素子の一部切り
欠き斜視図、第2図は本発明の積層構造型湿度センサ素
子の他の形態を示す一部切り欠き斜視図、第3図は本発
明の積層構造型湿度センサ素子の、30°Cでの各周波
数毎の感湿特性を示す図、第4図、第5図は20°C1
30’C140°Cにおける、静電容量Cと相対湿度O
%での静電容量C0との差の対数値と相対湿度との関係
を示す図、第6図は従来の単層型湿度センサ素子の感湿
特性を示す図である。 図中1は内部電極、2は外部電極、3は感湿体層、4は
リード線を示す。 第1図 第2図 出  願  人 品川白煉瓦株式会社 代理人 弁理士 内1)亘彦 (外5名)第3 図 相対湿度’/、RH 第5図 相対温度’/、RH 第4図 相対温度’/、RH オgフ寸5JL& ’/−RH
FIG. 1 is a partially cutaway perspective view of a laminated structure type humidity sensor element of the present invention, FIG. 2 is a partially cutaway perspective view showing another form of the laminated structure type humidity sensor element of the present invention, and FIG. Figures 4 and 5 are diagrams showing the humidity sensitivity characteristics for each frequency at 30°C of the laminated structure humidity sensor element of the present invention, and Figures 4 and 5 are at 20°C.
Capacitance C and relative humidity O at 30'C and 140°C
FIG. 6 is a diagram showing the relationship between the logarithm of the difference from the capacitance C0 in % and the relative humidity, and FIG. 6 is a diagram showing the humidity sensitivity characteristics of a conventional single-layer humidity sensor element. In the figure, 1 is an internal electrode, 2 is an external electrode, 3 is a moisture sensitive layer, and 4 is a lead wire. Figure 1 Figure 2 Applicant Shinagawa White Brick Co., Ltd. Agent Patent Attorney (1) Nobuhiko (5 others) Figure 3 Relative Humidity'/, RH Figure 5 Relative Temperature'/, RH Figure 4 Relative Temperature '/, RH off size 5JL &'/-RH

Claims (2)

【特許請求の範囲】[Claims] (1) 内部電極層と感湿体層とを交互に積層して多層
構造とし、該積層体の積層面に直交する一組の対向面に
外部電極層を設けると共に、該対向する外部電極層に前
記内部電極層を交互に接続させたことを特徴とする積層
構造型湿度センサ素子。
(1) Internal electrode layers and moisture sensitive body layers are alternately laminated to form a multilayer structure, and external electrode layers are provided on a set of opposing surfaces perpendicular to the laminated surfaces of the laminate, and the opposing external electrode layers are provided. A humidity sensor element with a laminated structure, characterized in that the internal electrode layers are alternately connected to the inner electrode layers.
(2) 上記感湿体層が、基本組成 (Pb_1_−_xLa_x)(Zr_yTi_1_−
_y)_1_−_x_/_4O_30<x≦0.25、
0<y<1 の強誘電性金属酸化物焼結体からなる請求項1記載の積
層構造型湿度センサ素子。
(2) The moisture sensitive layer has a basic composition (Pb_1_-_xLa_x) (Zr_yTi_1_-
_y)_1_-_x_/_4O_30<x≦0.25,
The laminated structure type humidity sensor element according to claim 1, comprising a ferroelectric metal oxide sintered body in which 0<y<1.
JP30561588A 1988-12-02 1988-12-02 Laminated structure type humidity sensor element Pending JPH02151753A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30561588A JPH02151753A (en) 1988-12-02 1988-12-02 Laminated structure type humidity sensor element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30561588A JPH02151753A (en) 1988-12-02 1988-12-02 Laminated structure type humidity sensor element

Publications (1)

Publication Number Publication Date
JPH02151753A true JPH02151753A (en) 1990-06-11

Family

ID=17947269

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30561588A Pending JPH02151753A (en) 1988-12-02 1988-12-02 Laminated structure type humidity sensor element

Country Status (1)

Country Link
JP (1) JPH02151753A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013528817A (en) * 2010-06-15 2013-07-11 スリーエム イノベイティブ プロパティズ カンパニー Variable capacitance sensor and manufacturing method thereof
JP2019114736A (en) * 2017-12-26 2019-07-11 株式会社村田製作所 Method for manufacturing three-dimensional wiring board and three-dimensional wiring board

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013528817A (en) * 2010-06-15 2013-07-11 スリーエム イノベイティブ プロパティズ カンパニー Variable capacitance sensor and manufacturing method thereof
US9018060B2 (en) 2010-06-15 2015-04-28 3M Innovative Properties Company Variable capacitance sensors and methods of making the same
JP2019114736A (en) * 2017-12-26 2019-07-11 株式会社村田製作所 Method for manufacturing three-dimensional wiring board and three-dimensional wiring board

Similar Documents

Publication Publication Date Title
JPS6054259B2 (en) Moisture sensitive ceramic
JP7164003B2 (en) Composite sensor
Nenov et al. Ceramic sensor device materials
JPH02151753A (en) Laminated structure type humidity sensor element
JPS62216963A (en) Humidity sensor
JPS6344701A (en) Moisture-sensitive element
JPS6322601B2 (en)
JP3174150B2 (en) Humidity sensor
JPS6218024Y2 (en)
JPS6235058B2 (en)
JPS59142448A (en) Humidity sensor
JPS607350A (en) Humidity sensitive element
JPS6240420Y2 (en)
WO1991013447A1 (en) Moisture sensor
JPS6117945A (en) Humidity element
KR840000260B1 (en) Temperature-responsive element
JPS628501A (en) Moisture sensor and manufacture thereof
JPH0242191B2 (en)
JPS5835901A (en) Moisture sensitive element
JPS63144243A (en) Electrostatic capacity type humidity sensor
JPH0552795A (en) Humidity sensitive element
JPH06112008A (en) Resistor
JPH0113055B2 (en)
JPS60194342A (en) Humidity-sensitive element and its use
JPS6122901B2 (en)