JPS6322601B2 - - Google Patents

Info

Publication number
JPS6322601B2
JPS6322601B2 JP57155600A JP15560082A JPS6322601B2 JP S6322601 B2 JPS6322601 B2 JP S6322601B2 JP 57155600 A JP57155600 A JP 57155600A JP 15560082 A JP15560082 A JP 15560082A JP S6322601 B2 JPS6322601 B2 JP S6322601B2
Authority
JP
Japan
Prior art keywords
moisture
humidity
sensitive resistance
resistance element
zinc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57155600A
Other languages
Japanese (ja)
Other versions
JPS5944801A (en
Inventor
Toshihiko Suzuki
Tomoyuki Yoshida
Noboru Matsui
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP57155600A priority Critical patent/JPS5944801A/en
Publication of JPS5944801A publication Critical patent/JPS5944801A/en
Publication of JPS6322601B2 publication Critical patent/JPS6322601B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Non-Adjustable Resistors (AREA)

Description

【発明の詳細な説明】 本発明は、金属酸化物の焼結体からなり、相対
湿度を電気抵抗の変化として検出する感湿抵抗素
子に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a humidity-sensitive resistance element that is made of a sintered body of metal oxide and detects relative humidity as a change in electrical resistance.

一般に感湿抵抗素子の受感部は、ポリアミド樹
脂、ポリ塩化ビニル、ポリエチレン等の有機高分
子、酸化亜鉛(ZnO)、チタン酸亜鉛(Zn2TiO4
等の金属酸化物を膜状にしたものが知られてい
る。
Generally, the sensing part of a moisture-sensitive resistance element is made of organic polymers such as polyamide resin, polyvinyl chloride, and polyethylene, zinc oxide (ZnO), and zinc titanate (Zn 2 TiO 4 ).
Film-formed metal oxides such as

有機高分子膜は、小型、軽量で応答速度が速い
など、優れた点を有しているが、高温、高湿の雰
囲気では、特性が不安定になる欠点を有する。
Organic polymer membranes have advantages such as small size, light weight, and fast response speed, but have the disadvantage that their characteristics become unstable in high temperature and high humidity environments.

一方、金属酸化物膜は、有機高分子膜よりも化
学的、物理的に比較的安定で、感湿抵抗素子用材
料として有望といわれている。
On the other hand, metal oxide films are chemically and physically relatively stable compared to organic polymer films, and are said to be promising as materials for moisture-sensitive resistance elements.

ところが、通常、ZnOやZn2TiO4等の金属酸化
物は比抵抗が高く、湿度変化による比抵抗変化が
小さく、しかも湿度の上昇時、下降時における湿
度−電気抵抗特性にヒステリシスが存在する。さ
らに、多湿雰囲気での長期安定性に欠けるなどの
欠点があり、そのままでは感湿抵抗素子用材料と
して使用することが困難である。
However, metal oxides such as ZnO and Zn 2 TiO 4 usually have a high resistivity and a small change in resistivity due to changes in humidity, and moreover, there is hysteresis in the humidity-electrical resistance characteristics when the humidity increases and decreases. Furthermore, it has drawbacks such as a lack of long-term stability in a humid atmosphere, and it is difficult to use it as it is as a material for a humidity-sensitive resistance element.

そこで、発明者らは、かかる従来の欠点を克服
することを目的に、研究を重ねた結果、本発明を
なすに至つたのである。
Therefore, the inventors conducted repeated research with the aim of overcoming these conventional drawbacks, and as a result, they came up with the present invention.

本発明にかかる感湿抵抗素子は、安価な金属酸
化物を、従来の磁器製造技術で焼成することによ
り得られるものである。
The moisture-sensitive resistance element according to the present invention is obtained by firing an inexpensive metal oxide using conventional porcelain manufacturing techniques.

すなわち、本発明は感湿能を有する亜鉛酸化物
と四三酸化コバルトの多孔質粉末焼結体からなる
ことを特徴とする感湿抵抗素子にある。
That is, the present invention resides in a moisture-sensitive resistance element comprising a porous powder sintered body of zinc oxide and tricobalt tetroxide that has moisture-sensing ability.

本発明にかかる感湿抵抗素子は、高湿から低湿
までの広い湿度範囲にわたつて、湿度変化による
比抵抗変化が大きく、しかもその比抵抗値が、実
用計測範囲内にあるので、使用しやすい。また、
湿度の上昇時、下降時において、比抵抗−相対湿
度特性にヒステリシスがない等の優れた性質を具
備している。
The humidity-sensitive resistance element according to the present invention has a large change in resistivity due to changes in humidity over a wide humidity range from high humidity to low humidity, and the resistivity value is within the practical measurement range, so it is easy to use. . Also,
It has excellent properties such as no hysteresis in resistivity-relative humidity characteristics when humidity increases or decreases.

以下、本発明をより詳細に説明する。 The present invention will be explained in more detail below.

本発明にかかる感湿抵抗素子は、感湿能を有す
る亜鉛酸化物と四三酸化コバルト(Co3O4)との
混合粉末の焼成物で、気孔率が25〜45%の多孔質
である。該感湿能を有する亜鉛酸化物は、酸化亜
鉛(ZnO)あるいは亜鉛と他の金属との複合酸化
物であり、具体的には、感湿特性を有することで
知られているスピネル型構造を有するチタン酸亜
鉛(Zn2TiO4)、錫酸亜鉛(Zn2SnO4)等である。
The moisture-sensitive resistance element according to the present invention is a fired product of mixed powder of zinc oxide and tricobalt tetroxide (Co 3 O 4 ) having moisture-sensing ability, and is porous with a porosity of 25 to 45%. . The zinc oxide having moisture-sensing ability is zinc oxide (ZnO) or a composite oxide of zinc and other metals, and specifically, it has a spinel-type structure known to have moisture-sensing characteristics. zinc titanate (Zn 2 TiO 4 ), zinc stannate (Zn 2 SnO 4 ), etc.

通常、該亜鉛酸化物は、湿度に対する比抵抗変
化が小さく、しかも、該比抵抗変化にヒステリシ
スを示す性質がある。
Usually, the zinc oxide has a property that the change in resistivity with respect to humidity is small and that the change in resistivity exhibits hysteresis.

一方、Co3O4はスピネル構造を有する安定な物
質である。該Co3O4は、上記亜鉛酸化物の比抵抗
を低下させるとともに、湿度変化に対する比抵抗
変化を大きくする効果を有する。特に、該亜鉛酸
化物中の金属亜鉛とCo3O4中の金属コバルトの混
合割合が(コバルト/亜鉛)のモル比で1〜3の
範囲にある場合には、本発明にかかる感湿抵抗素
子は、0〜100%の相対湿度変化に対して、約100
〜1000倍の比抵抗変化を示す。しかも該感湿抵抗
素子の比抵抗は、通常機器で測定可能な範囲内に
あり、周囲温度に影響されにくい優れた感湿能を
示す。
On the other hand, Co 3 O 4 is a stable substance with a spinel structure. The Co 3 O 4 has the effect of lowering the resistivity of the zinc oxide and increasing the change in resistivity with respect to changes in humidity. In particular, when the mixing ratio of metallic zinc in the zinc oxide and metallic cobalt in Co 3 O 4 is in the range of 1 to 3 in molar ratio (cobalt/zinc), the moisture sensitive resistance according to the present invention can be improved. The element has approximately 100
Shows a ~1000-fold change in resistivity. Moreover, the specific resistance of the humidity-sensitive resistance element is within a range that can be measured with ordinary equipment, and exhibits excellent moisture-sensing ability that is not easily affected by ambient temperature.

さらに、相対湿度の上昇時および下降時におい
て、比抵抗−相対湿度特性にヒステリシスがない
という長所も保有している。
Furthermore, it has the advantage that there is no hysteresis in the resistivity-relative humidity characteristics when the relative humidity increases and decreases.

本発明にかかる感湿抵抗素子は、いわゆる磁器
製造技術により、次のようにして製造することが
できる。まず、原料として、亜鉛酸化物と、
Co3O4とを、所望の割合で混合、粉砕して、粒径
が0.2〜1μの粉末状としたのち、仮成形、仮焼す
る。該仮成形、仮焼の条件としては、得られる焼
成品の取り扱いにおいて、壊れない程度に強く圧
粉し、たとえば700〜800℃の比較的低い温度で、
約1〜2時間加熱するのがよい。
The moisture-sensitive resistance element according to the present invention can be manufactured as follows using a so-called porcelain manufacturing technique. First, as a raw material, zinc oxide and
Co 3 O 4 is mixed in a desired ratio and pulverized to form a powder with a particle size of 0.2 to 1 μm, which is then preformed and calcined. The conditions for the preforming and calcination are as follows: When handling the obtained fired product, the powder is pressed strongly to the extent that it does not break, and at a relatively low temperature of, for example, 700 to 800°C.
It is best to heat it for about 1 to 2 hours.

次に、仮焼して得た成形体をもう一度良く粉砕
して、上記二成分が均一に混合した粉末とし、さ
らに、該粉末を1〜3ton/cm2の圧力で圧粉し、再
び成形体とする。このとき、圧粉しやすくするこ
とと、次の本焼成によつて、該成形体を適度な気
孔を有する多孔質体とするために、加熱によつて
分解、散逸するようなポリビニールアルコール等
を結合剤として加えてもよい。
Next, the compact obtained by calcining is thoroughly ground again to obtain a powder in which the above two components are evenly mixed, and the powder is further compacted at a pressure of 1 to 3 ton/cm 2 to form a compact again. shall be. At this time, in order to make it easier to compact and to make the molded body a porous body with appropriate pores in the next main firing, polyvinyl alcohol, etc., which decomposes and dissipates when heated, etc. may be added as a binder.

その後、該成形体を本焼成して、本発明にかか
る感湿抵抗素子を得る。該本焼成条件としては、
該感湿抵抗素子が、通常の取扱いでも壊れない程
度の機械的強度を有し、しかも湿度に対する応答
性を失なわないような適度の多孔質となる条件が
よい。具体的には、700〜850℃の温度で、1〜2
時間加熱するのがよい。焼成温度が上記範囲より
高いと、得られる感湿抵抗素子の湿度に対する応
答性が低くなる。一方、焼成温度が上記範囲より
低い場合には、出来た焼成体の機械的強度が低
く、取扱いが困難であるとともに感湿抵抗素子と
しての寿命が短かくなる。
Thereafter, the molded body is subjected to main firing to obtain a moisture-sensitive resistance element according to the present invention. The main firing conditions are as follows:
It is preferable that the moisture-sensitive resistance element has sufficient mechanical strength so as not to break even with normal handling, and has a suitable level of porosity so as not to lose its responsiveness to humidity. Specifically, at a temperature of 700 to 850℃, 1 to 2
It is best to heat it for a while. If the firing temperature is higher than the above range, the resulting humidity-sensitive resistance element will have low responsiveness to humidity. On the other hand, if the firing temperature is lower than the above range, the resulting fired body will have low mechanical strength, will be difficult to handle, and will have a short lifespan as a moisture-sensitive resistance element.

なお、上記仮成形、仮焼成の工程を省略して
も、得られる感湿抵抗素子の性能はほとんど変化
しない。
Note that even if the above-mentioned preforming and pre-firing steps are omitted, the performance of the obtained moisture-sensitive resistance element hardly changes.

本発明にかかる感湿抵抗素子の他の製造方法と
して、スピネル構造を有する亜鉛酸化物を本焼成
工程中に生成せしめるとともに、これとCo3O4
の混合焼成体を得る方法も可能である。
As another method for manufacturing the moisture-sensitive resistance element according to the present invention, it is also possible to generate zinc oxide having a spinel structure during the main firing process and obtain a mixed fired body of this and Co 3 O 4 . .

この方法はまず、出発原料として、ZnO、
Co3O4および第族元素の酸化物(MO2)を、
(コバルト/亜鉛)のモル比で1〜3、(M/亜
鉛)のモル比で0.5〜5の範囲内の成分比になる
ように混合、粉砕し、これを、成形、焼成する。
This method first uses ZnO,
Co 3 O 4 and group element oxides (MO 2 ),
The mixture is mixed and ground so that the molar ratio of (cobalt/zinc) is in the range of 1 to 3 and the molar ratio of (M/zinc) is in the range of 0.5 to 5, followed by molding and firing.

こうして得た焼成体は、成形体中のZnOと
MO2とが大気雰囲気中の焼成により複合酸化物
であるZn2MO4となり、本発明にかかる感湿抵抗
素子となる。しかし、成分割合によつては、
MO4を不純物として含有する場合がある。すな
わち、(M/亜鉛)のモル比で約0.5以上の成分割
合の場合である。該モル比が0.5〜5の場合には、
MO2は、感湿抵抗素子の感湿能にほとんど影響
を及ぼさない。該モル比が5を越える場合には、
湿度に対する感度すなわち湿度変化に対する比抵
抗の変化が小さくなる欠点がある。
The fired body obtained in this way is different from the ZnO in the molded body.
MO 2 becomes Zn 2 MO 4 which is a composite oxide by firing in an air atmosphere, and becomes a moisture-sensitive resistance element according to the present invention. However, depending on the ingredient ratio,
May contain MO 4 as an impurity. That is, when the molar ratio (M/zinc) is about 0.5 or more. When the molar ratio is 0.5 to 5,
MO2 has little effect on the moisture sensing ability of the humidity sensitive resistive element. When the molar ratio exceeds 5,
There is a drawback that the sensitivity to humidity, that is, the change in specific resistance with respect to changes in humidity is small.

以下本発明にかかる実施例を説明する。 Examples according to the present invention will be described below.

実施例 1 出発原料として、酸化亜鉛(ZnO)と四三酸化
コバルト(Co3O4)を混合し、(コバルト/亜鉛)
のモル比が1、1.5および3の3種類の混合物を
調製した。それぞれの混合物をよく粉砕したの
ち、圧力1ton/cm2で直径10mm、厚さ1〜2mmの円
板状に仮成形して、温度800℃で2時間仮焼した。
その後、これらを乳鉢、乳棒でよく粉砕し、圧力
1ton/cm2で直径10mm、厚さ1mmの円板状に再成形
した。その後温度800℃で1.5時間大気雰囲気で本
焼成し、成分組成の異なる3種類の本第1発明に
かかる感湿抵抗素子を得た。該素子の気孔率は約
30%前後の多孔質である。
Example 1 As a starting material, zinc oxide (ZnO) and tricobalt tetroxide (Co 3 O 4 ) were mixed and (cobalt/zinc)
Three types of mixtures with molar ratios of 1, 1.5 and 3 were prepared. After thoroughly pulverizing each mixture, it was preformed into a disk shape with a diameter of 10 mm and a thickness of 1 to 2 mm at a pressure of 1 ton/cm 2 and calcined at a temperature of 800° C. for 2 hours.
Then, crush them well with a mortar and pestle, and press
It was remolded into a disk shape with a diameter of 10 mm and a thickness of 1 mm at 1 ton/cm 2 . Thereafter, main firing was carried out at a temperature of 800° C. for 1.5 hours in an air atmosphere to obtain three types of moisture-sensitive resistance elements according to the first invention having different component compositions. The porosity of the element is approximately
It is porous at around 30%.

次に、上記感湿抵抗素子の感湿特性を調べるた
めに、これらの素子の表裏面に、酸化ルテニウム
(RuO2)ペーストを全面に塗布し、これを大気中
で温度800℃に3分間加熱し、電極を焼き付けた。
Next, in order to investigate the moisture-sensitive characteristics of the above-mentioned humidity-sensitive resistance elements, ruthenium oxide (RuO 2 ) paste was applied to the front and back surfaces of these elements, and this was heated in the air to a temperature of 800°C for 3 minutes. and burned the electrode.

さらに、該電極の一部に銀ペーストを焼き付
け、これにリード線を半田付けし、感湿能を測定
できるようにした。
Furthermore, a silver paste was baked on a part of the electrode, and a lead wire was soldered to this, so that the moisture sensitivity could be measured.

感湿能の測定は、これらの素子を恒湿槽に入
れ、リード線を介して、上記電極間に周波数1K
Hz、電圧1ボルト(実効値)の交流を印加して、
行ない、周囲温度25℃における各素子の比抵抗−
相対湿度の関係を求めた。
To measure the moisture sensitivity, place these elements in a humidity chamber and apply a frequency of 1K between the above electrodes via lead wires.
By applying an alternating current of Hz and voltage of 1 volt (effective value),
The specific resistance of each element at an ambient temperature of 25℃
The relationship between relative humidity was determined.

結果を第1図に示す。図中の曲線番号1,2お
よび3は、それぞれ(コバルト/亜鉛)のモル比
が1、1.5および3の素子についての関係である。
これらの結果から各素子の比抵抗は、0〜100%
の相対湿度変化に対して、約100倍変化し、しか
もその抵抗値は、通常の抵抗測定器で測定可能な
範囲内にある。また、上記関係は、加湿、除湿に
おいて、ヒステリシスを示さない。すなわち、本
発明にかかる感湿抵抗素子の成分割合(コバル
ト/亜鉛)が、モル比で1〜3の範囲内にある場
合には、該感湿抵抗素子の比抵抗は、0〜100%
の相対湿度変化に対して約100倍変化し、しかも
ヒステリシスを示さない。
The results are shown in Figure 1. Curve numbers 1, 2, and 3 in the figure are relationships for elements with (cobalt/zinc) molar ratios of 1, 1.5, and 3, respectively.
From these results, the specific resistance of each element is 0 to 100%.
The resistance value changes approximately 100 times as the relative humidity changes, and the resistance value is within the range that can be measured with a normal resistance measuring device. Further, the above relationship does not show hysteresis in humidification and dehumidification. That is, when the component ratio (cobalt/zinc) of the humidity-sensitive resistance element according to the present invention is within the range of 1 to 3 in molar ratio, the specific resistance of the humidity-sensitive resistance element is 0 to 100%.
It changes approximately 100 times with respect to relative humidity changes, and shows no hysteresis.

次に、上記モル比が1.5の感湿抵抗素子につい
て、周囲温度による影響を調べるために、周囲温
度を変えて感湿能を測定した。測定結果を第1図
中の曲線4および5に示した。曲線番号4は、周
囲温度20℃、曲線番号5は周囲温度40℃の場合を
示す。
Next, in order to examine the influence of ambient temperature on the moisture-sensitive resistance element having the molar ratio of 1.5, the moisture-sensing ability was measured while varying the ambient temperature. The measurement results are shown in curves 4 and 5 in FIG. Curve number 4 shows the case where the ambient temperature is 20°C, and curve number 5 shows the case where the ambient temperature is 40°C.

これらの結果から、本発明にかかる感湿抵抗素
子の比抵抗−相対湿度の関係は、周囲温度の影響
をほとんど受けないことがわかる。
These results show that the relationship between specific resistance and relative humidity of the humidity-sensitive resistance element according to the present invention is hardly affected by ambient temperature.

実施例 2 出発原料としてのZnOとCo3O4を、(コバル
ト/亜鉛)のモル比が2となるように秤量混合、
粉砕して、混合物とした。さらに、これを実施例
1と同様に仮成形、仮焼して、本発明における仮
焼成体としたのち、該仮焼成体を再び粉砕して混
合粉末を得た。
Example 2 ZnO and Co 3 O 4 as starting materials were weighed and mixed so that the molar ratio of (cobalt/zinc) was 2.
It was ground into a mixture. Further, this was pre-molded and calcined in the same manner as in Example 1 to obtain a pre-fired body according to the present invention, and then the calcined body was crushed again to obtain a mixed powder.

次に、上記粉末に、酸化チタンを、(チタン/
亜鉛)のモル比が4、1.5、0.7および0.25の割合
になるように混合粉砕して、酸化チタン含有量の
異なる4種類の原料粉末を用意した。このように
して用意した原料粉末を、上記と同様に仮成形、
仮焼、粉砕したのち、直径10mm、厚さ1mmに圧
粉、成形し、原料粉末1種類について、数個ずつ
の成形体を製作した。この場合の成形圧力は
1ton/cm2とした。
Next, titanium oxide (titanium/
Four types of raw material powders with different titanium oxide contents were prepared by mixing and grinding so that the molar ratio of zinc) was 4, 1.5, 0.7, and 0.25. The raw material powder prepared in this way is temporarily molded in the same manner as above.
After calcining and pulverizing, the powder was compacted and molded to a diameter of 10 mm and a thickness of 1 mm, and several molded bodies were produced for each type of raw material powder. The molding pressure in this case is
It was set at 1 ton/ cm2 .

その後、該成形体を850℃の温度で1.5時間保持
の条件で本焼成を行ない、本発明にかかる感湿抵
抗素子を得た。
Thereafter, the molded body was subjected to main firing under conditions of holding the molded body at a temperature of 850° C. for 1.5 hours to obtain a moisture-sensitive resistance element according to the present invention.

本発明にかかる感湿抵抗素子の感湿能を調べる
ために、実施例1と同様の方法で電極の形成、リ
ード線を半田づけした。
In order to investigate the moisture sensing ability of the humidity sensitive resistance element according to the present invention, electrodes were formed and lead wires were soldered in the same manner as in Example 1.

測定結果を第2図に示す。図は比抵抗−相対湿
度特性を示し、図中の各曲線は、それぞれTiO2
量の異なる成分割合についての結果を示す。図中
の曲線6,7,8および9は、それぞれ(チタ
ン/亜鉛)のモル比が4、1.5、0.7および0.25の
場合の測定結果である。この結果から明らかなご
とく、相対湿度が20〜100%の範囲で変化した場
合、感湿抵抗素子の比抵抗は、約1000倍変化する
ことがわかる。また、湿度の上昇および下降時、
上記特性にヒステリシスはなかつた。
The measurement results are shown in Figure 2. The figure shows the resistivity-relative humidity characteristics, and each curve in the figure is TiO 2
The results are shown for different amounts of component proportions. Curves 6, 7, 8 and 9 in the figure are measurement results when the molar ratio (titanium/zinc) is 4, 1.5, 0.7 and 0.25, respectively. As is clear from this result, when the relative humidity changes in the range of 20 to 100%, the specific resistance of the humidity-sensitive resistance element changes about 1000 times. Also, when humidity increases and decreases,
There was no hysteresis in the above characteristics.

実施例 3 原料として、Zn2TiO4とCo3O4を、(コバル
ト/亜鉛)のモル比が0.03、1、1.5、3および
30となるように秤量、混合して、成分割合の異な
る5種類の原料粉末を得た。
Example 3 Zn 2 TiO 4 and Co 3 O 4 were used as raw materials at molar ratios of (cobalt/zinc) of 0.03, 1, 1.5, 3, and
30 and mixed to obtain five types of raw material powders with different component ratios.

該原料粉末を実施例1と同じ方法で成形、焼成
して、5種類の本発明にかかる感湿抵抗素子を製
作した。さらに、Zn2TiO4のみを同様の方法で成
形、焼成して、比較用感湿抵抗素子を製作した。
その後、これらの感湿抵抗素子に、実施例1と同
じ方法で電極形成、リード線付けを行ない、各感
湿抵抗素子の感湿能を測定した。
The raw material powder was molded and fired in the same manner as in Example 1 to produce five types of moisture-sensitive resistance elements according to the present invention. Furthermore, Zn 2 TiO 4 alone was molded and fired in the same manner to produce a comparative humidity-sensitive resistance element.
Thereafter, electrodes were formed and lead wires were attached to these humidity-sensitive resistance elements in the same manner as in Example 1, and the moisture-sensing ability of each humidity-sensitive resistance element was measured.

第3図に測定結果を示す。 Figure 3 shows the measurement results.

図は、比抵抗−相対湿度特性を示し、図中の各
曲線はそれぞれ、成分割合の異なる場合の結果を
示す。図中の曲線10,11,12,13および
14は、それぞれ(コバルト/亜鉛)のモル比が
0.03、1、1.5、3および30の場合についての測
定結果である。
The figure shows resistivity-relative humidity characteristics, and each curve in the figure shows the results for different component ratios. Curves 10, 11, 12, 13 and 14 in the figure each have a molar ratio of (cobalt/zinc).
These are the measurement results for cases of 0.03, 1, 1.5, 3 and 30.

また、曲線番号15,15′は、比較用感湿抵
抗素子についての測定結果である。15は湿度上
昇時、15′は湿度下降時の結果である。
Moreover, curve numbers 15 and 15' are measurement results for comparative humidity-sensitive resistance elements. 15 is the result when the humidity increases, and 15' is the result when the humidity decreases.

これらの結果から明らかなごとく、Zn2TiO4
Co3O4を混合して焼成した感湿抵抗素子は、
Co3O4を添加しないものよりも比抵抗が低下して
いること、および湿度変化に対する比抵抗変化が
大きくなつていることがわかる。また、湿度上昇
時と下降時、上記特性にヒステリシスはなかつ
た。
As is clear from these results, Zn 2 TiO 4 and
Moisture-sensitive resistance elements made by mixing and firing Co3O4 are
It can be seen that the specific resistance is lower than that of the sample without the addition of Co 3 O 4 and that the specific resistance change with respect to humidity changes is large. Furthermore, there was no hysteresis in the above characteristics when the humidity increased or decreased.

【図面の簡単な説明】[Brief explanation of the drawing]

第1ないし第3図は、本発明の実施例にかかる
感湿抵抗素子について測定した比抵抗−相対湿度
特性を示す図である。
1 to 3 are diagrams showing specific resistance-relative humidity characteristics measured for a humidity-sensitive resistance element according to an example of the present invention.

Claims (1)

【特許請求の範囲】 1 感湿能を有する亜鉛酸化物と四三酸化コバル
トの多孔質粉末焼結体からなることを特徴とする
感湿抵抗素子。 2 感湿能を有する亜鉛酸化物は酸化亜鉛
(ZnO)であることを特徴とする特許請求の範囲
第1項に記載の感湿抵抗素子。 3 感湿能を有する亜鉛酸化物は、亜鉛を含み、
スピネル型構造を有する複合酸化物であることを
特徴とする特許請求の範囲第1項に記載の感湿抵
抗素子。 4 感湿能を有する亜鉛酸化物と四三酸化コバル
トとの混合割合は、(コバルト/亜鉛)のモル比
で1〜3の範囲内にあることを特徴とする特許請
求の範囲第1項に記載の感湿抵抗素子。
[Scope of Claims] 1. A moisture-sensitive resistance element comprising a porous powder sintered body of zinc oxide and tricobalt tetroxide that has moisture-sensing ability. 2. The moisture-sensitive resistance element according to claim 1, wherein the zinc oxide having moisture-sensing ability is zinc oxide (ZnO). 3 Zinc oxide with moisture-sensing ability contains zinc,
The moisture-sensitive resistance element according to claim 1, which is a composite oxide having a spinel structure. 4. Claim 1, characterized in that the mixing ratio of zinc oxide having moisture-sensing ability and tricobalt tetroxide is within the range of 1 to 3 in molar ratio (cobalt/zinc). The moisture-sensitive resistance element described above.
JP57155600A 1982-09-06 1982-09-06 Moisture sensitive resistance element Granted JPS5944801A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57155600A JPS5944801A (en) 1982-09-06 1982-09-06 Moisture sensitive resistance element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57155600A JPS5944801A (en) 1982-09-06 1982-09-06 Moisture sensitive resistance element

Publications (2)

Publication Number Publication Date
JPS5944801A JPS5944801A (en) 1984-03-13
JPS6322601B2 true JPS6322601B2 (en) 1988-05-12

Family

ID=15609562

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57155600A Granted JPS5944801A (en) 1982-09-06 1982-09-06 Moisture sensitive resistance element

Country Status (1)

Country Link
JP (1) JPS5944801A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6251801A (en) * 1985-08-31 1987-03-06 Nec Corp Orthogonal polarizer
JP4870938B2 (en) * 2005-03-30 2012-02-08 新コスモス電機株式会社 Manufacturing method of semiconductor gas detection element
CN104237339B (en) * 2014-09-29 2016-09-21 南京理工大学 A kind of Cobalto-cobaltic oxide-zinc oxide/Graphene ternary complex and preparation method thereof

Also Published As

Publication number Publication date
JPS5944801A (en) 1984-03-13

Similar Documents

Publication Publication Date Title
US4357426A (en) Humidity sensitive ceramics
US4677415A (en) Ceramic humidity sensor
US4464647A (en) Humidity sensor made of metal oxide
CA1092251A (en) Ceramic electrical resistor with nonlinear voltage characteristic
JPS6322601B2 (en)
JP3305272B2 (en) Dielectric porcelain material
US4462930A (en) Humidity sensor
WO2004046061A1 (en) Sintered compact for thermistor element, process for producing the same, thermistor element and temperature sensor
KR840000260B1 (en) Temperature-responsive element
JPS5934602A (en) Moisture sensitive resistance element
JPS5965404A (en) Moisture sensitive resistor and method of producing same
JP2573466B2 (en) Voltage non-linear resistor ceramic composition
JPH0218310B2 (en)
JPS5945964A (en) Ceramic resistor material
JP2004172640A (en) Sintered body for thermistor element and its manufacturing method, and temperature sensor
JPH0318721B2 (en)
JPS5835901A (en) Moisture sensitive element
JPH04132653A (en) Humidity sensor element
JPH0773082B2 (en) Method for producing zinc oxide varistor
JPS6041841B2 (en) moisture sensing element
JPH0736008B2 (en) Moisture sensitive element
JPS64346B2 (en)
JPH01166501A (en) Moisture sensor
JPH05264494A (en) Moisture-sensitive element
JPH05144611A (en) Manufacture of zno varistor