JP2004172640A - Sintered body for thermistor element and its manufacturing method, and temperature sensor - Google Patents

Sintered body for thermistor element and its manufacturing method, and temperature sensor Download PDF

Info

Publication number
JP2004172640A
JP2004172640A JP2004040668A JP2004040668A JP2004172640A JP 2004172640 A JP2004172640 A JP 2004172640A JP 2004040668 A JP2004040668 A JP 2004040668A JP 2004040668 A JP2004040668 A JP 2004040668A JP 2004172640 A JP2004172640 A JP 2004172640A
Authority
JP
Japan
Prior art keywords
sintered body
moles
thermistor element
temperature
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004040668A
Other languages
Japanese (ja)
Other versions
JP3970851B2 (en
Inventor
Takaaki Chiyousokabe
孝昭 長曽我部
Masaki Iwatani
雅樹 岩谷
Naoki Yamada
直樹 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP2004040668A priority Critical patent/JP3970851B2/en
Publication of JP2004172640A publication Critical patent/JP2004172640A/en
Application granted granted Critical
Publication of JP3970851B2 publication Critical patent/JP3970851B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Thermistors And Varistors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a sintered body for a thermistor element which has excellent temperature detection performance in a wider temperature range of about 100-1,000 °C and in which variations of a resistance value before and after a thermal history are small, and a temperature sensor. <P>SOLUTION: The sintered body for the thermistor element includes Y, Sr, Fe, Mn, Al, Si, and O, and it does not include Cr. When the number of mols of Sr is set as X, the number of the mols of Y as 1-x, the number of the mols of Mn as y, the number of the mols of Al as z, and the number of the mols of Fe as 1-y-z, it is within respective ranges of 0.090≤x≤0.178, 0.090≤y≤0.178, z≥0.275, and 1-y-z≥0.025. <P>COPYRIGHT: (C)2004,JPO

Description

本発明は、広い温度範囲において優れた温度検知性能を有するサーミスタ素子用焼結体及びその製造方法、並びに温度センサに関する。更に詳しくは、上限温度が1000℃程度であり、下限温度が300℃以下、より好ましくは200℃以下、更に好ましくは100℃以下の温度検知が熱履歴に対して安定なサーミスタ素子用焼結体及びその製造方法並びに温度センサに関する。   The present invention relates to a sintered body for a thermistor element having excellent temperature detection performance in a wide temperature range, a method for manufacturing the same, and a temperature sensor. More specifically, the upper limit temperature is about 1000 ° C., and the lower limit temperature is 300 ° C. or lower, more preferably 200 ° C. or lower, and further preferably 100 ° C. or lower. And a method of manufacturing the same, and a temperature sensor.

従来より、電子機器の温度補償や温度を検出する用途において、サーミスタ素子が広く用いられている。サーミスタ素子を温度検出に用いる場合、サーミスタ素子を構成するサーミスタ素子用焼結体に求められる性能としては、B定数が小さいことである。ここでB定数とは、所定の温度範囲に対する抵抗変化を示す指標であり、その値が小さいほど、温度変化に対する抵抗変化が小さいことを意味する。   2. Description of the Related Art Conventionally, a thermistor element has been widely used for temperature compensation and temperature detection of electronic devices. When the thermistor element is used for temperature detection, the required performance of the sintered body for the thermistor element constituting the thermistor element is that the B constant is small. Here, the B constant is an index indicating a resistance change with respect to a predetermined temperature range, and the smaller the value, the smaller the resistance change with respect to the temperature change.

サーミスタ素子用焼結体としては、300〜1000℃の温度領域において安定した抵抗温度特性を示す、(Y,Sr)(Cr,Fe,Ti)Oを主成分とする焼結体が開示されている(例えば、特許文献1等)。この特許文献1に開示されているサーミスタ素子用焼結体の抵抗温度特性は、300℃で約100kΩ、900℃で約80Ωの抵抗値を示し、300〜900℃におけるB定数が約8000Kである。しかし、焼結体の構成元素としてTiを含有するためにB定数が大きくなる傾向にあり、200℃以下の温度では抵抗値はMΩ台と大きく、絶縁抵抗との識別がつかず、温度検知ができない抵抗温度特性となっている。
尚、上記組成を構成する元素の含有割合を変化させることによって、例えば、100℃付近の温度が検知できるように100℃における抵抗値を、絶縁抵抗と識別可能な500kΩ以下とすることも可能ではある。しかし、その場合、1000℃程度の高い温度に繰り返しあるいは長時間連続的に晒されるといったような熱履歴によって、サーミスタ素子(サーミスタ焼結体)の抵抗温度特性の安定性が損なわれる傾向にある。また、構成成分であるCr元素は揮発しやすいため、その揮発量の多少により素子の抵抗温度特性がばらつくといった問題点があった。
As a sintered body for a thermistor element, a sintered body containing (Y, Sr) (Cr, Fe, Ti) O 3 as a main component, which shows stable resistance temperature characteristics in a temperature range of 300 to 1000 ° C., is disclosed. (For example, Patent Document 1 etc.). The resistance temperature characteristics of the sintered body for a thermistor element disclosed in Patent Document 1 show a resistance value of about 100 kΩ at 300 ° C. and about 80 Ω at 900 ° C., and a B constant at 300 to 900 ° C. of about 8000 K. . However, since the sintered body contains Ti as a constituent element, the B constant tends to be large. At a temperature of 200 ° C. or less, the resistance value is as large as MΩ, and it cannot be distinguished from the insulation resistance. The resistance-temperature characteristics cannot be achieved.
Incidentally, by changing the content ratio of the elements constituting the above composition, for example, the resistance value at 100 ° C. can be set to 500 kΩ or less which can be distinguished from the insulation resistance so that a temperature around 100 ° C. can be detected. is there. However, in this case, the stability of the resistance-temperature characteristics of the thermistor element (thermistor sintered body) tends to be impaired by a thermal history such as being repeatedly exposed to a high temperature of about 1000 ° C. or continuously for a long time. In addition, since the Cr element, which is a constituent component, is easily volatilized, there is a problem that the resistance temperature characteristics of the element vary depending on the amount of volatilization.

このように、300℃以下の温度検知性能を有し、好ましくは100〜1000℃程度の温度範囲において優れた温度検知性能を有し、熱履歴の前後において抵抗値の変化の小さいサーミスタ素子用焼結体が求められている。   Thus, it has a temperature detection performance of 300 ° C. or less, preferably has an excellent temperature detection performance in a temperature range of about 100 to 1000 ° C., and has a small change in resistance before and after the heat history. Unity is required.

特許第3254595号公報Japanese Patent No. 3254595

本発明は上記従来の問題点を解決するものであり、300℃以下の温度検知性能を有し、好ましくは100℃付近から1000℃程度までの温度検知可能な特性を有し、熱履歴の前後において抵抗値の変化の小さいサーミスタ素子用焼結体及びその製造方法並びに温度センサを提供することを目的とする。   The present invention solves the above-mentioned conventional problems, has a temperature detection performance of 300 ° C. or lower, preferably has a temperature detectable characteristic from about 100 ° C. to about 1000 ° C., and before and after the heat history. It is an object of the present invention to provide a sintered body for a thermistor element having a small change in resistance value, a method for manufacturing the same, and a temperature sensor.

本発明は以下の通りである。
[1] Sr、Y、Mn、Al、Fe、Si及びOを含有し、Crを含有しないサーミスタ素子用焼結体であって、
Srのモル数をx、Yのモル数を1−x、Mnのモル数をy、Alのモル数をz、Feのモル数を1−y−zとすると、0.090≦x≦0.178、0.090≦y≦0.178、z≧0.275、1−y−z≧0.025の各範囲にあることを特徴とするサーミスタ素子用焼結体。
[2] Sr、Y、Mn、Al及びFeの各元素を含む各原料粉末を混合し、仮焼して仮焼粉末とし、その後、該仮焼粉末と焼結助剤とを混合したサーミスタ合成粉末を成形し、次いで、得られた成形体を焼成することにより、Srのモル数をx、Yのモル数を1−x、Mnのモル数をy、Alのモル数をz、Feのモル数を1−y−zとした場合、0.090≦x≦0.178、0.090≦y≦0.178、z≧0.275、1−y−z≧0.025の各範囲にあるサーミスタ素子用焼結体を得ることを特徴とするサーミスタ素子用焼結体の製造方法。
[3] 上記[1]に記載のサーミスタ素子用焼結体を用いてなることを特徴とする温度センサ。
The present invention is as follows.
[1] A sintered body for a thermistor element containing Sr, Y, Mn, Al, Fe, Si and O and not containing Cr,
If the number of moles of Sr is x, the number of moles of Y is 1-x, the number of moles of Mn is y, the number of moles of Al is z, and the number of moles of Fe is 1-yz, 0.090 ≦ x ≦ 0 .178, 0.090 ≦ y ≦ 0.178, z ≧ 0.275, 1−yz ≧ 0.025 in each range.
[2] Thermistor synthesis in which each raw material powder containing each element of Sr, Y, Mn, Al and Fe is mixed and calcined to form a calcined powder, and then the calcined powder is mixed with a sintering aid. The powder is molded, and then the obtained molded body is fired, so that the number of moles of Sr is x, the number of moles of Y is 1-x, the number of moles of Mn is y, the number of moles of Al is z, and the number of moles of Fe is When the number of moles is 1-yz, each range of 0.090 ≦ x ≦ 0.178, 0.090 ≦ y ≦ 0.178, z ≧ 0.275, 1−yz ≧ 0.025 A method for producing a sintered body for a thermistor element, characterized by obtaining the sintered body for a thermistor element according to claim 1.
[3] A temperature sensor comprising the sintered body for a thermistor element according to [1].

本発明のサーミスタ素子用焼結体によれば、所定の元素(Y、Sr、Fe、Mn、Al、Si及びO)を含有する焼結体は、広い温度範囲において優れた温度検知性能を発揮することができ、熱履歴に対する抵抗変化を小さくすることができる。
また、構成元素を、更に限定された範囲内に設定することにより、従来(300℃以上)よりも低い温度(300℃未満、100℃付近まで)で使用可能で、熱履歴に対する抵抗変化が小さいサーミスタ素子用焼結体とすることができる。
本発明のサーミスタ素子用焼結体の製造方法によれば、サーミスタ素子用焼結体を効率良く製造することができる。
本発明のサーミスタ素子用焼結体を用いて得られる温度センサによれば、広い温度範囲において優れた温度検知性能を有するものとして有用である。
According to the sintered body for a thermistor element of the present invention, a sintered body containing a predetermined element (Y, Sr, Fe, Mn, Al, Si and O) exhibits excellent temperature detection performance in a wide temperature range. And a change in resistance with respect to the heat history can be reduced.
Further, by setting the constituent elements within a further limited range, it can be used at a lower temperature (less than 300 ° C. and up to around 100 ° C.) than the conventional (300 ° C. or more) and has a small resistance change with respect to the thermal history. It can be a sintered body for a thermistor element.
According to the method for producing a sintered body for a thermistor element of the present invention, a sintered body for a thermistor element can be produced efficiently.
According to the temperature sensor obtained by using the sintered body for a thermistor element of the present invention, the temperature sensor is useful as having excellent temperature detection performance in a wide temperature range.

以下、本発明を詳しく説明する。
本発明のサーミスタ素子用焼結体は、Sr、Y、Mn、Al、Fe、Si及びOを含有し、Crを含有しないサーミスタ素子用焼結体であって、Srのモル数をx、Yのモル数を1−x、Mnのモル数をy、Alのモル数をz、Feのモル数を1−y−zとすると、0.090≦x≦0.178、0.090≦y≦0.178、z≧0.275、1−y−z≧0.025の各範囲にあることを特徴とする。
つまり、本発明のサーミスタ素子用焼結体は、Ti元素、揮発し易いCr元素を含有しない構成であるため、B定数を小さくすることができ、且つ量産した場合にサーミスタ素子用焼結体(ひいてはサーミスタ素子)の抵抗温度特性のばらつきを抑制することができる。その結果、100℃付近から温度検知可能な特性を有し、熱履歴の前後において抵抗値の変化の小さいサーミスタ素子用焼結体とすることができる。尚、Cr元素、Ti元素は、全く含有されないことが望ましいが、製造に用いる原料に不純物として含まれる場合や製造時に混入される場合等で不可避的に含まれることがある。そのため、サーミスタ焼結体をEDSによる面分析(例えば、日本電子社製走査型電子顕微鏡「JED−2110型」を用いて加速電圧20kVで測定した場合)で実施したときにCr元素、Ti元素が検出されなければ、本明細書において「含有しない」ものと定義する。
Hereinafter, the present invention will be described in detail.
The sintered body for a thermistor element according to the present invention is a sintered body for a thermistor element containing Sr, Y, Mn, Al, Fe, Si and O and not containing Cr, wherein the number of moles of Sr is x, Y If the number of moles is 1-x, the number of moles of Mn is y, the number of moles of Al is z, and the number of moles of Fe is 1-yz, 0.090 ≦ x ≦ 0.178, 0.090 ≦ y ≦ 0.178, z ≧ 0.275, 1−yz ≧ 0.025.
That is, since the sintered body for a thermistor element of the present invention does not contain the Ti element and the Cr element which is easily volatilized, the B constant can be reduced, and the sintered body for the thermistor element ( As a result, it is possible to suppress variations in the resistance temperature characteristics of the thermistor element). As a result, it is possible to obtain a sintered body for a thermistor element having a characteristic capable of detecting a temperature from around 100 ° C. and having a small change in resistance before and after the heat history. It is desirable that the Cr element and the Ti element are not contained at all, but they may be inevitably contained when they are contained as impurities in the raw materials used for production or when they are mixed during production. For this reason, when the thermistor sintered body is subjected to surface analysis by EDS (for example, when measured at an accelerating voltage of 20 kV using a scanning electron microscope “JED-2110” manufactured by JEOL Ltd.), the Cr element and the Ti element If not detected, it is defined herein as "not containing".

本発明のサーミスタ素子用焼結体を構成する元素の好ましい組成は、Srのモル数をx、Yのモル数を1−x、Mnのモル数をy、Alのモル数をz、Feのモル数を1−y−zとすると、0.090≦x≦0.178、0.090≦y≦0.178、z≧0.275、1−y−z≧0.025であり、好ましくは、0.095≦x≦0.175、0.095≦y≦0.175、z≧0.291、1−y−z≧0.040であり、より好ましくは、0.126≦x≦0.166、0.126≦y≦0.166、z≧0.494、1−y−z≧0.080である。尚、Siの含有割合(モル数)は特に限定されないが、通常、酸化物換算にて1〜25mol%である。x<0.090且つy<0.090では、100℃における初期抵抗が大きくなり、絶縁に近い状態となり、一方、x>0.178且つy>0.178では、素子の内部が空隙の多い組織となり導電特性を阻害し、特性が不安定になる傾向にある。また、z<0.275では、素子の結晶粒子が粒成長して大きくなり過ぎて、初期抵抗のばらつきが大きくなる傾向を示す。1−y−z<0.025では、熱履歴に対して抵抗変化が大きくなる傾向がある。   The preferred composition of the elements constituting the sintered body for a thermistor element of the present invention is such that the number of moles of Sr is x, the number of moles of Y is 1-x, the number of moles of Mn is y, the number of moles of Al is z, and the number of moles of Fe is When the number of moles is 1-yz, 0.090 ≦ x ≦ 0.178, 0.090 ≦ y ≦ 0.178, z ≧ 0.275, 1−yz ≧ 0.025, and is preferable. Is 0.095 ≦ x ≦ 0.175, 0.095 ≦ y ≦ 0.175, z ≧ 0.291, 1−yz ≧ 0.040, and more preferably 0.126 ≦ x ≦ 0.166, 0.126 ≦ y ≦ 0.166, z ≧ 0.494, and 1−yz ≧ 0.080. The content ratio (number of moles) of Si is not particularly limited, but is usually 1 to 25 mol% in terms of oxide. When x <0.090 and y <0.090, the initial resistance at 100 ° C. becomes large, and the state becomes close to insulation. On the other hand, when x> 0.178 and y> 0.178, the inside of the element has many voids. It tends to become a tissue, impairing the conductive properties and making the properties unstable. If z <0.275, the crystal grains of the device tend to grow too large due to grain growth, and the initial resistance tends to vary widely. When 1−yz <0.025, the resistance change with respect to the thermal history tends to increase.

本発明のサーミスタ素子用焼結体の製造方法は、Sr、Y、Mn、Al及びFeの各元素を含む各原料粉末を混合し、仮焼して仮焼粉末とし、その後、該仮焼粉末と焼結助剤とを混合したサーミスタ合成粉末を成形し、次いで、得られた成形体を焼成することにより、Srのモル数をx、Yのモル数を1−x、Mnのモル数をy、Alのモル数をz、Feのモル数を1−y−zとした場合、0.090≦x≦0.178、0.090≦y≦0.178、z≧0.275、1−y−z≧0.025の各範囲にあるサーミスタ素子用焼結体を得るものである。
即ち、Y、Sr、Fe、Mn及びAlの各元素を含む化合物から計算される各元素のモル数を考慮して原料粉末の組成を決定し、サーミスタ素子用焼結体を製造することができる。
The method for producing a sintered body for a thermistor element according to the present invention comprises mixing raw material powders containing elements of Sr, Y, Mn, Al and Fe, and calcining the mixture to form a calcined powder. And a sintering aid are mixed to form a thermistor synthetic powder, and then the obtained molded body is fired, whereby the number of moles of Sr is x, the number of moles of Y is 1-x, and the number of moles of Mn is When the number of moles of y and Al is z and the number of moles of Fe is 1-yz, 0.090 ≦ x ≦ 0.178, 0.090 ≦ y ≦ 0.178, z ≧ 0.275, It is intended to obtain a sintered body for a thermistor element having a range of -yz ≧ 0.025.
That is, the composition of the raw material powder is determined in consideration of the number of moles of each element calculated from the compound containing each element of Y, Sr, Fe, Mn, and Al, and a sintered body for a thermistor element can be manufactured. .

まず、出発原料としての原料粉末、即ち、Y、Sr、Fe、Mn及びAlの各元素を含む各化合物、例えば酸化物、水酸化物、炭酸塩、硫酸塩、硝酸塩等の粉末、好ましくは酸化物あるいは炭酸塩の粉末を、湿式混合等の方法で混合、乾燥した後、仮焼した後、仮焼粉末とする。その後、この仮焼粉末と焼結助剤とを混合し、粉砕して「サーミスタ合成粉末」を得る。尚、硫酸塩、硝酸塩を用いる場合には、水に溶解・混合した後に、加熱・重合し、乾燥させたものを仮焼して仮焼粉末とする手法が採用される。   First, a raw material powder as a starting material, that is, a compound containing each element of Y, Sr, Fe, Mn and Al, for example, a powder of an oxide, a hydroxide, a carbonate, a sulfate, a nitrate, etc., preferably an oxidized powder The product or carbonate powder is mixed and wet-mixed, dried, calcined, and then calcined. Thereafter, the calcined powder and the sintering aid are mixed and pulverized to obtain a “thermistor synthetic powder”. In the case of using a sulfate or a nitrate, a method of dissolving and mixing in water, heating, polymerizing and drying, and calcining the resultant to form a calcined powder is employed.

上記焼結助剤としては、Si元素を含むものを用いるものとし、例えば、SiO、CaSiO、SrSiO等が挙げられる。これらのうち、SiOが好ましい。また、これらは1種単独であるいは2種以上を組み合わせて用いることができる。このSi元素を含む焼結助剤の配合量は、仮焼粉末全体を100質量部とした場合、通常、0.3〜10質量部、好ましくは0.3〜5質量部、更に好ましくは0.3〜3質量部である。かかる範囲とすることにより、低温による焼成が可能となり、強度が大きく、高温安定性に優れた素子用焼結体とすることができる。 As the sintering aid, one containing a Si element is used, and examples thereof include SiO 2 , CaSiO 3 , and SrSiO 3 . Of these, SiO 2 is preferred. These can be used alone or in combination of two or more. The amount of the sintering aid containing the Si element is usually 0.3 to 10 parts by mass, preferably 0.3 to 5 parts by mass, more preferably 0 to 100 parts by mass when the entire calcined powder is 100 parts by mass. 0.3 to 3 parts by mass. By setting the content within such a range, firing at a low temperature becomes possible, and a sintered body for an element having high strength and excellent high-temperature stability can be obtained.

また、サーミスタ素子用焼結体を形成するために必要な上記原料粉末及び焼結助剤粉末の平均粒子径は特に限定されないが、通常、0.5〜2.0μm、好ましくは0.5〜1.5μmである。粒子径が大きすぎると均一に混合されないことがあり、サーミスタ素子特性のばらつきが大きくなる要因となる。   Further, the average particle diameter of the raw material powder and the sintering aid powder required to form the sintered body for thermistor element is not particularly limited, but is usually 0.5 to 2.0 μm, preferably 0.5 to 2.0 μm. 1.5 μm. If the particle size is too large, the particles may not be uniformly mixed, which may cause a large variation in the thermistor element characteristics.

また、仮焼粉末に少なくともSi元素を含む焼結助剤を混合し、粉砕することで得られるサーミスタ合成粉末は、更にバインダー及び溶剤又は水と混合される。バインダーとしては特に限定されず、例えば、ポリビニルアルコール、ポリビニルブチラール等が挙げられる。上記バインダーの配合量は、上記粉末成分全量に対して、通常、5〜20質量%、好ましくは10〜20質量%である。尚、上記バインダーと混合する際の上記サーミスタ合成粉末の平均粒子径は、2.0μm以下であることが好ましく、これによって、均一に混合することができる。   The thermistor synthetic powder obtained by mixing the calcined powder with a sintering aid containing at least Si element and pulverizing the mixture is further mixed with a binder and a solvent or water. The binder is not particularly limited, and examples thereof include polyvinyl alcohol and polyvinyl butyral. The amount of the binder is usually 5 to 20% by mass, and preferably 10 to 20% by mass, based on the total amount of the powder components. The average particle size of the thermistor synthetic powder when mixed with the binder is preferably 2.0 μm or less, whereby the powder can be uniformly mixed.

次いで、これらの混合物を乾燥、造粒して金型プレス成形に適した流動性の良好な成形用粉末を得る。そして、この成形用粉末を用いて、所定の形状に成形する。その後、この成形体を焼成することにより、サーミスタ素子用焼結体を得ることができる。焼成条件は特に限定されないが、好ましい温度は1400〜1700℃、より好ましくは1400〜1650℃、更に好ましくは1400〜1600℃である。かかる範囲とすることにより、著しい結晶粒成長を抑制することができ、特性のばらつきを低減することができる。焼成時間は、通常、1〜5時間、好ましくは1〜2時間である。また、焼成雰囲気は特に限定されないが、通常、大気である。   Then, the mixture is dried and granulated to obtain a molding powder having good fluidity suitable for die press molding. Then, using the molding powder, a predetermined shape is formed. Thereafter, the molded body is fired to obtain a sintered body for a thermistor element. The firing conditions are not particularly limited, but the preferred temperature is 1400 to 1700 ° C, more preferably 1400 to 1650 ° C, and still more preferably 1400 to 1600 ° C. With such a range, remarkable crystal grain growth can be suppressed, and variation in characteristics can be reduced. The firing time is usually 1 to 5 hours, preferably 1 to 2 hours. The firing atmosphere is not particularly limited, but is usually air.

また、上記成形用粉末を用いて、サーミスタ素子とする場合には、この成形用粉末及び一対の電極(この電極を構成する材料としては、耐熱性に優れたPt、Pt/Rh合金等が好ましい。)を用いて、所定の形状に成形する。その後、この一体化した成形体を焼成することにより、サーミスタ素子を得ることができる。焼成温度等は上記と同様であり、かかる範囲とすることにより、電極を構成する材料の劣化を抑制することもできる。
上記焼成は、サヤ内に素子を敷き詰めて蓋をして行うことで、特定成分の揮発を抑制することができ、また、Pt、Pt/Rh合金等の材料からなる板をサヤの底に敷いたり、焼結体と同じ材質からなるサヤを使用する等によってサヤへの成分の拡散を防止することができる。
In the case where a thermistor element is formed using the molding powder, the molding powder and a pair of electrodes (Pt, Pt / Rh alloy, etc., which are excellent in heat resistance, are preferable as a material constituting the electrodes). )) To form a predetermined shape. Thereafter, by firing this integrated molded body, a thermistor element can be obtained. The firing temperature and the like are the same as those described above. By setting the firing temperature in the above range, deterioration of the material constituting the electrode can be suppressed.
The above-mentioned baking can be performed by laying the elements in the sheath and covering with a lid, thereby suppressing volatilization of a specific component. In addition, a plate made of a material such as Pt or Pt / Rh alloy is spread on the bottom of the sheath. The use of a sheath made of the same material as that of the sintered body can prevent the diffusion of components into the sheath.

本発明のサーミスタ素子用焼結体あるいは上記サーミスタ素子は、上記焼成の後、必要に応じて、更に熱処理を行うことができる。その条件としては、例えば、800〜1100℃、好ましくは850〜1100℃、更に好ましくは900〜1100℃の温度で、30時間以上、好ましくは100時間以上、更に好ましくは200時間以上である。かかる温度及び処理時間で熱処理を行うことにより、サーミスタ素子用焼結体の抵抗温度特性を更に安定化することができる。また、熱処理を行う場合の雰囲気は、大気雰囲気でも、大気以外の特別な雰囲気でもよい。更に、上記焼成処理を終えてからこの熱処理を行うまでの時間についても特に限定はなく、焼結体の温度が室温まで低下した後に行うことが好ましい。   The sintered body for a thermistor element of the present invention or the above-mentioned thermistor element can be further subjected to a heat treatment as necessary after the above-mentioned firing. The conditions are, for example, a temperature of 800 to 1100 ° C., preferably 850 to 1100 ° C., more preferably 900 to 1100 ° C., for 30 hours or more, preferably 100 hours or more, and more preferably 200 hours or more. By performing the heat treatment at such a temperature and processing time, the resistance-temperature characteristics of the sintered body for a thermistor element can be further stabilized. The atmosphere for the heat treatment may be an air atmosphere or a special atmosphere other than the air. Further, there is no particular limitation on the time from the completion of the firing treatment to the time of performing this heat treatment, and it is preferably performed after the temperature of the sintered body has dropped to room temperature.

本発明のサーミスタ素子用焼結体を用いて得られるサーミスタ素子の一例を図1に示す。サーミスタ素子2は、サーミスタ素子用焼結体1及び一対の電極9からなり、それぞれの電極9の一端側は、サーミスタ素子用焼結体1の内部に埋没している。素子の形状としては特に限定されず、ビード型以外に、ディスク型、ロッド型、ワッシャー型等のいずれであってもよい。   FIG. 1 shows an example of a thermistor element obtained by using the sintered body for a thermistor element of the present invention. The thermistor element 2 includes a sintered body 1 for a thermistor element and a pair of electrodes 9, and one end of each electrode 9 is buried in the sintered body 1 for a thermistor element. The shape of the element is not particularly limited, and may be any of a disk type, a rod type, a washer type and the like in addition to the bead type.

本発明の温度センサは、上記サーミスタ素子用焼結体を用いてなるものである。また、サーミスタ素子用焼結体に電極が配設されたサーミスタ素子を用いてなるものであってもよい。温度センサの一例を図2に示す。図2は、自動車の排気ガス通路に設けられて排気ガス温度を検出するための温度センサの構造を示す部分破断側面図である。この温度センサは、サーミスタ素子2を有底筒状の金属チューブ3の内部に収容したものである。金属チューブ3は、その先端側3aが閉塞し、後端側3bが開放される。金属チューブ3の基端側3bには、フランジ4がアルゴン溶接される。フランジ4上には、六角ナット部5及びネジ部5bを有するナット5が回動自在に挿通される。フランジ4の基端側4aには、継手6がアルゴン溶接される。金属チューブ3、フランジ4及び継手6の内部には、一対のシース芯線7を内包するシース8が配置される。金属チューブ3の内部においてシース8の先端側8aへ突出するシース芯線7には、サーミスタ素子2がPt/Rh合金線9を介して接続される。金属チューブ3の先端側3aの内部には、酸化ニッケル製のペレット10が配置される。また、サーミスタ素子2の周囲にはセメント11が充填される。継手6の内部においてシース8の基端側8bへ突出するシース芯線7には、端子12を介して一対のリード線13が接続される。これらリード線13は、耐熱ゴム製の補助リング14に内包される。シース芯線7及びリード線13は互いにかしめ端子12により接続される。   A temperature sensor according to the present invention uses the sintered body for a thermistor element. Further, the sintered body for a thermistor element may be formed by using a thermistor element in which electrodes are provided. FIG. 2 shows an example of the temperature sensor. FIG. 2 is a partially broken side view showing a structure of a temperature sensor provided in an exhaust gas passage of an automobile to detect an exhaust gas temperature. In this temperature sensor, the thermistor element 2 is housed in a metal tube 3 having a bottomed cylindrical shape. The metal tube 3 has its front end 3a closed and its rear end 3b opened. The flange 4 is argon-welded to the base end 3b of the metal tube 3. A nut 5 having a hexagonal nut portion 5 and a screw portion 5b is rotatably inserted on the flange 4. The joint 6 is argon-welded to the base end 4a of the flange 4. A sheath 8 including a pair of sheath core wires 7 is arranged inside the metal tube 3, the flange 4, and the joint 6. The thermistor element 2 is connected via a Pt / Rh alloy wire 9 to a sheath core wire 7 protruding toward the distal end 8a of the sheath 8 inside the metal tube 3. Inside the distal end 3a of the metal tube 3, a pellet 10 made of nickel oxide is arranged. Further, a cement 11 is filled around the thermistor element 2. A pair of lead wires 13 is connected via terminals 12 to the sheath core wire 7 protruding toward the base end 8 b of the sheath 8 inside the joint 6. These lead wires 13 are contained in an auxiliary ring 14 made of heat-resistant rubber. The sheath core wire 7 and the lead wire 13 are connected to each other by the caulking terminal 12.

以下、本発明について、実施例及び比較例を挙げて具体的に説明するが、本発明は、これら実施例によって何ら限定されるものではない。
〔1〕サーミスタ素子の製造
実施例1〜31
粉末(純度99.9%以上、平均粒子径1.1μm)、SrCO粉末(純度99.0%以上、平均粒子径0.5μm)、Fe粉末(純度99.2%以上、平均粒子径0.9μm)、MnO粉末(純度99.0%以上、平均粒子径1.2μm)、及びAl粉末(純度99.5%以上、平均粒子径0.6μm)、を用いて、Srのモル数をx、Yのモル数を1−x、Mnのモル数をy、Alのモル数をz、Feのモル数を1−y−zとした場合に、x、y及びzが表1及び2に示される値となるように秤量し、湿式混合した。その後、乾燥して粉末状とし、大気中、1400℃で2時間仮焼した。次いで、この仮焼粉末100質量%に対して1質量%の焼結助剤(SiO粉末、平均粒子径1.5μm)、を更に添加して、湿式粉砕、乾燥し、サーミスタ合成粉末を得た。
その後、このサーミスタ合成粉末に対して主成分をポリビニルブチラールとするバインダーを20質量%添加して混合、乾燥し、整粒して、造粒粉末を得た。
次いで、この造粒粉末を用いて、金型成型法にてプレス成形(プレス圧;4500kg/cm)して図1に示す一対の電極の一端側が埋設された六角形状(厚さ1.24mm)の成形体を得て、大気中、1550℃で1時間焼成して、実施例1〜31のサーミスタ素子を製造した。
Hereinafter, the present invention will be specifically described with reference to Examples and Comparative Examples, but the present invention is not limited to these Examples.
[1] Manufacture of thermistor element Examples 1-31
Y 2 O 3 powder (purity 99.9% or more, average particle diameter 1.1 μm), SrCO 3 powder (purity 99.0% or more, average particle diameter 0.5 μm), Fe 2 O 3 powder (purity 99.2) %, Average particle diameter 0.9 μm), MnO 2 powder (purity 99.0% or more, average particle diameter 1.2 μm), and Al 2 O 3 powder (purity 99.5% or more, average particle diameter 0.6 μm) ), The number of moles of Sr is x, the number of moles of Y is 1-x, the number of moles of Mn is y, the number of moles of Al is z, and the number of moles of Fe is 1-yz. , X, y, and z were weighed so as to be the values shown in Tables 1 and 2, and were wet-mixed. Thereafter, the powder was dried to obtain a powder, and calcined in the atmosphere at 1400 ° C. for 2 hours. Next, 1% by mass of a sintering aid (SiO 2 powder, average particle size of 1.5 μm) is further added to 100% by mass of the calcined powder, wet pulverized and dried to obtain a thermistor synthetic powder. Was.
Thereafter, a binder having a main component of polyvinyl butyral was added to the thermistor synthetic powder in an amount of 20% by mass, mixed, dried and sized to obtain a granulated powder.
Next, this granulated powder is press-molded (press pressure: 4500 kg / cm 3 ) by a mold molding method to form a hexagonal shape (having a thickness of 1.24 mm) in which one end of a pair of electrodes shown in FIG. 1 is embedded. ) Was obtained and baked at 1550 ° C. for 1 hour in the air to produce thermistor elements of Examples 1 to 31.

比較例1
粉末(純度99.9%以上、平均粒子径1.1μm)、SrCO粉末(純度99.0%以上、平均粒子径0.5μm)、Cr粉末(純度99.3%以上、平均粒子径0.5μm)、Fe粉末(純度99.2%以上、平均粒子径0.9μm)、及びTiO粉末(純度99.2%以上、平均粒子径1.8μm)、を用いて、Srのモル数をx、Yのモル数を1−x、Feのモル数をy、Tiのモル数をz、Crのモル数を1−y−zとした場合に、x、y及びzが表2に示される値となるように秤量した以外は、実施例1と同様にしてサーミスタ素子を得た。
Comparative Example 1
Y 2 O 3 powder (purity 99.9% or more, average particle diameter 1.1 μm), SrCO 3 powder (purity 99.0% or more, average particle diameter 0.5 μm), Cr 2 O 3 powder (purity 99.3) %, Average particle diameter 0.5 μm), Fe 2 O 3 powder (purity 99.2% or more, average particle diameter 0.9 μm), and TiO 2 powder (purity 99.2% or more, average particle diameter 1.8 μm) ), The mole number of Sr is x, the mole number of Y is 1-x, the mole number of Fe is y, the mole number of Ti is z, and the mole number of Cr is 1-yz. , X, y, and z were obtained in the same manner as in Example 1 except that they were weighed so as to have the values shown in Table 2.

Figure 2004172640
Figure 2004172640

Figure 2004172640
Figure 2004172640

〔2〕サーミスタ素子の評価
2−1.性能試験(抵抗値の測定、B定数及びB定数のばらつきの測定)
実施例1〜31及び比較例1で得られたサーミスタ素子50個の抵抗値(kΩ)を、100、300、600及び900℃において初期抵抗値として測定した。そして、得られた抵抗値に基づいて、下記式(1)によりB定数(K)を算出した。表に記載の数値は50個のデータの中央値に相当する素子の特定で、その実施例の代表値として示している。
B定数=ln(R/R)/(1/T−1/T) ・・・(1)
R;絶対温度T(K)のときの抵抗値(kΩ)
;絶対温度T(K)のときの抵抗値(kΩ)
また、100〜900℃の範囲で見たB定数のばらつきを、50個のデータの±3σがB定数の平均値に対して、どの程度のばらつきを有するかを下記式(2)により算出した。
B定数のばらつき(%)=±3σ/平均値 ・・・(2)
以上の結果を表3〜5に示す。また、各試料を組成別にプロットした3成分系状態図を図3に示す。各プロット近辺に付した数字は、100℃及び900℃の初期抵抗値である。
[2] Evaluation of thermistor element 2-1. Performance test (measurement of resistance value, measurement of B constant and variation of B constant)
The resistance values (kΩ) of the 50 thermistor elements obtained in Examples 1 to 31 and Comparative Example 1 were measured as initial resistance values at 100, 300, 600 and 900 ° C. Then, based on the obtained resistance value, a B constant (K) was calculated by the following equation (1). Numerical values described in the table specify elements corresponding to the median of 50 data, and are shown as representative values of the examples.
B constant = ln (R / R 0 ) / (1 / T−1 / T 0 ) (1)
R: resistance value (kΩ) at absolute temperature T (K)
R 0 : resistance value (kΩ) at absolute temperature T 0 (K)
In addition, the variation of the B constant in the range of 100 to 900 ° C. was calculated by the following equation (2) to determine how much ± 3σ of 50 data had an average value of the B constant. .
Variation (%) of B constant = ± 3σ / average value (2)
Tables 3 to 5 show the above results. FIG. 3 shows a three-component phase diagram in which each sample is plotted by composition. The numbers near each plot are the initial resistance values at 100 ° C. and 900 ° C.

Figure 2004172640
Figure 2004172640

Figure 2004172640
Figure 2004172640

Figure 2004172640
Figure 2004172640

また、耐久性を調べるために、上記サーミスタ素子用を大気中、1000℃で150時間熱処理し、上記と同様にして耐久後抵抗値として測定し、B定数を算出し、表3〜表5に併記した。
更に、上記熱処理後の抵抗変化率(%)を下記式(3)により求めた。
抵抗変化率={(R’−R)/R}×100 ・・・(3)
;熱処理前の温度Tにおける抵抗値(kΩ)
’;熱処理後の温度Tにおける抵抗値(kΩ)
また、上記抵抗変化率の温度換算値(℃)を下記式(4)により求めた。
温度換算値=〔(B×T)/{ln(R’/R)×T+B}〕−T
・・・(4)
B;温度TにおけるB定数
以上の結果を表6に示す。
In addition, in order to examine the durability, the thermistor element was heat-treated at 1000 ° C. for 150 hours in the air, measured as a post-durability resistance value in the same manner as above, and the B constant was calculated. Also described.
Furthermore, the resistance change rate (%) after the heat treatment was determined by the following equation (3).
Resistance change rate = {(R T '-R T ) / R T} × 100 ··· (3)
R T ; resistance value at temperature T before heat treatment (kΩ)
R T '; resistance value at temperature T after heat treatment (kΩ)
Further, the temperature conversion value (° C.) of the resistance change rate was determined by the following equation (4).
Temperature conversion value = [(B × T) / {In ( RT ′ / RT ) × T + B} −T
... (4)
B: B constant at temperature T The above results are shown in Table 6.

Figure 2004172640
Figure 2004172640

〔3〕実施例の効果
また、表3〜表5より、実施例1〜31は、Ti元素を含有しないサーミスタ素子であるため、初期特性が比較例1と比べてB定数が極めて小さく、更に揮発し易いCr元素を含有しないことからB定数のばらつきが比較例1と比べて小さいことが分かる。このようにTi元素、Cr元素を含有しない実施例1〜31のサーミスタ素子は、比較例1のそれよりもB定数が小さく、且つ特性ばらつきが小さいため、優れた特性を有していることが分かる。
[3] Effects of Example Further, from Tables 3 to 5, Examples 1 to 31 are thermistor elements containing no Ti element. Since it does not contain the volatile Cr element, the variation of the B constant is smaller than that of Comparative Example 1. As described above, the thermistor elements of Examples 1 to 31 containing no Ti element and Cr element have smaller B constants and smaller characteristic variations than those of Comparative Example 1, and therefore have excellent characteristics. I understand.

表6より、実施例1及び2は、z<0.275であるため、また、実施例8〜10、26、28、29及び30は、x及びyが上記の好ましい範囲外であるため、更には、実施例31は、1−y−z<0.025であるため、抵抗変化率及び温度換算値がともにやや大きくなり、熱履歴に対してやや不安定な特性を示した。
一方、0.090≦x≦0.178、0.090≦y≦0.178、z≧0.275、1−y−z≧0.025の範囲で組成比を変えて得られる実施例3〜7、11〜25及び27は、100、300、600及び900℃における温度換算値は全て10℃以内であり、広い温度範囲において優れた温度検知性能を有することが分かる。特に、0.126≦x≦0.166、0.126≦y≦0.166、z≧0.494、1−y−z≧0.080である実施例13〜15及び17〜25は、100℃における抵抗値が500kΩ以下、且つ900℃における抵抗値が50Ω以上と小さくなり過ぎることなく、更に、温度換算値が全て8℃以内であり、より優れた性能を有することが分かる。このように、特定の構成元素の割合を所定範囲内に設定することで、優れた温度検知性能をもたらすサーミスタ素子を提供可能なことが分かる。
From Table 6, since Examples 1 and 2 have z <0.275, and Examples 8 to 10, 26, 28, 29, and 30 have x and y outside the above preferred ranges, Further, in Example 31, since 1-yz <0.025, both the rate of change in resistance and the temperature conversion value were slightly larger, and exhibited characteristics that were somewhat unstable with respect to the thermal history.
On the other hand, Example 3 obtained by changing the composition ratio in the range of 0.090 ≦ x ≦ 0.178, 0.090 ≦ y ≦ 0.178, z ≧ 0.275, and 1−yz ≧ 0.025. , 7, 11 to 25 and 27 have temperature conversion values of 100 ° C., 300, 600 and 900 ° C. all within 10 ° C., indicating that they have excellent temperature detection performance in a wide temperature range. In particular, Examples 13 to 15 and 17 to 25 in which 0.126 ≦ x ≦ 0.166, 0.126 ≦ y ≦ 0.166, z ≧ 0.494, and 1−yz ≧ 0.080, The resistance value at 100 ° C. is 500 kΩ or less, and the resistance value at 900 ° C. is not too small at 50 Ω or more. Further, the temperature conversion values are all within 8 ° C., which indicates that the device has more excellent performance. Thus, it can be seen that by setting the ratio of the specific constituent element within the predetermined range, it is possible to provide a thermistor element having excellent temperature detection performance.

サーミスタ素子の一例を示す概略説明図である。FIG. 3 is a schematic explanatory view showing an example of a thermistor element. 温度センサの一例を示す概略説明図である。It is a schematic explanatory view showing an example of a temperature sensor. 実施例1〜31のサーミスタ素子用焼結体の組成を3成分系状態図の形態で示す。中心から左下に向かってFeのモル数を、右下に向かってAlのモル数を、上に向かってSr又はMnのモル数を示す。The compositions of the sintered bodies for thermistor elements of Examples 1 to 31 are shown in the form of a three-component system diagram. The number of moles of Fe is shown from the center to the lower left, the number of moles of Al is shown to the lower right, and the number of moles of Sr or Mn is shown upward.

符号の説明Explanation of reference numerals

1;サーミスタ素子用焼結体、2;サーミスタ素子、3;金属チューブ、3a;金属チューブの先端側、3b;金属チューブの基端側、4;フランジ、4a;フランジの基端側、5;ナット、5a;六角ナット部、5b;ネジ部、6;継手、7;シース芯線、8;シース、8a;シースの先端側、8b;シースの基端側、9;電極、10;酸素濃度低下抑制用ペレット、11;セメント、12;かしめ端子、13;リード線、14;補助リング。   1; sintered body for thermistor element; 2; thermistor element; 3; metal tube, 3a; distal end of metal tube, 3b; proximal end of metal tube, 4; flange, 4a; Nut, 5a; Hex nut, 5b; Screw, 6; Joint, 7; Sheath core wire, 8; Sheath, 8a; Sheath distal end, 8b; Sheath proximal end, 9; Electrode, 10; Suppression pellets, 11; cement, 12; caulked terminals, 13; lead wires, 14;

Claims (3)

Sr、Y、Mn、Al、Fe、Si及びOを含有し、Crを含有しないサーミスタ素子用焼結体であって、
Srのモル数をx、Yのモル数を1−x、Mnのモル数をy、Alのモル数をz、Feのモル数を1−y−zとすると、0.090≦x≦0.178、0.090≦y≦0.178、z≧0.275、1−y−z≧0.025の各範囲にあることを特徴とするサーミスタ素子用焼結体。
A sintered body for a thermistor element containing Sr, Y, Mn, Al, Fe, Si and O, and not containing Cr,
If the number of moles of Sr is x, the number of moles of Y is 1-x, the number of moles of Mn is y, the number of moles of Al is z, and the number of moles of Fe is 1-yz, 0.090 ≦ x ≦ 0 .178, 0.090 ≦ y ≦ 0.178, z ≧ 0.275, 1−yz ≧ 0.025 in each range.
Sr、Y、Mn、Al及びFeの各元素を含む各原料粉末を混合し、仮焼して仮焼粉末とし、その後、該仮焼粉末と焼結助剤とを混合したサーミスタ合成粉末を成形し、次いで、得られた成形体を焼成することにより、
Srのモル数をx、Yのモル数を1−x、Mnのモル数をy、Alのモル数をz、Feのモル数を1−y−zとした場合、0.090≦x≦0.178、0.090≦y≦0.178、z≧0.275、1−y−z≧0.025の各範囲にあるサーミスタ素子用焼結体を得ることを特徴とするサーミスタ素子用焼結体の製造方法。
Each raw material powder containing each element of Sr, Y, Mn, Al and Fe is mixed and calcined to form a calcined powder, and then a thermistor synthetic powder obtained by mixing the calcined powder with a sintering aid is formed. Then, by firing the obtained molded body,
When the number of moles of Sr is x, the number of moles of Y is 1-x, the number of moles of Mn is y, the number of moles of Al is z, and the number of moles of Fe is 1-yz, 0.090 ≦ x ≦ 0.178, 0.090 ≦ y ≦ 0.178, z ≧ 0.275, and 1−yz ≧ 0.025 for the thermistor element sintered body. A method for manufacturing a sintered body.
請求項1に記載のサーミスタ素子用焼結体を用いてなることを特徴とする温度センサ。 A temperature sensor comprising the sintered body for a thermistor element according to claim 1.
JP2004040668A 2001-11-16 2004-02-17 Sintered body for thermistor element, manufacturing method thereof, and temperature sensor Expired - Fee Related JP3970851B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004040668A JP3970851B2 (en) 2001-11-16 2004-02-17 Sintered body for thermistor element, manufacturing method thereof, and temperature sensor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001351714 2001-11-16
JP2004040668A JP3970851B2 (en) 2001-11-16 2004-02-17 Sintered body for thermistor element, manufacturing method thereof, and temperature sensor

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2002334312 Division 2002-11-18 2002-11-18

Publications (2)

Publication Number Publication Date
JP2004172640A true JP2004172640A (en) 2004-06-17
JP3970851B2 JP3970851B2 (en) 2007-09-05

Family

ID=32715512

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004040668A Expired - Fee Related JP3970851B2 (en) 2001-11-16 2004-02-17 Sintered body for thermistor element, manufacturing method thereof, and temperature sensor

Country Status (1)

Country Link
JP (1) JP3970851B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006315946A (en) * 2005-04-11 2006-11-24 Ngk Spark Plug Co Ltd Sintered electroconductive oxide compact, thermister element using the compact, and temperature sensor using the element
JP2007246381A (en) * 2005-04-11 2007-09-27 Ngk Spark Plug Co Ltd Sintered electroconductive oxide, thermistor element using sintered electroconductive oxide, and temperature sensor using thermistor element

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006315946A (en) * 2005-04-11 2006-11-24 Ngk Spark Plug Co Ltd Sintered electroconductive oxide compact, thermister element using the compact, and temperature sensor using the element
JP2007246381A (en) * 2005-04-11 2007-09-27 Ngk Spark Plug Co Ltd Sintered electroconductive oxide, thermistor element using sintered electroconductive oxide, and temperature sensor using thermistor element

Also Published As

Publication number Publication date
JP3970851B2 (en) 2007-09-05

Similar Documents

Publication Publication Date Title
KR101155688B1 (en) Sintered electroconductive oxide, thermister element using sintered electroconductive oxide, and temperature sensor using thermister element
JP5140441B2 (en) Thermistor element and temperature sensor
US10643768B2 (en) Thermistor sintered body and thermistor element
JP5546995B2 (en) Conductive oxide sintered body, thermistor element using the same, and temperature sensor using thermistor element
JP4307152B2 (en) Sintered body for thermistor element, manufacturing method thereof, thermistor element, temperature sensor
JPH11322415A (en) Barium titanate powder, semiconductor ceramic and semiconductor ceramic element
JP6010473B2 (en) Conductive oxide sintered body, thermistor element and temperature sensor
US9790098B2 (en) Sintered electrically conductive oxide, thermistor element employing the oxide, and temperature sensor employing the thermistor
JP5546996B2 (en) Conductive oxide sintered body, thermistor element using the same, and temperature sensor using thermistor element
JP5140450B2 (en) Thermistor element and temperature sensor
WO2004046061A1 (en) Sintered compact for thermistor element, process for producing the same, thermistor element and temperature sensor
JP4996196B2 (en) THERMISTOR ELEMENT, TEMPERATURE SENSOR USING SAME, AND METHOD FOR PRODUCING THERMISTOR ELEMENT
JP4548431B2 (en) Thermistor composition and thermistor element
JP4302487B2 (en) Sintered body for thermistor, thermistor element, and temperature sensor
JP3970851B2 (en) Sintered body for thermistor element, manufacturing method thereof, and temperature sensor
JP6154283B2 (en) Thermistor element and temperature sensor
US7232527B2 (en) Sintered body for thermistor devices, thermistor device and temperature sensor
JP2004217500A (en) Sintered compact for thermistor element and method for producing the same, thermistor element and temperature sensor
JP5309586B2 (en) Thermistor composition
JP6703404B2 (en) Gas sensor element and gas sensor
JP3384410B2 (en) Semiconductor porcelain with positive resistance temperature characteristics
JPH1092605A (en) Manufacture of positive temperature thermistor
JP2018131347A (en) Electroconductive oxide sintered body, and thermister device and temperature sensor using the same
JPH09330804A (en) Manufacture of positive characteristic thermistor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050207

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20050606

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070427

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070515

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070606

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3970851

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100615

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100615

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110615

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110615

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120615

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120615

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130615

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130615

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees