JPH0218310B2 - - Google Patents

Info

Publication number
JPH0218310B2
JPH0218310B2 JP61056226A JP5622686A JPH0218310B2 JP H0218310 B2 JPH0218310 B2 JP H0218310B2 JP 61056226 A JP61056226 A JP 61056226A JP 5622686 A JP5622686 A JP 5622686A JP H0218310 B2 JPH0218310 B2 JP H0218310B2
Authority
JP
Japan
Prior art keywords
moisture
humidity
sensitive body
temperature
shows
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61056226A
Other languages
Japanese (ja)
Other versions
JPS62216963A (en
Inventor
Yoshihiko Sadaoka
Yoshiro Sakai
Kenki Ishizawa
Hiroshi Kuroshima
Susumu Nakayama
Masa Kubota
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinagawa Refractories Co Ltd
Original Assignee
Shinagawa Refractories Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinagawa Refractories Co Ltd filed Critical Shinagawa Refractories Co Ltd
Priority to JP61056226A priority Critical patent/JPS62216963A/en
Publication of JPS62216963A publication Critical patent/JPS62216963A/en
Publication of JPH0218310B2 publication Critical patent/JPH0218310B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の用分野〕 本発明は、強誘電性を示す組成領域内(Pb,
La)(Zr,Ti)O3焼結体よりなり、湿度の変化
に応じて電気容量値の変化する感湿体に関するも
のである。 〔従来の技術〕 従来、雰囲気中の湿度に感応して電気抵抗値が
変化する感湿体としてAl2O3、ZrSiO4
MgAl2O4、MgCr2O4、Cr2O4、Fe2O3、TiO2
の金属酸化物の多孔質体やLiCl飽和溶液等の電解
質塩、或いはセルロースや疎水ポリマーと親水ポ
リマーとの共重合ポリマー等の有機物系ものがあ
る。 また、湿度の変化により電気容量値が変化する
ものとして有機ポリマー+FET型、薄膜Al2O3
びTa2O5−MnO2型感湿体等が開発されている。 〔発明が解決しようとする問題点〕 しかしながら、湿度に感応して抵抗値が変化す
る金属酸化物は、熱的、化学的安定性に優れ、多
孔質焼結体を容易に得られるという感湿体として
の利点を有しているものの、湿度変化に対する電
気抵抗値変化特性における温度対湿度の係数が、
全温度−湿度領域で変化し、そのため温度補正回
路が複雑となり精度も悪くなる欠点がある。 これに対し電気容量値が湿度に応じて変化する
特性をもつ感湿体は、一般に温度対湿度の係数が
温度又は湿度に依存しない利点があるが、主流の
有機系材料の感湿体は経時変化、使用温度等の安
定性に欠けている。また、無機系材料の感湿体は
その構造、形状の複雑さの点から製造等にかなり
の工夫を必要とする。 この様に従来の材質は各種それぞれに一面にお
ける欠点を有していた。 発明は上記問題点を解決するためのもので、感
湿体の調製、感湿素子の構成が簡単であり、検出
感度が高く、温度特性に優れ、経時変化も小さく
安定した感湿体を提供することを目的とる。 〔問題点を解決するための手段〕 そのために本発明は、基本組成が (Pb1-xLax)(ZryTi1-y1-x/4O3,0<X≦
0.25,0<y<1 なる強誘電性金属酸化物の焼結体を主成分とする
感湿体を特徴とする。 〔作 用〕 本発明は、基本組成が (Pb1-xLax)(ZryTi1-y1-x/4O3,0<X≦
0.25,0<y<1 なる強誘電性金属酸化物を主成分とする仮焼品及
び焼結品を粉砕し、粉砕して得た感湿体を成形し
た後、厚さ0.5mm,3×3mmの板状に加工し、200
〜800℃で熱処理し、両面に対向電極を構成した
サンドウイチ型、感湿体を櫛型電極上に構成した
表面型、或いは感湿体を一対の電極をもつ容器に
充填しその一面を透湿性膜で包み構成した電極挿
入型に形成する。この感湿体は温度対湿度の係数
が全温度−湿度領域で一定であり、かつ経時変化
も小さく安定である。また、ヒステリシス及び急
激な吸湿、脱湿時の応答性も商品化しているもの
に劣らない。 〔実施例〕 以下、実施例を図面を参照しつつ説明する。 第1表に示す割合で酸化鉛、酸化ランタン、酸
化ジルコニウム、酸化チタンを配合後、振動ミル
を用い粉砕混練、乾燥、仮焼の操作で感湿体の仮
焼品原料が得られる。仮焼品を更に1000Kg/cm2
圧縮成形し、O2、PbO雰囲気中、1150℃で20〜
40時間常圧焼結する。その焼成品を粉砕機を用い
て粉砕し、乾燥したものを感湿体原料とする。
[Industrial field] The present invention is directed to the composition of materials exhibiting ferroelectricity (Pb, Pb,
The present invention relates to a moisture-sensitive body made of a sintered body of La)(Zr,Ti) O3 whose capacitance value changes according to changes in humidity. [Prior Art] Conventionally, Al 2 O 3 , ZrSiO 4 ,
Porous bodies of metal oxides such as MgAl 2 O 4 , MgCr 2 O 4 , Cr 2 O 4 , Fe 2 O 3 , TiO 2 , electrolyte salts such as LiCl saturated solution, or combinations of cellulose and hydrophobic and hydrophilic polymers. There are organic materials such as copolymerized polymers. In addition, organic polymer + FET type, thin film Al 2 O 3 and Ta 2 O 5 -MnO 2 type moisture sensitive elements have been developed as devices whose capacitance changes with changes in humidity. [Problems to be solved by the invention] However, metal oxides whose resistance value changes in response to humidity have excellent thermal and chemical stability, and are moisture-sensitive, meaning that porous sintered bodies can be easily obtained. However, the coefficient of temperature vs. humidity in the electrical resistance change characteristics due to humidity changes is
It changes over the entire temperature-humidity range, which has the disadvantage that the temperature correction circuit becomes complicated and its accuracy deteriorates. On the other hand, a humidity sensitive material whose capacitance value changes depending on humidity generally has the advantage that the coefficient of temperature versus humidity does not depend on temperature or humidity, but the mainstream humidity sensitive materials made of organic materials do not change over time. Lack of stability in terms of changes, operating temperature, etc. Furthermore, a moisture sensitive body made of an inorganic material requires considerable ingenuity in manufacturing due to the complexity of its structure and shape. As described above, each of the conventional materials has some drawbacks. The present invention is intended to solve the above-mentioned problems, and provides a moisture-sensitive element that is simple in preparation of a humidity-sensitive element and structure of a humidity-sensitive element, has high detection sensitivity, has excellent temperature characteristics, and is stable with little change over time. aim to do. [Means for Solving the Problems] To this end, the present invention provides the following basic composition: (Pb 1-x La x ) (Zr y Ti 1-y ) 1-x/4 O 3 ,0<X≦
The present invention is characterized by a moisture sensitive body whose main component is a sintered body of a ferroelectric metal oxide in which 0.25, 0<y<1. [Function] The basic composition of the present invention is (Pb 1-x La x ) ( Zry Ti 1-y ) 1-x/4 O 3 ,0<X≦
0.25, 0<y<1 Calcined and sintered products mainly composed of ferroelectric metal oxides are crushed, and the resulting moisture sensitive body is molded into a 3× 0.5 mm thick Processed into 3mm plate shape, 200
Heat treated at ~800°C, sandwich type with counter electrodes on both sides, surface type with moisture sensing element on comb-shaped electrodes, or moisture sensing element packed in a container with a pair of electrodes and one side of the container is moisture permeable. It is formed into an electrode insertion type that is wrapped in a membrane. This moisture-sensitive body has a constant temperature-humidity coefficient over the entire temperature-humidity range, and is stable with little change over time. In addition, hysteresis and responsiveness during rapid moisture absorption and dehumidification are comparable to commercially available products. [Example] Hereinafter, an example will be described with reference to the drawings. After blending lead oxide, lanthanum oxide, zirconium oxide, and titanium oxide in the proportions shown in Table 1, a raw material for a calcined moisture sensitive element is obtained by pulverizing, kneading, drying, and calcining using a vibrating mill. The calcined product is further compression molded at 1000Kg/cm 2 and heated at 1150℃ for 20 to 20 minutes in an O 2 and PbO atmosphere.
Sinter under normal pressure for 40 hours. The fired product is pulverized using a pulverizer, and the dried product is used as a raw material for the moisture sensitive body.

【表】 x=0.09,y=0.65,1−y=0.35の感湿体原
料を圧縮機により加圧力00Kg/cm2で、厚さ0.5mm、
径20mmの成形体を作る。これを3×3mmに切出し
第2表に示す条件200℃、400℃、600℃、800℃各
2時間熱処理し、感湿体とした。
[Table] The raw material for a moisture sensitive material with x=0.09, y=0.65, 1-y=0.35 was compressed using a compressor at a pressure of 00 kg/cm 2 to a thickness of 0.5 mm.
Make a molded object with a diameter of 20 mm. This was cut into 3 x 3 mm pieces and heat treated at 200°C, 400°C, 600°C and 800°C for 2 hours each under the conditions shown in Table 2 to obtain a moisture sensitive body.

【表】 第1図はこのような感湿体に電極とリード線を
取り付けて構成した感温素子の斜視図で、それぞ
れ同図Aはサンドイツチ型、同図Bは表面型、同
図Cは電極挿入型の感湿素子を示す図である。図
中、1は感湿体、2は電極、3はリード線、4は
基板、5は容器、6は透湿膜である。 第1図Aの感湿素子では、板状に加工した感湿
体1の表面にAuを蒸着して電極を構成してこれ
にリード線3を取り付けている。Au電極2は透
湿性があり、感湿体1は電極2を通して吸湿し、
リード線3を通して電極間容量を測定することに
より湿度を測定することができる。 第1図Bの感湿素子では、絶縁体基板4上に櫛
型電極2を形成し、この上に感湿体1を構成す
る。感湿体1は直接雰囲気に触れて吸湿し、図A
の場合と同様にリード線3を通して電極間容量を
測定することにより湿度を測定することができ
る。 第1図Cの感湿素子では、電極2を中に設けた
絶縁性の箱状容器5に感湿体1を充填し、容器5
の一面を透湿性膜6で包んでいる。感湿体1は透
湿性膜6を通して吸湿し、図Aの場合と同様にリ
ード線3を通して電極間容量を測定することによ
り湿度を測定することができる。 第2図はこうして作成した感湿素子の雰囲気温
度30℃、測定周波数1KHzにおける相対湿度0〜
90%対電気容量値の関係を示す。 この図より試料No.1の特性は湿度0〜90%RH
に対応して電気容量値が大く変化しており、検出
感度が高い。 第3図は相対湿度0〜95%対各電気容量と相対
湿度0%における電気容量との差の対数値の関係
を示す。 各試料とも30〜95%の範囲でよい直線性を示し
ている。 第4図は試料No.1の20〜90%の各相対湿度にお
ける測定雰囲気温度対電気容量値の関係を示し、
第5図は試料No.1の30〜45℃の各測定雰囲気温度
における相対湿度対電気容量値の関係を示す。 第4図、第5図より、得られた直線の傾きが温
度又は湿度により変化しないことが認められ、こ
の感湿体の温度対湿度の係数が全温度−湿度領域
で一定していることが分かる。その温度係数は6
%RH/10℃である。 第6図は、雰囲気温度30℃での電気容量値の0
〜90%の各相対湿度における経時変化を示す。 図より経時変化が小さく安定していることが分
かる。また、この感湿体のヒステリシス及び急激
な吸湿、脱湿時の応答性は商品化されている感湿
体に劣らない。 試料No.2、No.3についても試料No.1と同様に、
%RH対log(C−C0)の関係の傾きは温度に依存
せず一定であり、温度係数は6%RH/10℃であ
る。また試料No.4についても各温度での%RH対
log(C−C0)は良い直線性を示し、低温度側で若
干傾きが大きくなる傾向が見られるものの、湿度
センサとしては充分許容できる程度ものである。
なお、経時変化は、全ての試料で3日後に安定と
なり、その後は殆ど変化は認められない。 〔比較例〕 焼結体の比誘電率600程度で、基本組成 (Pb1-xLax)(ZryTi1-y1-x/4O3 x=0,y=0.65,1−y=0.35とx=0,y
=0.35,1−y=0.65の場合について、実施例の
場合と同様に成形体を作り、第3表に示すように
400℃、600℃各2時間熱処理して感湿体とし、こ
れに電極Au設けて第1図Aのように構成した。
[Table] Figure 1 is a perspective view of a temperature-sensing element constructed by attaching electrodes and lead wires to such a moisture-sensing body. Figure A is a sandwich type, Figure B is a surface type, and Figure C is a surface type. FIG. 2 is a diagram showing an electrode insertion type humidity sensing element. In the figure, 1 is a moisture sensitive body, 2 is an electrode, 3 is a lead wire, 4 is a substrate, 5 is a container, and 6 is a moisture permeable membrane. In the humidity sensing element shown in FIG. 1A, Au is deposited on the surface of a humidity sensing element 1 processed into a plate shape to form an electrode, and a lead wire 3 is attached to the electrode. The Au electrode 2 has moisture permeability, and the moisture sensitive body 1 absorbs moisture through the electrode 2.
Humidity can be measured by measuring the interelectrode capacitance through the lead wire 3. In the humidity sensing element shown in FIG. 1B, a comb-shaped electrode 2 is formed on an insulating substrate 4, and a humidity sensing element 1 is constructed thereon. Moisture sensitive element 1 directly contacts the atmosphere and absorbs moisture, as shown in Figure A.
Humidity can be measured by measuring the capacitance between the electrodes through the lead wire 3 as in the case of . In the humidity sensing element shown in FIG.
One side is covered with a moisture permeable membrane 6. The moisture sensitive element 1 absorbs moisture through the moisture permeable membrane 6, and the humidity can be measured by measuring the capacitance between the electrodes through the lead wire 3 as in the case of FIG. Figure 2 shows the relative humidity of the humidity sensing element created in this way at an ambient temperature of 30℃ and a measurement frequency of 1KHz.
The relationship between 90% and capacitance value is shown. From this figure, the characteristics of sample No. 1 are humidity 0 to 90% RH.
The capacitance value changes greatly in response to the current, and the detection sensitivity is high. FIG. 3 shows the relationship between the relative humidity of 0 and 95% and the logarithmic value of the difference between each capacitance and the capacitance at 0% relative humidity. Each sample shows good linearity in the range of 30-95%. Figure 4 shows the relationship between the measured ambient temperature and the capacitance value at each relative humidity of 20 to 90% for sample No. 1,
FIG. 5 shows the relationship between relative humidity and capacitance value at each measurement ambient temperature of 30 to 45° C. for sample No. 1. From Figures 4 and 5, it is recognized that the slope of the obtained straight line does not change depending on temperature or humidity, and the coefficient of temperature versus humidity of this humidity sensor is constant over the entire temperature-humidity region. I understand. Its temperature coefficient is 6
%RH/10℃. Figure 6 shows the capacitance value of 0 at an ambient temperature of 30°C.
Changes over time at each relative humidity of ~90% are shown. The figure shows that the change over time is small and stable. In addition, the hysteresis and responsiveness of this moisture sensitive body during rapid moisture absorption and dehumidification are comparable to those of commercially available moisture sensitive bodies. As for sample No. 2 and No. 3, similarly to sample No. 1,
The slope of the relationship between %RH and log(C−C 0 ) is constant regardless of temperature, and the temperature coefficient is 6%RH/10°C. Also, for sample No. 4, the %RH vs.
log(C−C 0 ) shows good linearity, and although there is a tendency for the slope to become slightly larger on the low temperature side, it is sufficiently acceptable as a humidity sensor.
Note that the changes over time became stable for all samples after 3 days, and almost no changes were observed after that. [Comparative example] The dielectric constant of the sintered body is about 600, and the basic composition is (Pb 1-x La x ) (Zr y Ti 1-y ) 1-x/4 O 3 x=0, y=0.65, 1- y=0.35 and x=0,y
=0.35, 1-y=0.65, a molded body was made in the same manner as in the example, and as shown in Table 3.
A moisture sensitive body was prepared by heat treatment at 400°C and 600°C for 2 hours each, and an Au electrode was provided on this to form a structure as shown in FIG. 1A.

〔発明の効果〕〔Effect of the invention〕

以上の説明から明らかなように、本発明によれ
ば、感湿体の調製及び感湿素子の構成が容易であ
り、湿度を電気容量値で検出するタイプの感湿体
として、検出感度が高く、湿度対電気容量値が直
線関係を示し、温度対湿度の係数が全温度−湿度
領域で一定しているものが得られ、従つて、温度
補正回路等が簡素化され、精度が向上する。さら
に、経時変化も小さく安定した感湿体となし得る
ので、その工業的価値は大なるものである。
As is clear from the above description, according to the present invention, it is easy to prepare a humidity sensitive body and the structure of a humidity sensitive element is easy, and the detection sensitivity is high as a type of humidity sensitive body that detects humidity using a capacitance value. , the humidity versus capacitance value shows a linear relationship, and the coefficient of temperature versus humidity is constant over the entire temperature-humidity region. Therefore, the temperature correction circuit etc. are simplified and accuracy is improved. Furthermore, since it can be made into a stable moisture-sensitive material with little change over time, its industrial value is great.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は感湿素子の斜視図で、同図Aはサンド
イツチ型、、同図Bは表面型、同図Cは電極挿入
型の感湿素子を示す図、第2図は相対湿度対電気
容量値の関係を示す図、第3図は相対湿度対各電
気容量と相対湿度0%における電気容量との差の
対数値の関係を示す図、第4図は試料No.1の20〜
90%の各相対湿度における測定雰囲気温度対電気
容量値の関係を示す図、第5図は試料No.1の30〜
45℃の各測定雰囲気温度における相対湿度対電気
容量値の関係を示す図、第6図は雰囲気温度30℃
での電気容量値の0〜90%の各相対湿度における
経時変化を示す図、第7図は相対湿度0〜90%対
電気容量値の関係を示す図、第8図は相対湿度対
各電気容量と相対湿度0%における電気容量との
差の対数値の関係を示す図である。 1……感湿体、2……電極、3……リード線、
4……基板、5……容器、6……透湿膜。
Figure 1 is a perspective view of a humidity-sensing element, in which Figure A shows a Sandermansch type, Figure B shows a surface type, Figure C shows an electrode-inserted type humidity sensing element, and Figure 2 shows relative humidity versus electricity. Figure 3 shows the relationship between relative humidity and the logarithm of the difference between each capacitance and the capacitance at 0% relative humidity. Figure 4 shows the relationship between sample No. 1 from 20 to
A diagram showing the relationship between measured ambient temperature and capacitance value at each relative humidity of 90%.
A diagram showing the relationship between relative humidity and capacitance value at each measurement ambient temperature of 45°C.
Fig. 7 shows the relationship between relative humidity 0 - 90% and capacitance value, and Fig. 8 shows the relationship between relative humidity and each electricity. FIG. 3 is a diagram showing the relationship between the logarithmic value of the difference between the capacitance and the electric capacitance at a relative humidity of 0%. 1... Humidity sensitive body, 2... Electrode, 3... Lead wire,
4...Substrate, 5...Container, 6...Moisture permeable membrane.

Claims (1)

【特許請求の範囲】 1 基本組成が (Pb1-xLax)(ZryTi1-y1-x/4O3,0<X≦
0.25,0<y<1 なる強誘電性金属酸化物の焼結体を主成分とする
感湿体。 2 前記強誘電性金属酸化物の焼結体の比誘電率
が1000以上である特許請求の範囲第1項記載の感
湿体。 3 前記感湿体は、板状に加工され、その両面に
対向して一対の電極が設けられている特許請求の
範囲第1項記載の感湿体。 4 前記感湿体は、板状に加工され、基板上に形
成された櫛型電極上に設けられている特許請求の
範囲第1項記載の感湿体。 5 前記感湿体は、一対の電極を有する容器に充
填され、前記容器の一面は透湿性膜で覆われてい
る特許請求の範囲第1項記載の感湿体。
[Claims] 1. Basic composition is (Pb 1-x La x ) (Zr y Ti 1-y ) 1-x/4 O 3 ,0<X≦
A moisture-sensitive body whose main component is a sintered body of a ferroelectric metal oxide where 0.25, 0<y<1. 2. The moisture sensitive body according to claim 1, wherein the sintered body of the ferroelectric metal oxide has a dielectric constant of 1000 or more. 3. The moisture-sensitive body according to claim 1, wherein the moisture-sensitive body is processed into a plate shape, and a pair of electrodes are provided facing each other on both surfaces thereof. 4. The moisture sensitive body according to claim 1, wherein the moisture sensitive body is processed into a plate shape and is provided on a comb-shaped electrode formed on a substrate. 5. The moisture sensitive body according to claim 1, wherein the moisture sensitive body is filled in a container having a pair of electrodes, and one surface of the container is covered with a moisture permeable membrane.
JP61056226A 1986-03-14 1986-03-14 Humidity sensor Granted JPS62216963A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61056226A JPS62216963A (en) 1986-03-14 1986-03-14 Humidity sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61056226A JPS62216963A (en) 1986-03-14 1986-03-14 Humidity sensor

Publications (2)

Publication Number Publication Date
JPS62216963A JPS62216963A (en) 1987-09-24
JPH0218310B2 true JPH0218310B2 (en) 1990-04-25

Family

ID=13021188

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61056226A Granted JPS62216963A (en) 1986-03-14 1986-03-14 Humidity sensor

Country Status (1)

Country Link
JP (1) JPS62216963A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4674529B2 (en) * 2005-11-07 2011-04-20 株式会社デンソー Humidity sensor device and manufacturing method thereof

Also Published As

Publication number Publication date
JPS62216963A (en) 1987-09-24

Similar Documents

Publication Publication Date Title
Nenov et al. Ceramic sensor device materials
US4280115A (en) Humidity sensor
JPH0218310B2 (en)
JPH043081B2 (en)
JPH0378761B2 (en)
KR840000260B1 (en) Temperature-responsive element
JPS6322601B2 (en)
WO1991013447A1 (en) Moisture sensor
JPS6359521B2 (en)
JPS6351363B2 (en)
JPS6235058B2 (en)
JP2959122B2 (en) Moisture sensitive element
JPH0379802B2 (en)
JP2898730B2 (en) Moisture sensitive element
JPH04212049A (en) Moisture-responsive dielectric loss body element
JPH04132653A (en) Humidity sensor element
JPH02151753A (en) Laminated structure type humidity sensor element
JPH0552795A (en) Humidity sensitive element
JPS6351364B2 (en)
JPS6317203B2 (en)
JPS6116935B2 (en)
JPS61245049A (en) Humidity sensor
JPH0237046B2 (en)
JPS6317205B2 (en)
JPS6250778B2 (en)