JP2007246381A - Sintered electroconductive oxide, thermistor element using sintered electroconductive oxide, and temperature sensor using thermistor element - Google Patents
Sintered electroconductive oxide, thermistor element using sintered electroconductive oxide, and temperature sensor using thermistor element Download PDFInfo
- Publication number
- JP2007246381A JP2007246381A JP2006107906A JP2006107906A JP2007246381A JP 2007246381 A JP2007246381 A JP 2007246381A JP 2006107906 A JP2006107906 A JP 2006107906A JP 2006107906 A JP2006107906 A JP 2006107906A JP 2007246381 A JP2007246381 A JP 2007246381A
- Authority
- JP
- Japan
- Prior art keywords
- sintered body
- conductive oxide
- oxide sintered
- phase
- thermistor element
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Conductive Materials (AREA)
- Compositions Of Oxide Ceramics (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
- Thermistors And Varistors (AREA)
Abstract
Description
本発明は、導電性を有し、その抵抗値が温度によって変化する導電性酸化物焼結体、これを用いたサーミスタ素子、さらには、これを用いた温度センサに関する。 The present invention relates to a conductive oxide sintered body having conductivity and a resistance value that varies depending on temperature, a thermistor element using the same, and a temperature sensor using the same.
従来より、導電性を有し、その抵抗値(比抵抗)が温度によって変化する導電性酸化物焼結体、これを用いて温度測定を行うサーミスタ素子、さらには、このサーミスタ素子を用いた温度センサが知られている(特許文献1,2,3)。
このうち、特許文献1には、300℃から1000℃の範囲にわたって温度検知ができるサーミスタ素子として、Sr,Y,Mn,Al,Fe及びOを含有し、ペロブスカイト型酸化物及びガーネット型酸化物の各結晶相を含有し、Sr−Al系酸化物及びSr−Fe系酸化物の少なくとも一方の結晶相を含有するサーミスタ素子用焼結体が開示されている。
さらに、特許文献2には、室温から1000℃の範囲にわたって適切な比抵抗値を有する導電性酸化物焼結体として、M1aM2bM3cM4dO3で表され、a,b,c,dが所定の条件式を満足する導電性酸化物焼結体が開示されている。
Conventionally, a conductive oxide sintered body that has conductivity and whose resistance value (specific resistance) varies depending on temperature, a thermistor element that performs temperature measurement using the sintered body, and a temperature using this thermistor element Sensors are known (Patent Documents 1, 2, and 3).
Among these, Patent Document 1 contains Sr, Y, Mn, Al, Fe and O as thermistor elements capable of detecting temperature over a range of 300 ° C. to 1000 ° C., and includes perovskite oxides and garnet oxides. A sintered body for a thermistor element containing each crystal phase and containing at least one crystal phase of Sr—Al-based oxide and Sr—Fe-based oxide is disclosed.
Further, in Patent Document 2, a conductive oxide sintered body having an appropriate specific resistance value in a range from room temperature to 1000 ° C. is represented by M1 a M2 b M3 c M4 d O 3 , and a, b, c , D satisfies a predetermined conditional expression, and a conductive oxide sintered body is disclosed.
さらに、特許文献3においては、(MM’)O3で表される複合ペロブスカイト酸化物と、AOxで表される金属酸化物との混合焼結体(MM’)O3・AOxからなるサーミスタ素子が開示されている。 Further, in Patent Document 3, the composite perovskite oxide represented by (MM ′) O 3 and a metal oxide represented by AO x is composed of a mixed sintered body (MM ′) O 3 .AO x. A thermistor element is disclosed.
ところで、サーミスタ素子、温度センサの用途として、自動車エンジンなどの内燃機関からの排ガス温度測定がある。これらの用途では、近年、DPFやNOx還元触媒の保護等のため、サーミスタ素子に対し、900℃付近の高温域における温度検知が要求される。
その一方、OBDシステム(On-Board Diagnostic systems)などにおける温度センサの故障(断線)検知のため、エンジンの始動時やキーオン時など低温下でもその温度を検知可能とすることが望まれている。この場合、特に寒冷地では、始動時の温度が氷点下となる場合もあるため、−40℃でも測温可能なサーミスタ素子が望まれている。
By the way, as an application of the thermistor element and the temperature sensor, there is an exhaust gas temperature measurement from an internal combustion engine such as an automobile engine. In these applications, in recent years, thermistor elements are required to detect temperature in a high temperature region around 900 ° C. in order to protect DPF and NOx reduction catalyst.
On the other hand, in order to detect a failure (disconnection) of a temperature sensor in an OBD system (On-Board Diagnostic systems) or the like, it is desired that the temperature can be detected even at a low temperature such as when the engine is started or when a key is turned on. In this case, particularly in cold regions, the starting temperature may be below freezing point, so a thermistor element capable of measuring temperature even at −40 ° C. is desired.
しかしながら、前述の特許文献1,2には、常温あるいは300℃以上から1000℃の範囲で測温可能とするサーミスタ素子あるいは焼結体が開示されており、この温度範囲で、適切な抵抗変化をするように、温度勾配定数(B定数)を4000K程度あるいはそれ以上としている(例えば特許文献2の表4参照)。
このため、これらの焼結体を用いたサーミスタ素子あるいはサーミスタ素子では、温度勾配定数(B定数)が大きく、−40℃の低温下では、サーミスタ素子の抵抗値が高くなりすぎて、その抵抗値測定が困難となるために温度計測が困難となる。
However, the above-mentioned Patent Documents 1 and 2 disclose a thermistor element or a sintered body capable of measuring temperature at room temperature or in the range of 300 ° C. or higher to 1000 ° C., and an appropriate resistance change is achieved in this temperature range. As described above, the temperature gradient constant (B constant) is about 4000 K or more (see, for example, Table 4 of Patent Document 2).
For this reason, the thermistor element or thermistor element using these sintered bodies has a large temperature gradient constant (B constant), and the resistance value of the thermistor element becomes too high at a low temperature of −40 ° C. Temperature measurement becomes difficult because measurement becomes difficult.
一方、特許文献3には、例えばその表1に示されているものでは、室温から1000℃の温度範囲において、抵抗値が110Ω〜100kΩの範囲にあり、この範囲での抵抗温度係数βが2200〜2480Kと望ましい範囲にあることが開示されている。なお、算出式からみて、βは本件におけるB定数と同様の算出式を用いて算出したものである。
しかし、この特許文献3に記載のサーミスタ素子では、複合ペロブスカイト酸化物(MM’)O3を構成する金属元素MあるいはM’と、金属酸化物AOxを構成する金属元素Aとの関係についての考察はなされていない。このため、金属元素MあるいはM’と金属元素Aとの組み合わせや配合比によっては、複合ペロブスカイト酸化物(MM’)O3と金属酸化物AOxとが反応して、予期しない副生成物が生成されたり、金属元素Aが複合ペロブスカイト酸化物(MM’)O3中に固溶して組成変動を生じたりして、高温下での組成安定性(耐熱性)など、サーミスタ素子(導電性酸化物焼結体)の諸特性を損なう虞がある。
On the other hand, in Patent Document 3, for example, as shown in Table 1, the resistance value is in the range of 110Ω to 100 kΩ in the temperature range from room temperature to 1000 ° C., and the resistance temperature coefficient β in this range is 2200. It is disclosed that it is in a desirable range of ˜2480K. From the viewpoint of the calculation formula, β is calculated using the same calculation formula as the B constant in this case.
However, in the thermistor element described in Patent Document 3, the relationship between the metal element M or M ′ constituting the composite perovskite oxide (MM ′) O 3 and the metal element A constituting the metal oxide AO x is described. No consideration has been given. Therefore, depending on the combination or mixing ratio of the metal element M or M ′ and the metal element A, the complex perovskite oxide (MM ′) O 3 reacts with the metal oxide AO x, and an unexpected by-product is generated. Thermistor elements (conductivity, such as composition stability (heat resistance) at high temperatures, such as the formation of metal oxides, or metal element A dissolved in composite perovskite oxide (MM ') O 3 to cause composition fluctuations. There is a risk of damaging various properties of the oxide sintered body.
本発明は、かかる問題点に鑑みてなされたものであって、−40℃の低温下から900℃以上の高温域までの温度範囲において、適切に温度検知ができる導電性酸化物焼結体、これを用いたサーミスタ素子、及び、このサーミスタ素子を用いた温度センサを提供することを目的とする。 The present invention has been made in view of such problems, and in a temperature range from a low temperature of −40 ° C. to a high temperature range of 900 ° C. or higher, a conductive oxide sintered body capable of appropriately detecting temperature, An object is to provide a thermistor element using the same and a temperature sensor using the thermistor element.
その解決手段は、Laを除く3A族元素のうち少なくとも1種の元素をM1とし、2A族元素のうち少なくとも1種の元素をM2とし、Crを除く4A,5A,6A,7A及び8族元素のうち少なくとも1種の元素をM3としたとき、組成式M1aM2bM3cAldCreOfで表記され、a,b,c,d,e,fが下記条件式を満たし、ペロブスカイト型結晶構造を有する導電性のペロブスカイト相と、上記ペロブスカイト相よりも導電性が低く、上記ペロブスカイト相を構成する金属元素から選択された少なくとも1種の金属元素をMeとしたとき、組成式MeOxで表記される結晶構造を有する少なくとも1種の金属酸化物相と、を含む導電性酸化物焼結体である。
0.600≦a≦1.000
0≦b≦0.400
0.150≦c<0.600
0.40≦d≦0.80
0<e≦0.050
0<e/(c+e)≦0.18
2.80≦f≦3.30
The solution is that at least one element of group 3A elements excluding La is M1, and at least one element of group 2A elements is M2, and 4A, 5A, 6A, 7A and group 8 elements excluding Cr when the M3 at least one element of, is expressed by the composition formula M1 a M2 b M3 c Al d Cr e O f, a, b, c, d, e, f is the following condition fulfilled, perovskite And a conductive perovskite phase having a crystalline structure and a composition formula MeO x where Me is at least one metal element selected from the metal elements constituting the perovskite phase and having a lower conductivity than the perovskite phase. And at least one metal oxide phase having a crystal structure represented by:
0.600 ≦ a ≦ 1.000
0 ≦ b ≦ 0.400
0.150 ≦ c <0.600
0.40 ≦ d ≦ 0.80
0 <e ≦ 0.050
0 <e / (c + e) ≦ 0.18
2.80 ≦ f ≦ 3.30
本発明の導電性酸化物焼結体(以下、単に焼結体ともいう)のうち、a,b,c,d,e,fが上述の条件式を満たす導電性のペロブスカイト相は、−40℃〜+900℃の温度範囲における温度勾配定数(B定数:B(-40〜900))が、2000〜3000Kとなる。さらに、本発明の導電性酸化物焼結体には、このペロブスカイト相よりも導電性が低い(絶縁性の高い、比抵抗の大きい)金属酸化物相も含まれている。このため、導電性酸化物焼結体において金属酸化物相の占める割合を適宜変化させることで、B定数を維持しつつ、導電性酸化物焼結体全体の比抵抗の値をシフトさせることができる。従って、この導電性酸化物焼結体を用いたサーミスタ素子では、所望の形態を有しながらも、−40℃〜+900℃の温度範囲において、適切な抵抗値となるように調整することができる。かくして、この導電性酸化物焼結体を用いたサーミスタ素子では、このような広い温度範囲において、適切に温度を測定することができる。また、抵抗値計測(温度計測)のための回路構成を簡単にし、あるいは精度良好な抵抗値測定を可能とすることができる。 Of the conductive oxide sintered body of the present invention (hereinafter also simply referred to as a sintered body), a conductive perovskite phase in which a, b, c, d, e, and f satisfy the above-mentioned conditional expression is −40 The temperature gradient constant (B constant: B (−40 to 900)) in the temperature range of from C to + 900 ° C. is 2000 to 3000K. Furthermore, the conductive oxide sintered body of the present invention also includes a metal oxide phase having lower conductivity (higher insulation and higher specific resistance) than the perovskite phase. For this reason, it is possible to shift the specific resistance value of the entire conductive oxide sintered body while maintaining the B constant by appropriately changing the ratio of the metal oxide phase in the conductive oxide sintered body. it can. Therefore, the thermistor element using this conductive oxide sintered body can be adjusted to have an appropriate resistance value in the temperature range of −40 ° C. to + 900 ° C. while having a desired form. . Thus, the thermistor element using the conductive oxide sintered body can appropriately measure the temperature in such a wide temperature range. In addition, the circuit configuration for resistance value measurement (temperature measurement) can be simplified, or resistance value measurement with high accuracy can be performed.
しかも本発明の導電性酸化物焼結体では、金属酸化物相MeOxをなす金属元素Meは、ペロブスカイト相を構成する金属元素から選択されたものである。従って、このペロブスカイト相と金属酸化物相とが共存する本発明の焼結体中に、予期しない副生成物が生成されるおそれが無く、副生成物の生成による特性の変動が生じる虞もない。
また、金属元素Meがペロブスカイト相をなす金属元素でない場合には、この金属元素Meがペロブスカイト相中に固溶することで、固溶前とは異なる元素からなるペロブスカイト相が生成される虞があるが、本発明の焼結体では、このような組成変動も生じにくく、安定した組成を維持でき、焼結体の諸特性の変動も抑制される。
Moreover, in the conductive oxide sintered body of the present invention, the metal element Me forming the metal oxide phase MeOx is selected from metal elements constituting the perovskite phase. Therefore, in the sintered body of the present invention in which the perovskite phase and the metal oxide phase coexist, there is no possibility that an unexpected by-product is generated, and there is no possibility that the characteristics are changed due to the formation of the by-product. .
In addition, when the metal element Me is not a metal element forming a perovskite phase, the metal element Me may be dissolved in the perovskite phase, so that a perovskite phase composed of an element different from that before solid solution may be generated. However, in the sintered body of the present invention, such composition fluctuations are unlikely to occur, a stable composition can be maintained, and fluctuations in various characteristics of the sintered body are suppressed.
なお、本発明の導電性酸化物焼結体のうち、ペロブスカイト相は、ペロブスカイト型(ABO3)の結晶構造を有しており、通常Aサイトが(M1aM2b)、Bサイトが(M3cAldCre)である(M1aM2b)(M3cAldCre)O3で示される組成となる。ただし、a,b,c,d,eは上述の条件を満たす。
このような結晶構造を有する場合、Aサイトを占める元素M1,M2はイオン半径が近接しており、元素同士で互いに容易に置換できるものであり、これらの元素からなる副生成物の生成が少なく、置換された組成で安定に存在する。同様に、Bサイトを占める元素M3,Al,Crはイオン半径が近接しており、元素同士で互いに容易に置換できるものであり、これらの元素からなる副生成物の生成が少なく、置換された組成で安定に存在する。このため、広い組成範囲で連続的に組成比を変えて、導電性酸化物焼結体の比抵抗値やその温度勾配定数(B定数)を調整することができる。
In the sintered conductive oxide of the present invention, the perovskite phase has a perovskite type (ABO 3 ) crystal structure, and the A site is usually (M1 a M2 b ) and the B site is (M3). a c Al d Cr e) (a M1 a M2 b) (composition represented by M3 c Al d Cr e) O 3. However, a, b, c, d, and e satisfy the above-described conditions.
In the case of such a crystal structure, the elements M1 and M2 occupying the A site have close ionic radii and can be easily replaced with each other, and there are few by-products formed of these elements. Exist stably in the substituted composition. Similarly, the elements M3, Al, and Cr occupying the B site have close ionic radii and can be easily replaced with each other, and the generation of by-products composed of these elements is small and replaced. Stable in composition. Therefore, the specific resistance value of the conductive oxide sintered body and its temperature gradient constant (B constant) can be adjusted by continuously changing the composition ratio in a wide composition range.
なお、本発明の導電性酸化物焼結体を作製する際の焼成条件(酸化、還元等の焼成雰囲気、及び焼成温度など)や、ペロブスカイト相のAサイト及びBサイトにおける元素同士の置換の量比により、酸素の過剰或いは欠損を生じることがあるので、fは3前後の値を取る。このように、上述の組成式における酸素原子と(M1aM2b)とのモル比、及び酸素原子と(M3cAldCre)とのモル比は、それぞれ正確に3:1となっていなくても、ペロブスカイト型の結晶構造が維持されていればよい。 In addition, the firing conditions (the firing atmosphere such as oxidation and reduction, the firing temperature, etc.) in producing the conductive oxide sintered body of the present invention, and the amount of substitution between elements at the A site and B site of the perovskite phase Depending on the ratio, excess or deficiency of oxygen may occur, so f takes a value of around 3. Thus, the molar ratio of the oxygen atom (M1 a M2 b) in the above composition formula, and the molar ratio of the oxygen atoms and (M3 c Al d Cr e) are each exactly 3: has become 1 Even if not, it is only necessary to maintain a perovskite crystal structure.
また、金属酸化物相としては、ペロブスカイト相よりも導電率が低く、ペロブスカイト相を構成する金属元素から選択された少なくとも1種の金属元素をMeとしたときに、MeOxで表される結晶構造を有するものであればよい。具体的には、単一金属元素の酸化物、例えば、Y2O3,SrO,CaO,MnO2,Al2O3,Cr2O3などが挙げられる。また、複数の金属元素からなる複酸化物、例えば、Y−Al系酸化物(YAlO3,Y3Al5O12等)、Sr−Al系酸化物(SrAl2O4)なども挙げられる。さらにはこれらの酸化物が複数種類混在していても良い。 Further, the metal oxide phase has a lower conductivity than the perovskite phase, and when at least one metal element selected from the metal elements constituting the perovskite phase is Me, a crystal structure represented by MeO x What is necessary is just to have. Specifically, oxides of a single metal element, for example, Y 2 O 3 , SrO, CaO, MnO 2 , Al 2 O 3 , Cr 2 O 3 and the like can be mentioned. In addition, double oxides composed of a plurality of metal elements, for example, Y-Al-based oxides (YAlO 3 , Y 3 Al 5 O 12, etc.), Sr-Al-based oxides (SrAl 2 O 4 ), and the like are also included. Further, a plurality of these oxides may be mixed.
なお、導電性酸化物焼結体を構成する結晶粒子の大きさを示す平均粒径は、好ましくは7μm以下、より好ましくは0.1〜7μm、更に好ましくは0.1〜3μmである。結晶粒子の平均粒子径が大きくなりすぎると、この焼結体あるいはこれを用いたサーミスタ素子の特性の不安定化を招く傾向があるためである。 In addition, the average particle diameter which shows the magnitude | size of the crystal particle which comprises an electroconductive oxide sintered compact becomes like this. Preferably it is 7 micrometers or less, More preferably, it is 0.1-7 micrometers, More preferably, it is 0.1-3 micrometers. This is because if the average particle diameter of the crystal particles becomes too large, the characteristics of the sintered body or the thermistor element using the sintered body tend to be unstable.
さらに、上記の導電性酸化物焼結体であって、前記a,bが下記条件式を満たす導電性酸化物焼結体とすると良い。
0.600≦a<1.000
0<b≦0.400
Furthermore, the conductive oxide sintered body may be a conductive oxide sintered body in which the a and b satisfy the following conditional expression.
0.600 ≦ a <1.000
0 <b ≦ 0.400
本発明の導電性酸化物焼結体では、0.600≦a<1.000,及び0<b≦0.400、つまり、a<1.000,b>0としている。即ち、この焼結体では、そのペロブスカイト相は、Laを除く3A族元素のうち少なくとも1種の元素M1のほか、2A族のうち少なくとも1種の元素M2を必須成分として含みつつ、a及びbが上述の条件式を満たす組成を有する。この導電性酸化物焼結体(あるいはこれを用いたサーミスタ素子)では、ペロブスカイト相に、元素M2を含まない(b=0)のものに比して、これを多数製造する場合にも、各々の導電性酸化物焼結体(サーミスタ素子)の個体間の特性バラツキ、焼成ロット間の特性バラツキを小さくすることができる利点がある。 In the conductive oxide sintered body of the present invention, 0.600 ≦ a <1.000 and 0 <b ≦ 0.400, that is, a <1.000, b> 0. That is, in this sintered body, the perovskite phase contains at least one element M1 of the 3A group elements excluding La, and at least one element M2 of the 2A group as essential components. Has a composition satisfying the above conditional expression. In this conductive oxide sintered body (or a thermistor element using the same), the perovskite phase does not contain the element M2 (b = 0), and when it is produced in large numbers, There is an advantage that the characteristic variation among the individual conductive oxide sintered bodies (thermistor elements) and the characteristic variation between the firing lots can be reduced.
さらに、上記導電性酸化物焼結体であって、a,b,c,d,e,fが下記の条件式を満たす導電性酸化物焼結体とするのが好ましい。
0.820≦a≦0.950
0.050≦b≦0.180
0.181≦c≦0.585
0.410≦d≦0.790
0.005≦e≦0.050
0<e/(c+e)≦0.18
2.91≦f≦3.27
Furthermore, the conductive oxide sintered body is preferably a conductive oxide sintered body in which a, b, c, d, e, and f satisfy the following conditional expressions.
0.820 ≦ a ≦ 0.950
0.050 ≦ b ≦ 0.180
0.181 ≦ c ≦ 0.585
0.410 ≦ d ≦ 0.790
0.005 ≦ e ≦ 0.050
0 <e / (c + e) ≦ 0.18
2.91 ≦ f ≦ 3.27
a〜fが上述の条件式を満たす本発明の導電性酸化物焼結体では、より確実に−40℃〜900℃の温度範囲におけるB定数を2000〜3000Kの範囲内に調整することができる。
またa〜fが上述の条件式を満たすこの導電性酸化物焼結体では、a〜fをある数値に特定した導電性焼結体(これを用いたサーミスタ素子)を複数製造する場合にも、各導電性焼結体(サーミスタ素子)の個体間の特性ばらつき、焼成ロット間の特性ばらつきを一層小さくすることができる。
In the conductive oxide sintered body of the present invention in which a to f satisfy the above-described conditional expression, the B constant in the temperature range of −40 ° C. to 900 ° C. can be more reliably adjusted to the range of 2000 to 3000K. .
Moreover, in this conductive oxide sintered body in which a to f satisfy the above-described conditional expression, a plurality of conductive sintered bodies (thermistor elements using the same) in which a to f are specified to a certain numerical value are also manufactured. In addition, it is possible to further reduce the characteristic variation among the individual sintered sintered bodies (thermistor elements) and the characteristic variation among the firing lots.
さらに、a,b,c,d,e,fが下記の条件式を満たす導電性酸化物焼結体とするのが好ましい。
0.850≦b≦0.940
0.060≦b≦0.150
0.181≦c≦0.545
0.450≦d≦0.780
0.005≦e≦0.050
0<e/(c+e)≦0.18
2.92≦f≦3.25
Furthermore, it is preferable to use a conductive oxide sintered body in which a, b, c, d, e, and f satisfy the following conditional expressions.
0.850 ≦ b ≦ 0.940
0.060 ≦ b ≦ 0.150
0.181 ≦ c ≦ 0.545
0.450 ≦ d ≦ 0.780
0.005 ≦ e ≦ 0.050
0 <e / (c + e) ≦ 0.18
2.92 ≦ f ≦ 3.25
さらに、上記いずれかに記載の導電性酸化物焼結体であって、前記元素M1がY,Nd,Ybから選ばれる1種またはそれ以上の元素であり、前記元素M2がMg,Ca,Srから選ばれる1種またはそれ以上の元素であり、前記元素M3がMn,Feから選ばれる1種またはそれ以上の元素である導電性酸化物焼結体とすると良い。 Furthermore, in the conductive oxide sintered body according to any one of the above, the element M1 is one or more elements selected from Y, Nd, and Yb, and the element M2 is Mg, Ca, Sr. It is preferable that the conductive oxide sintered body be one or more elements selected from the above, and the element M3 is one or more elements selected from Mn and Fe.
この導電性酸化物焼結体では、元素M1をY,Nd,Ybから選ばれる1種またはそれ以上の元素とし、元素M2をMg,Ca,Srから選ばれる1種またはそれ以上の元素とし、元素M3をMn,Feから選ばれる1種またはそれ以上の元素としている。これらの元素を選択することにより、上記した範囲のB定数が安定して得られるものとし易い。 In this conductive oxide sintered body, the element M1 is one or more elements selected from Y, Nd, and Yb, the element M2 is one or more elements selected from Mg, Ca, and Sr, The element M3 is one or more elements selected from Mn and Fe. By selecting these elements, it is easy to obtain the B constant in the above range stably.
あるいは、前記いずれかに記載の導電性酸化物焼結体であって、前記元素M1がYであり、前記元素M2がSrであり、前記M3がMnである導電性酸化物焼結体とすると良い。 Alternatively, the conductive oxide sintered body according to any one of the above, wherein the element M1 is Y, the element M2 is Sr, and the M3 is Mn. good.
特にこの導電性酸化物焼結体では、元素M1をYとし、元素M2をSrとし、元素M3をMnとしている。これにより、上記した範囲のB定数が安定して得られるものとし易い。 In particular, in this conductive oxide sintered body, the element M1 is Y, the element M2 is Sr, and the element M3 is Mn. Thereby, the B constant in the above-mentioned range is easily obtained stably.
さらに、上述の導電性酸化物焼結体であって、上記導電性酸化物焼結体の断面(断面積S)に現れた上記ペロブスカイト相の総断面積をSPとしたとき、S及びSPが下記式を満たす導電性酸化物焼結体とすると良い。
0.20≦SP/S≦0.80
Furthermore, when the total cross-sectional area of the perovskite phase appearing in the cross section (cross-sectional area S) of the conductive oxide sintered body is SP, the S and SP are A conductive oxide sintered body satisfying the following formula is preferable.
0.20 ≦ SP / S ≦ 0.80
焼結体にはペロブスカイト相と金属酸化物相とが含まれているので、その断面にも、ペロブスカイト相及び金属酸化物相が現れる。本発明の焼結体では、焼結体の断面(断面積S)とこれに現れたペロブスカイト相の総断面積SPとを上述の式を満たす関係とした。
具体的には、焼結体の断面積S中に占めるペロブスカイト相の総断面積SPの割合の下限を0.20(20%)とした。
金属酸化物相に対して相対的に高い導電性を示すペロブスカイト相の総断面積が20%を下回る場合には、焼結体の導電性が低下して比抵抗が上昇するため、標準的な形態のサーミスタ素子においては、このような比抵抗値を有する焼結体を使用しにくくなるからである。
Since the sintered body contains a perovskite phase and a metal oxide phase, a perovskite phase and a metal oxide phase also appear in the cross section. In the sintered body of the present invention, the cross-section (cross-sectional area S) of the sintered body and the total cross-sectional area SP of the perovskite phase appearing in the sintered body were in a relationship satisfying the above formula.
Specifically, the lower limit of the ratio of the total cross-sectional area SP of the perovskite phase in the cross-sectional area S of the sintered body was set to 0.20 (20%).
When the total cross-sectional area of the perovskite phase exhibiting relatively high conductivity with respect to the metal oxide phase is less than 20%, the conductivity of the sintered body is reduced and the specific resistance is increased. This is because it is difficult to use a sintered body having such a specific resistance value in the form of the thermistor element.
また、同様に、焼結体の断面積S中に占めるペロブスカイト相の総断面積SPの割合の上限を0.80(80%)以下とした。ペロブスカイト相の総断面積が80%を超える場合には、焼結体の導電性の低下がわずかで比抵抗の上昇が少ない。このため、ペロブスカイト相よりも比抵抗が大きい金属酸化物相を加えたことによる利点が少ないからである。
なお、焼結体の断面積S中に占めるペロブスカイト相の総断面積SPの割合は、焼結体に含まれるペロブスカイト相の体積分率とも等しい値となる。
Similarly, the upper limit of the ratio of the total cross-sectional area SP of the perovskite phase in the cross-sectional area S of the sintered body was set to 0.80 (80%) or less. When the total cross-sectional area of the perovskite phase exceeds 80%, the decrease in conductivity of the sintered body is slight and the increase in specific resistance is small. For this reason, there are few advantages by adding the metal oxide phase whose specific resistance is larger than the perovskite phase.
The ratio of the total cross-sectional area SP of the perovskite phase in the cross-sectional area S of the sintered body is equal to the volume fraction of the perovskite phase contained in the sintered body.
さらに、上述のいずれかに記載の導電性酸化物焼結体であって、前記金属酸化物相に複酸化物を含む導電性酸化物焼結体とすると良い。 Furthermore, the conductive oxide sintered body according to any one of the above, and the conductive oxide sintered body including a double oxide in the metal oxide phase may be used.
本発明の焼結体は、金属酸化物相が複酸化物を含んでいる。複酸化物は、2種以上の金属元素からなる酸化物である。
焼結体の焼成時あるいは900℃などの高温環境下において、複酸化物をなす2つの元素のうち、一方の元素のみが、複酸化物から、ペロブスカイト相へ移動し、これに固溶することは、単元素の酸化物から、これをなす金属元素(M1あるいはM2)が、ペロブスカイト相へ移動し固溶する場合に比して、生じにくいと考えられる。従って、金属酸化物相に複酸化物を含めることにより、高温環境下でのペロブスカイト相の組成のズレを抑制し、耐熱性を高めることができると考えられる。
In the sintered body of the present invention, the metal oxide phase contains a double oxide. The double oxide is an oxide composed of two or more metal elements.
Only one of the two elements forming the double oxide moves from the double oxide to the perovskite phase and dissolves in the sintered body or in a high temperature environment such as 900 ° C. Is considered to be less likely to occur from a single element oxide as compared to the case where the metal element (M1 or M2) forming the oxide moves to the perovskite phase and dissolves. Therefore, it is considered that the inclusion of the double oxide in the metal oxide phase can suppress the deviation of the composition of the perovskite phase in a high temperature environment and can improve the heat resistance.
さらに、上述の導電性酸化物焼結体であって、前記a,bが下記条件式を満たし、
0.600≦a<1.000
0<b≦0.400
前記金属酸化物相に、前記元素M1及び元素M2からなる複酸化物を含む導電性酸化物焼結体とすると良い。
Furthermore, in the conductive oxide sintered body described above, the a and b satisfy the following conditional expression,
0.600 ≦ a <1.000
0 <b ≦ 0.400
The metal oxide phase may be a conductive oxide sintered body containing a double oxide composed of the element M1 and the element M2.
本発明の焼結体では、0.600≦a<1・000,及び0<b≦0.400、つまり、a<1・000,b>0としている。即ち、この焼結体では、そのペロブスカイト相は、3A族の元素M1のほか、2A族の元素M2を必須成分として含む組成を有する。その上、金属酸化物相が、複酸化物として、元素M1及びM2からなる複酸化物を含む。この元素M1及びM2はいずれも、ペロブスカイト相におけるAサイトに配置される元素である。
焼結体の焼成時あるいは900℃などの高温環境下において、複酸化物をなす2つの元素M1,M2のうち、一方の元素のみが、複酸化物から、ペロブスカイト相のAサイトへ移動し固溶することは、単元素の酸化物から、これをなす金属元素(M1あるいはM2)が、ペロブスカイト相のAサイトへ移動し固溶する場合に比して、生じにくいと考えられる。従って、金属酸化物相に、元素M1及びM2からなる複酸化物を含めることにより、さらに高温環境下でのペロブスカイト相の組成のズレを抑制し、耐熱性を高めることができる。
なお、このような複酸化物としては、例えば、ペロブスカイト相が、(Y,Sr)(Mn,Al,Cr)O3で表される場合において、SrY2O4,SrY4O7などが挙げられる。
In the sintered body of the present invention, 0.600 ≦ a <1,000 and 0 <b ≦ 0.400, that is, a <1,000, b> 0. That is, in this sintered body, the perovskite phase has a composition containing the 2A group element M2 as an essential component in addition to the 3A group element M1. In addition, the metal oxide phase includes a double oxide composed of the elements M1 and M2 as the double oxide. These elements M1 and M2 are both elements arranged at the A site in the perovskite phase.
At the time of firing the sintered body or in a high temperature environment such as 900 ° C., only one of the two elements M1 and M2 forming the double oxide moves from the double oxide to the A site of the perovskite phase and is solidified. It is considered that dissolution is less likely to occur than when a metal element (M1 or M2) that forms a single element oxide moves to the A site of the perovskite phase and dissolves. Therefore, by including a double oxide composed of the elements M1 and M2 in the metal oxide phase, it is possible to further suppress the deviation of the composition of the perovskite phase in a high temperature environment and improve the heat resistance.
Examples of such a double oxide include SrY 2 O 4 and SrY 4 O 7 when the perovskite phase is represented by (Y, Sr) (Mn, Al, Cr) O 3. It is done.
さらに、上述の導電性酸化物焼結体であって、前記元素M1はYを含み、前記元素M2はSrを含み、前記金属酸化物相は、組成式SrY2O4で表記される複酸化物を含む導電性酸化物焼結体とすると良い。 Furthermore, in the conductive oxide sintered body described above, the element M1 contains Y, the element M2 contains Sr, and the metal oxide phase is a double oxidation represented by a composition formula SrY 2 O 4. A conductive oxide sintered body containing a material is preferable.
本発明の焼結体では、金属酸化物相に、複酸化物として、SrY2O4を含んでいる。このようにすることで、焼結体の耐熱性、高温安定性を高めることができる。 In the sintered body of the present invention, the metal oxide phase contains SrY 2 O 4 as a double oxide. By doing in this way, the heat resistance of a sintered compact and high temperature stability can be improved.
さらに、前記請求項6に記載の導電性酸化物焼結体であって、前記金属酸化物相に、前記元素M1及びM2の少なくともいずれかと、前記元素M3,Al及びCrの少なくともいずれかとの複酸化物を含む導電性酸化物焼結体とすると良い。 Furthermore, in the conductive oxide sintered body according to claim 6, the metal oxide phase includes at least one of the elements M1 and M2 and at least one of the elements M3, Al, and Cr. A conductive oxide sintered body containing an oxide is preferable.
本発明の焼結体は、金属酸化物相が、ペロブスカイト相のAサイトをなす元素(M1,M2)と、Bサイトをなす元素(M3,Al,Cr)とからなる複酸化物を含んでいる。このように、ペロブスカイト相のAサイト及びBサイトをなす元素からそれぞれ選択した元素からなる複酸化物を用いることにより、高温環境下でのペロブスカイト相の組成のズレをさらに抑制することができると考えられる。
なお、このような複酸化物としては、ペロブスカイト相が(Y,Sr)(Mn,Al,Cr)O3である場合において、SrAl2O4、YAlO3,Y3Al5O12などが挙げられる。
In the sintered body of the present invention, the metal oxide phase includes a double oxide composed of elements (M1, M2) forming the A site of the perovskite phase and elements (M3, Al, Cr) forming the B site. Yes. As described above, it is considered that the deviation of the composition of the perovskite phase in a high temperature environment can be further suppressed by using a double oxide composed of an element selected from the elements forming the A site and the B site of the perovskite phase. It is done.
Examples of such double oxides include SrAl 2 O 4 , YAlO 3 , Y 3 Al 5 O 12 when the perovskite phase is (Y, Sr) (Mn, Al, Cr) O 3. It is done.
さらに、上述の導電性酸化物焼結体であって、前記元素M2は、Srを含み、前記金属酸化物相は、組成式SrAl2O4で表記される複酸化物を含む導電性酸化物焼結体とすると良い。 Furthermore, the conductive oxide sintered body described above, wherein the element M2 includes Sr, and the metal oxide phase includes a double oxide represented by a composition formula SrAl 2 O 4 . A sintered body is preferable.
本発明の焼結体では、ペロブスカイト相にSrを含んでおり、金属酸化物相には、SrAl2O4を含んでいる。このようにすることで、耐熱性が向上する利点がある。 In the sintered body of the present invention, the perovskite phase contains Sr, and the metal oxide phase contains SrAl 2 O 4 . By doing in this way, there exists an advantage which heat resistance improves.
さらに、上記いずれか1項に記載の導電性酸化物焼結体を用いてなるサーミスタ素子とすると良い。 Further, a thermistor element using the conductive oxide sintered body according to any one of the above is preferable.
本発明のサーミスタ素子は、前述の導電性酸化物焼結体を用いているので、−40〜900℃の広い温度範囲にわたって温度測定が可能な、適切なB定数(B(-40〜900))を有し、また、この温度範囲において、50Ω〜500kΩの範囲内など適切な抵抗値となるサーミスタ素子となし得る。 Since the thermistor element of the present invention uses the above-described conductive oxide sintered body, an appropriate B constant (B (-40 to 900) capable of measuring temperature over a wide temperature range of −40 to 900 ° C. And a thermistor element having an appropriate resistance value within the range of 50Ω to 500 kΩ in this temperature range.
さらに、上述のいずれか1項に記載の導電性酸化物焼結体と、上記導電性酸化物焼結体を被覆する耐還元性の耐還元性被膜と、を備えるサーミスタ素子とすると良い。 Further, a thermistor element including the conductive oxide sintered body according to any one of the above items and a reduction-resistant reduction-resistant film that covers the conductive oxide sintered body is preferable.
本発明のサーミスタ素子は、導電性酸化物焼結体とこれを被覆する耐還元性被膜とを有している。このため、サーミスタ素子が還元性雰囲気に晒された場合でも、耐還元性被膜により焼結体が保護され、この焼結体が還元されることが防止されるので、サーミスタ素子(焼結体)の示す抵抗値を維持することができる。 The thermistor element of the present invention has a conductive oxide sintered body and a reduction-resistant film covering the conductive oxide sintered body. For this reason, even when the thermistor element is exposed to a reducing atmosphere, the sintered body is protected by the reduction-resistant coating, and the sintered body is prevented from being reduced. Therefore, the thermistor element (sintered body) The resistance value indicated by can be maintained.
さらに、上記のサーミスタ素子を用いてなる温度センサとすると良い。 Furthermore, a temperature sensor using the thermistor element is preferable.
本発明の温度センサでは、前述の導電性酸化物焼結体を用いたサーミスタ素子を用いてなるので、−40〜900℃の広い温度範囲にわたって温度測定が可能な温度センサとなる。また、抵抗値計測(温度計測)のための回路構成を簡単にし、あるいは精度良好な抵抗値測定を可能とすることができる温度センサとなる。 In the temperature sensor of the present invention, since the thermistor element using the conductive oxide sintered body is used, the temperature sensor can measure the temperature over a wide temperature range of −40 to 900 ° C. In addition, a temperature sensor that can simplify the circuit configuration for resistance value measurement (temperature measurement) or enable resistance value measurement with high accuracy can be obtained.
本発明に係る導電性酸化物焼結体1を用いたサーミスタ素子2の実施例を、比較例と対比して説明する。 An example of the thermistor element 2 using the conductive oxide sintered body 1 according to the present invention will be described in comparison with a comparative example.
まず、実施例1〜18及び比較例1,2にかかる導電性酸化物焼結体1及びサーミスタ素子2の製造について説明する。
まず、ペロブスカイト相用の仮焼粉末を以下のようにして得る。即ち、原料粉末として、Y2O3,Nd2O3,Yb2O3,SrCO3,MgO,CaCO3,MnO2,Fe2O3,Al2O3,Cr2O3(全て純度99%以上の市販品を用いた。)を用いて、化学式(組成式)M1aM2bM3cAldCreO3としたときの、元素M1,M2,M3が、表1に示す組み合わせとなり、しかも、a,b,c,d,eが、表1に示すモル数となるように、それぞれ秤量する。さらに、これらの原料粉末を湿式混合して乾燥することにより、ペロブスカイト相用の原料粉末混合物を調整した。次いで、この原料粉末混合物を大気雰囲気下1400℃で2Hr仮焼し、平均粒径1〜2μmのペロブスカイト相用の仮焼粉末を得た。
First, manufacture of the electroconductive oxide sintered compact 1 and the thermistor element 2 concerning Examples 1-18 and Comparative Examples 1 and 2 is demonstrated.
First, a calcined powder for the perovskite phase is obtained as follows. That is, Y 2 O 3 , Nd 2 O 3 , Yb 2 O 3 , SrCO 3 , MgO, CaCO 3 , MnO 2 , Fe 2 O 3 , Al 2 O 3 , Cr 2 O 3 (all purity 99) % or more of a commercially available product.) using the formula (when a composition formula) M1 a M2 b M3 c Al d Cr e O 3, elements M1, M2, M3 becomes the combination shown in Table 1 In addition, each a, b, c, d, e is weighed so as to have the number of moles shown in Table 1. Furthermore, the raw material powder mixture for the perovskite phase was prepared by wet mixing and drying these raw material powders. Next, this raw material powder mixture was calcined for 2 hours at 1400 ° C. in an air atmosphere to obtain a calcined powder for the perovskite phase having an average particle diameter of 1 to 2 μm.
一方、実施例1〜15,17,18及び比較例1にかかる金属酸化物相用の仮焼粉末を、以下のようにして得る。即ち、原料粉末として、SrCO3,Al2O3(全て純度99%以上の市販品を用いた。)を用いて、化学式(組成式)SrAl2O4となるように、それぞれ秤量し、これらの原料粉末を湿式混合して乾燥することにより、金属酸化物相用の原料粉末混合物を調整した。次いで、この原料粉末混合物を大気雰囲気下1200℃で2Hr仮焼し、平均粒径1〜2μmの金属酸化物相用の仮焼粉末を得た。
なお、実施例17の耐還元性被膜形成のため、このSrAl2O4の仮焼粉末にバインダ及び分散媒を添加して混練して、ディップコーティング用のスラリーを別途、作成した。
On the other hand, the calcined powder for metal oxide phases according to Examples 1 to 15, 17, 18 and Comparative Example 1 is obtained as follows. That is, SrCO 3 , Al 2 O 3 (all commercially available products with a purity of 99% or more) were used as raw material powders, and weighed so as to have a chemical formula (composition formula) SrAl 2 O 4. The raw material powder mixture for the metal oxide phase was prepared by wet mixing and drying the raw material powder. Next, this raw material powder mixture was calcined for 2 hours at 1200 ° C. in an air atmosphere to obtain a calcined powder for a metal oxide phase having an average particle diameter of 1 to 2 μm.
In addition, in order to form the reduction resistant film of Example 17, a binder and a dispersion medium were added to the calcined powder of SrAl 2 O 4 and kneaded to separately prepare a slurry for dip coating.
また、実施例16にかかる金属酸化物相用の仮焼粉末を、以下のようにして得る。即ち、原料粉末として、Y2O3,SrCO3(全て純度99%以上の市販品を用いた。)を用いて、化学式(組成式)SrY2O4となるように、それぞれ秤量し、これらの原料粉末を湿式混合して乾燥することにより、金属酸化物相用の原料粉末混合物を調整した。次いで、この原料粉末混合物を大気雰囲気下1200℃で2Hr仮焼し、平均粒径1〜2μmの金属酸化物相用の仮焼粉末を得た。 Moreover, the calcined powder for the metal oxide phase according to Example 16 is obtained as follows. That is, as raw material powders, Y 2 O 3 and SrCO 3 (all commercially available products having a purity of 99% or more were used) were weighed so as to have a chemical formula (composition formula) SrY 2 O 4. The raw material powder mixture for the metal oxide phase was prepared by wet mixing and drying the raw material powder. Next, this raw material powder mixture was calcined for 2 hours at 1200 ° C. in an air atmosphere to obtain a calcined powder for a metal oxide phase having an average particle diameter of 1 to 2 μm.
ついで、ペロブスカイト相用の仮焼粉末と金属酸化物相用の仮焼粉末とを秤量し、これらの仮焼粉末を樹脂ポットと高純度Al2O3玉石とを用い、エタノールを分散媒として、湿式混合粉砕を行った。 Next, the calcined powder for the perovskite phase and the calcined powder for the metal oxide phase are weighed, and the calcined powder is used with a resin pot and high-purity Al 2 O 3 boulder, with ethanol as the dispersion medium, Wet mixed grinding was performed.
次いで得られたスラリーを80℃で2Hr乾燥し、サーミスタ合成粉末を得た。その後、このサーミスタ合成粉末100重量部に対し、ポリビニルブチラールを主成分とするバインダーを20重量部添加して混合、乾燥する。さらに、250μmメッシュの篩を通して造粒し、造粒粉末を得た。
なお、使用しうるバインダーとしては、上述のポリビニルブチラールに特に限定されず、例えばポリビニルアルコール、アクリル系バインダー等が挙げられる。バインダーの配合量は上述の仮焼粉末全量に対し、通常5〜20重量部、好ましくは10〜20重量部とする。
また、バインダーと混合するにあたり、サーミスタ合成粉末の平均粒子径は2.0μm以下としておくのが好ましく、これによって均一に混合することができる。
Next, the obtained slurry was dried at 80 ° C. for 2 hours to obtain a thermistor synthetic powder. Thereafter, 20 parts by weight of a binder mainly composed of polyvinyl butyral is added to 100 parts by weight of the thermistor synthetic powder, mixed and dried. Furthermore, it granulated through the sieve of a 250 micrometer mesh, and the granulated powder was obtained.
In addition, as a binder which can be used, it is not specifically limited to the above-mentioned polyvinyl butyral, For example, polyvinyl alcohol, an acrylic binder, etc. are mentioned. The amount of the binder is usually 5 to 20 parts by weight, preferably 10 to 20 parts by weight, based on the total amount of the calcined powder.
Moreover, when mixing with a binder, it is preferable that the average particle diameter of the thermistor synthetic powder is 2.0 μm or less, whereby uniform mixing is possible.
ついで上述の造粒粉末を用いて、金型成型法にてプレス成形(プレス圧:4500kg/cm2)して、図1に示すように、Pt−Rh合金製の一対の電極線2a,2bの一端側が埋設された六角形板状(厚さ1.24mm)の未焼成成形体を得る。その後、大気中1500℃で2Hr焼成し、実施例1〜16,18のサーミスタ素子2を製造した。なお、比較例1,2に係るサーミスタ素子も、同様にして製造した。
サーミスタ素子2の各寸法は、一辺1.15mmの六角形状で、厚み1.00mm、電極線2a,2bの径φ0.3mm、電極中心間距離0.74mm(ギャップ0.44mm)、電極挿入量1.10mmである。
Subsequently, the above granulated powder was used for press molding (press pressure: 4500 kg / cm 2 ) by a die molding method, and as shown in FIG. 1, a pair of electrode wires 2a and 2b made of Pt—Rh alloy. A non-fired molded body having a hexagonal plate shape (thickness: 1.24 mm) in which one end thereof is embedded is obtained. Then, 2Hr baking was carried out at 1500 degreeC in air | atmosphere, and the thermistor element 2 of Examples 1-16 and 18 was manufactured. The thermistor elements according to Comparative Examples 1 and 2 were manufactured in the same manner.
Each dimension of the thermistor element 2 is a hexagonal shape with a side of 1.15 mm, a thickness of 1.00 mm, a diameter φ0.3 mm of the electrode wires 2a and 2b, an electrode center distance of 0.74 mm (gap 0.44 mm), and an electrode insertion amount 1.10 mm.
なお、実施例17のサーミスタ素子については、上述の未焼成成形体を前述のディップコーティング用のスラリーに浸した後、引き上げて乾燥させ、この未焼成成形体の表面に被膜を形成した。ついで、被膜付きの未焼成成形体を大気中1500℃で2Hr焼成して、図4にその構造を示すように、焼結体1と、この表面を緻密に覆う、SrAl2O4からなる耐還元性の耐還元性被膜1bを備える実施例17のサーミスタ素子2を製造した。 In addition, about the thermistor element of Example 17, after immersing the above-mentioned unbaking molded object in the slurry for the above-mentioned dip coating, it pulled up and dried, and the film was formed on the surface of this unbaking molded object. Next, the unfired molded body with the coating was fired at 1500 ° C. for 2 hours in the atmosphere, and as shown in FIG. 4, the sintered body 1 and SrAl 2 O 4 made of SrAl 2 O 4 that densely covers the surface. The thermistor element 2 of Example 17 provided with the reducible reduction-resistant film 1b was manufactured.
ついで、本実施例1〜18及び比較例1,2のサーミスタ素子について、以下のようにしてB定数(温度勾配定数)を測定した。即ち、まず、サーミスタ素子2を、絶対温度T(-40)=233K(=-40℃)の環境下に放置し、その状態でのサーミスタ素子2の初期抵抗値Rs(-40)を測定した。ついで、サーミスタ素子2を、絶対温度T(900)=1173K(=900℃)の環境下に放置し、その状態でのサーミスタ素子2の初期抵抗値Rs(900)を測定した。そして、B定数:B(-40〜900)を、以下の式(1)に従って算出した。
B(-40〜900)=ln[Rs(900)/Rs(-40)]/[1/T(900)−1/T(-40)] …(1)
なお、Rs(-40):−40℃におけるサーミスタ素子の初期抵抗値(kΩ)、Rs(900):900℃におけるサーミスタ素子の初期抵抗値(kΩ)である。
Next, the B constant (temperature gradient constant) was measured for the thermistor elements of Examples 1 to 18 and Comparative Examples 1 and 2 as follows. That is, first, the thermistor element 2 was left in an environment of absolute temperature T (−40) = 233K (= −40 ° C.), and the initial resistance value Rs (−40) of the thermistor element 2 in that state was measured. . Next, the thermistor element 2 was left in an environment of absolute temperature T (900) = 1173K (= 900 ° C.), and the initial resistance value Rs (900) of the thermistor element 2 in that state was measured. And B constant: B (-40-900) was computed according to the following formula | equation (1).
B (-40 ~ 900) = ln [Rs (900) / Rs (-40)] / [1 / T (900) -1 / T (-40)] (1)
Rs (-40): Initial resistance value (kΩ) of the thermistor element at −40 ° C. Rs (900): Initial resistance value (kΩ) of the thermistor element at 900 ° C.
さらに、実施例1,2,3,6,17に係るサーミスタ素子2について、後述するようにして温度センサ100に組み込み、この温度センサ100の状態でのサーミスタ素子2の初期抵抗値Rt(-40)及びRt(900)を測定した。ついで、大気中で1050℃×50Hr保持し、その後、上述と同様にして、−40℃及び900℃における温度センサ100の状態におけるサーミスタ素子2の熱処理後抵抗値Rt'(-40)、Rt'(900)をそれぞれ測定した。その上で、−40℃における初期抵抗値Rt(-40)と熱処理後抵抗値Rt'(-40)との比較から、熱処理による抵抗変化の温度変化換算値CT(-40)(単位:deg)を、下記式(2)により算出した。900℃における初期抵抗値Rt(900)と熱処理後抵抗値Rt'(900)との比較からも、同様の式(3)により温度変化換算値CT(900)を算出した。その上で、温度変化換算値CT(-40)とCT(900)のうち大きい方を、温度変化換算値CT(deg)として表1に示した。
CT(-40)=[(B(-40〜900)×T(-40))/[ln(Rt'(-40)/Rt(-40))×T(-40)+B(-40〜900)]]−T(-40) …(2)
CT(900)=[(B(-40〜900)×T(900))/[ln(Rt'(900)/Rt(900))×T(900)+B(-40〜900)]]−T(900) …(3)
なお、温度センサ100のうち、金属チューブ3の内周面及びシース部材8を構成する金属製の外筒には、予め酸化皮膜が形成されている。これにより、この温度センサ100のサーミスタ素子2近傍を高温とした場合でも、金属チューブ3やシース部材8の外筒の酸化が抑制され、この金属チューブ3内の雰囲気が還元雰囲気となることが防止されている。従って、サーミスタ素子2が還元されて、その抵抗値が変化することが防止されている。
Further, the thermistor element 2 according to Examples 1, 2, 3, 6, and 17 is incorporated into the temperature sensor 100 as described later, and the initial resistance value Rt (−40 of the thermistor element 2 in the state of the temperature sensor 100 is described. ) And Rt (900). Subsequently, the temperature is maintained at 1050 ° C. × 50 Hr in the atmosphere, and thereafter, the resistance value Rt ′ (− 40), Rt ′ after the heat treatment of the thermistor element 2 in the state of the temperature sensor 100 at −40 ° C. and 900 ° C. is performed in the same manner as described above. (900) was measured respectively. Then, from the comparison between the initial resistance value Rt (-40) at -40 ° C. and the post-heat treatment resistance value Rt ′ (-40), the temperature change converted value CT (-40) of the resistance change due to the heat treatment (unit: deg) ) Was calculated by the following formula (2). Also from the comparison between the initial resistance value Rt (900) at 900 ° C. and the post-heat treatment resistance value Rt ′ (900), a temperature change converted value CT (900) was calculated by the same equation (3). In addition, the larger one of the temperature change converted values CT (-40) and CT (900) is shown in Table 1 as the temperature change converted value CT (deg).
CT (-40) = [(B (-40 ~ 900) × T (-40)) / [ln (Rt '(-40) / Rt (-40)) × T (-40) + B (-40 ~ 900)]]-T (-40) (2)
CT (900) = [(B (-40 to 900) × T (900)) / [ln (Rt '(900) / Rt (900)) × T (900) + B (-40 to 900)]] -T (900) (3)
Note that, in the temperature sensor 100, an oxide film is formed in advance on the inner peripheral surface of the metal tube 3 and the metal outer cylinder constituting the sheath member 8. Thereby, even when the vicinity of the thermistor element 2 of the temperature sensor 100 is at a high temperature, oxidation of the outer tube of the metal tube 3 and the sheath member 8 is suppressed, and the atmosphere in the metal tube 3 is prevented from becoming a reducing atmosphere. Has been. Therefore, it is prevented that the thermistor element 2 is reduced and its resistance value changes.
さらに、各実施例及び比較例に係るサーミスタ素子2(単体)について、大気中で繰り返し温度変化を与えた場合の抵抗変化を評価した。具体的には、室温(25℃)から−40℃まで、-80deg/Hrの降温速度で冷却し、−40℃環境下に2.5Hr放置後、サーミスタ素子の抵抗値R1(-40)を測定する。その後、900℃まで+300deg/Hrの昇温速度で昇温させ、900℃環境下に2Hr保持し、抵抗値R1(900)を測定する。ついで再び、−40℃まで-80deg/Hrの降温速度で冷却し、−40℃環境下に2.5Hr保持し、サーミスタ素子の抵抗値R2(-40)を測定する。その後さらに、900℃まで+300deg/Hrの昇温速度で昇温させ、900℃環境下に2Hr保持し、抵抗値R2(900)を測定する。
その上で、−40℃における抵抗値R1(-40)と抵抗値R2(-40)との比較から、繰り返し温度変化による抵抗変化の温度変化換算値DT(-40)(単位:deg)を、下記式(4)により算出した。また、900℃における抵抗値R1(900)と抵抗値R2(900)との比較からも、同様の式(5)により温度変化換算値DT(900)を算出した。その上で、温度変化換算値DT(-40)とDT(900)のうち大きい方を、温度変化換算値DT(deg)として表1に示した。
DT(-40)=[(B(-40〜900)×T(-40))/[ln(R2(-40)/R1(-40))×T(-40)+B(-40〜900)]]−T
(-40) …(4)
DT(900)=[(B(-40〜900)×T(900))/[ln(R2(900)/R1(900))×T(900)+B(-40〜900)]]−T
(900) …(5)
これらの結果を、表1に示す。
Furthermore, the resistance change when the temperature change was repeatedly applied in the atmosphere was evaluated for the thermistor element 2 (single unit) according to each example and comparative example. Specifically, it is cooled from room temperature (25 ° C.) to −40 ° C. at a temperature decrease rate of −80 deg / Hr and left for 2.5 hours in a −40 ° C. environment, and then the resistance value R 1 (−40) of the thermistor element is set. taking measurement. Thereafter, the temperature is increased to 900 ° C. at a temperature increase rate of +300 deg / Hr, maintained at 900 ° C. for 2 hours, and the resistance value R1 (900) is measured. Next, the temperature is cooled again to −40 ° C. at a temperature drop rate of −80 deg / Hr, maintained at −40 ° C. for 2.5 Hr, and the resistance value R 2 (−40) of the thermistor element is measured. Thereafter, the temperature is further increased to 900 ° C. at a temperature increase rate of +300 deg / Hr, maintained at 900 ° C. for 2 hours, and the resistance value R2 (900) is measured.
Based on the comparison between the resistance value R1 (-40) and resistance value R2 (-40) at -40 ° C, the temperature change conversion value DT (-40) (unit: deg) It was calculated by the following formula (4). Further, from the comparison between the resistance value R1 (900) and the resistance value R2 (900) at 900 ° C., the temperature change converted value DT (900) was calculated by the same equation (5). In addition, the larger one of the temperature change converted values DT (-40) and DT (900) is shown in Table 1 as the temperature change converted value DT (deg).
DT (-40) = [(B (-40 ~ 900) x T (-40)) / [ln (R2 (-40) / R1 (-40)) x T (-40) + B (-40 ~ 900)]] − T
(-40) ... (4)
DT (900) = [(B (-40 to 900) × T (900)) / [ln (R2 (900) / R1 (900)) × T (900) + B (-40 to 900)]] − T
(900) ... (5)
These results are shown in Table 1.
また、以下のようにして、焼結体1の断面組織写真を撮影し、面積分率SP/Sを算出した。
まず、焼結体1を樹脂に埋め込み、3μmのダイヤペーストを用いたバフ研磨処理を行って断面を研磨した試料を作成した。その後、走査型電子顕微鏡(JEOL社製 商品名:JSM-6460LA)により、断面を倍率3000倍で写真撮影する。図3に実施例6に係る焼結体1の断面写真を示す。なお、EDSによる組成分析から白色部分がペロブスカイト相、暗灰色の部分が金属酸化物相(具体的には、SrAl2O4)である。また、黒色部分は気孔である。撮影した組織写真のうち、40μm×30μmの視野を画像解析装置にて解析し、視野(断面積S)に対するペロブスカイト相の相面積SPの占める割合(面積分率)SP/Sを求めた。
Moreover, the cross-sectional structure | tissue photograph of the sintered compact 1 was image | photographed as follows, and area fraction SP / S was computed.
First, the sintered body 1 was embedded in a resin, and a buffing treatment using a 3 μm diamond paste was performed to prepare a sample whose cross section was polished. Thereafter, the cross section is photographed at a magnification of 3000 times with a scanning electron microscope (trade name: JSM-6460LA, manufactured by JEOL). FIG. 3 shows a cross-sectional photograph of the sintered body 1 according to Example 6. From the composition analysis by EDS, the white portion is the perovskite phase and the dark gray portion is the metal oxide phase (specifically, SrAl 2 O 4 ). The black part is a pore. A 40 μm × 30 μm field of view of the photographed tissue photograph was analyzed with an image analyzer, and the ratio (area fraction) SP / S of the phase area SP of the perovskite phase to the field of view (cross-sectional area S) was determined.
なお、複合相からなる焼結体において、任意の断面において、特定の相が占める面積分率は、当該特定相が焼結体内で占める体積分率に等しくなる。つまり、この面積分率SP/Sは、焼結体1に占めるペロブスカイト相の体積分率とも等しい。さらに、図3を参照すると判るように、本実施例の焼結体1は、ペロブスカイト相と金属酸化物相の2相からなっているので、気孔分を除けば、面積分率SP/Sは、ほぼ、ペロブスカイト相と金属酸化物相との面積割合や体積割合を示すことになる。 In a sintered body composed of a composite phase, the area fraction occupied by a specific phase in an arbitrary cross section is equal to the volume fraction occupied by the specific phase in the sintered body. That is, the area fraction SP / S is equal to the volume fraction of the perovskite phase in the sintered body 1. Further, as can be seen with reference to FIG. 3, the sintered body 1 of the present example is composed of two phases of a perovskite phase and a metal oxide phase, so that the area fraction SP / S is excluding the pores. This indicates the area ratio and volume ratio of the perovskite phase and the metal oxide phase.
まず、実施例1〜7,18について説明する。この表1によれば、M1=Y,M2=Sr,M3=Mnである。組成式YaSrbMncAldCreOfの値a,b,c,d,e,fが、下記の条件式を満たす導電性のペロブスカイト相と、このペロブスカイト相よりも導電性の低い金属酸化物相(本実施例では、SrAl2O4)とからなる、実施例1〜7,18の導電性酸化物焼結体1を用いたサーミスタ素子2では、B定数:B(-40〜900)が、B(-40〜900)=2000〜3000Kという、従来に比して相対的に低い値の導電性酸化物焼結体1(サーミスタ素子2)となる。
0.600≦a≦1.000
0≦b≦0.400
0.150≦c<0.600
0.400≦d≦0.800
0<e≦0.050
0<e/(c+e)≦0.18
2.80≦f≦3.30
First, Examples 1 to 7 and 18 will be described. According to Table 1, M1 = Y, M2 = Sr, and M3 = Mn. Formula Y a Sr b Mn c Al d Cr e O f values a, b, c, d, e, f are conductive satisfies the following conditional expression and perovskite phase, of electrically conductive than the perovskite phase In the thermistor element 2 using the conductive oxide sintered body 1 of Examples 1 to 7 and 18 composed of a low metal oxide phase (SrAl 2 O 4 in this example), the B constant: B (− 40 to 900) becomes the conductive oxide sintered body 1 (thermistor element 2) having a relatively low value of B (-40 to 900) = 2000 to 3000K as compared with the prior art.
0.600 ≦ a ≦ 1.000
0 ≦ b ≦ 0.400
0.150 ≦ c <0.600
0.400 ≦ d ≦ 0.800
0 <e ≦ 0.050
0 <e / (c + e) ≦ 0.18
2.80 ≦ f ≦ 3.30
なお、値fについては、表1に記載していないが、蛍光X線分析を用いたY,Sr,Mn,Al,Cr,Oの各元素の組成比と、前述の方法で算出した面積分率、または、粉末X線回折分析により同定した結晶相の存否及び存在比から、f=2.80〜3.30の範囲内であることを確認している。本実施例では具体的には、ペロブスカイト相と金属酸化物相(SrAl2O4)の存在比とを特定し、各金属元素の量をペロブスカイト相と金属酸化物相に振り分ける。ついで、金属酸化物相(SrAl2O4)に含まれるOの数が4であると定めた上で(つまり、SrAl2O4については、酸素の欠損はないとして)、金属酸化物相に用いられているOの量を算出することで、ペロブスカイト相におけるOの数fを算出する。 Although the value f is not described in Table 1, the composition ratio of each element of Y, Sr, Mn, Al, Cr, O using fluorescent X-ray analysis and the area calculated by the above-described method. From the rate or presence / absence ratio of the crystal phase identified by powder X-ray diffraction analysis, it is confirmed that f is in the range of 2.80 to 3.30. Specifically, in this example, the abundance ratio of the perovskite phase and the metal oxide phase (SrAl 2 O 4 ) is specified, and the amount of each metal element is distributed to the perovskite phase and the metal oxide phase. Then, after determining that the number of O contained in the metal oxide phase (SrAl 2 O 4 ) is 4 (that is, SrAl 2 O 4 has no oxygen deficiency), By calculating the amount of O used, the number f of O in the perovskite phase is calculated.
しかも、焼結体1には、ペロブスカイト相の他に、ペロブスカイト相よりも導電性の低い金属酸化物相(SrAl2O4)も混在しているので、ペロブスカイト相のみからなる焼結体(例えば、比較例2)に比して、B定数を維持しつつ初期抵抗値Rs(-40),Rs(900)など、サーミスタ素子2が示す抵抗値を増加させることができており、ペロブスカイト相と金属酸化物相の量比によって、抵抗値を適宜の値に調整することができる。 Moreover, since the sintered body 1 includes a metal oxide phase (SrAl 2 O 4 ) having a conductivity lower than that of the perovskite phase in addition to the perovskite phase, a sintered body composed only of the perovskite phase (for example, Compared to Comparative Example 2), the resistance value indicated by the thermistor element 2 such as initial resistance values Rs (-40) and Rs (900) can be increased while maintaining the B constant, and the perovskite phase The resistance value can be adjusted to an appropriate value depending on the amount ratio of the metal oxide phase.
具体的に説明する。金属酸化物相(SrAl2O4)の存在しない比較例2の焼結体では、B定数(B(-40〜900)=2553K)は適切であるが、本実施例の形態のサーミスタ素子2とした場合には、焼結体が相対的に導電性の高いペロブスカイト相のみで構成されることになるので、初期抵抗値Rs(-40)=39kΩ、Rs(900)=0.006kΩ(=6Ω)となり、サーミスタ素子2の示す抵抗値が低く、抵抗値測定が困難となりがちである。 This will be specifically described. In the sintered body of Comparative Example 2 in which the metal oxide phase (SrAl 2 O 4 ) does not exist, the B constant (B (−40 to 900) = 2553 K) is appropriate, but the thermistor element 2 in the form of the present embodiment. In this case, since the sintered body is composed only of the perovskite phase having relatively high conductivity, the initial resistance value Rs (-40) = 39 kΩ, Rs (900) = 0.006 kΩ (= 6Ω) Therefore, the resistance value of the thermistor element 2 is low, and the resistance value measurement tends to be difficult.
これに対し、ペロブスカイト相の組成(a〜eの値)は比較例2と同じであるが、相対的に導電性の低い金属酸化物相を生成させ、ペロブスカイト相の面積分率を30〜40%程度とした実施例1,2,3の焼結体1においては、金属酸化物相を増やした分(従って、ペロブスカイト相が減った分)、比較例2のものより抵抗値が高くできる。例えば、実施例1の焼結体1では、初期抵抗値Rs(-40)=423kΩ、Rs(900)=0.088kΩとなり、抵抗値測定が容易な抵抗値に設定できることが判る。 On the other hand, the composition of the perovskite phase (values a to e) is the same as that of Comparative Example 2, but a metal oxide phase with relatively low conductivity is generated, and the area fraction of the perovskite phase is 30 to 40. In the sintered bodies 1 of Examples 1, 2 and 3 having about 1%, the resistance value can be made higher than that of Comparative Example 2 by the amount of the metal oxide phase increased (therefore, the amount of the perovskite phase decreased). For example, in the sintered body 1 of Example 1, the initial resistance values Rs (−40) = 423 kΩ and Rs (900) = 0.088 kΩ are obtained, and it can be seen that the resistance value can be set to an easy resistance value.
なお、さらに導電性の低い多量の金属酸化物相を生成させ、ペロブスカイト相の面積分率を16%程度とした実施例7では、さらに抵抗値が高くなる。具体的には、初期抵抗値Rs(-40)=41400kΩ、Rs(900)=5.92kΩとなる。このことから、焼結体1において金属酸化物相の占める割合の多寡、従って、ペロブスカイト相の面積分率を適宜調整することで、比抵抗の値をシフトさせ、サーミスタ素子2の抵抗値を抵抗値測定が容易な抵抗値に設定できることが判る。 In Example 7 in which a large amount of metal oxide phase having lower conductivity was generated and the area fraction of the perovskite phase was about 16%, the resistance value was further increased. Specifically, the initial resistance values Rs (-40) = 41400 kΩ and Rs (900) = 5.92 kΩ. From this, the ratio of the specific resistance is shifted by appropriately adjusting the area fraction of the perovskite phase in the sintered body 1 and accordingly the area fraction of the perovskite phase. It can be seen that the resistance value can be easily set to a resistance value.
その一方、実施例1,2,3及び実施例7の焼結体1においても、B定数は2500K前後の値となっており、比較例2のB定数とほぼ同じである。つまり、金属酸化物相を生成させても、B定数は変動しないことが判る。 On the other hand, in the sintered bodies 1 of Examples 1, 2, 3 and 7 as well, the B constant is about 2500 K, which is substantially the same as the B constant of Comparative Example 2. That is, it can be seen that the B constant does not change even when a metal oxide phase is generated.
また表1によれば、元素M1にYを用いた実施例1〜7,18に対し、元素M1としてNdを使用した実施例8,9、及び、元素M1としてY及びYbを用いた実施例10,11も、同様に、B定数が、B(-40〜900)=2000〜3000Kという、従来に比して相対的に低い値の導電性酸化物焼結体1(サーミスタ素子2)とすることができることが判る。さらに、これらについても実施例1〜7,18と同様、ペロブスカイト相と金属酸化物相(本例ではSrAl2O4)との量比を変化させることで、サーミスタ素子2の抵抗値を適宜の値に調整することができている。 Further, according to Table 1, Examples 1 to 7 and 18 using Y as the element M1, Examples 8 and 9 using Nd as the element M1, and Examples using Y and Yb as the element M1 10 and 11, similarly, the B constant is B (−40 to 900) = 2000 to 3000K, which is a relatively low value compared to the conventional conductive oxide sintered body 1 (thermistor element 2). You can see that you can. Further, as in Examples 1 to 7 and 18 as well, the resistance value of the thermistor element 2 is appropriately adjusted by changing the quantitative ratio between the perovskite phase and the metal oxide phase (SrAl 2 O 4 in this example). Can be adjusted to the value.
さらに表1によれば、元素M2にSrを用いた実施例1〜7に対し、元素M2としてSr及びMgを、あるいは、Sr及びCaを用いた実施例12,13,14も、同様に、B定数を、B(-40〜900)=2000〜3000Kという、従来に比して相対的に低い値の導電性酸化物焼結体1(サーミスタ素子2)とすることができることが判る。さらに、これらについても実施例1〜7と同様、ペロブスカイト相と金属酸化物相(本例ではSrAl2O4)との量比を変化させることで、サーミスタ素子2の抵抗値を適宜の値に調整することができている。
また、元素M3にMnを用いた実施例1〜7に対し、元素M3としてFeを用いた実施例15についても、同様である。
Further, according to Table 1, in contrast to Examples 1 to 7 using Sr as the element M2, Examples 12, 13, and 14 using Sr and Mg as the element M2 or Sr and Ca are similarly used. It can be seen that the conductive oxide sintered body 1 (thermistor element 2) having a B constant of B (−40 to 900) = 2000 to 3000 K, which is a relatively low value as compared with the prior art. Further, as in Examples 1 to 7, these also change the resistance ratio of the thermistor element 2 to an appropriate value by changing the quantitative ratio between the perovskite phase and the metal oxide phase (SrAl 2 O 4 in this example). Can be adjusted.
The same applies to Examples 15 to 7 in which Fe is used as the element M3, compared to Examples 1 to 7 in which Mn is used as the element M3.
さらに、金属酸化物相としてSrAl2O4を用いた実施例1〜7に対して、SrY2O4を用いた実施例16でも、同様に、ペロブスカイト相と金属酸化物相(本例ではSrY2O4)との量比を変化させることで、サーミスタ素子2の抵抗値を適宜の値にすることができている。 Further, in comparison with Examples 1 to 7 using SrAl 2 O 4 as the metal oxide phase, Example 16 using SrY 2 O 4 similarly uses a perovskite phase and a metal oxide phase (SrY in this example). By changing the quantity ratio with 2 O 4 ), the resistance value of the thermistor element 2 can be set to an appropriate value.
また、実施例18では、Srを含まない(b=0)としたペロブスカイト相を有する導電性酸化物焼結体1(サーミスタ素子2)を示したが、Yのほか、Srを含む導電性酸化物焼結体1(サーミスタ素子2)を用いるのが好ましい。
即ち、実施例1〜17に示すように、a<1.000,b>0とするのが好ましい。Sr等(2A族の元素M2)を含まない(b=0)ペロブスカイト相を有する実施例18にかかる焼結体1では、この焼結体1(サーミスタ素子2)を多数製造すると、各個体間の特性バラツキや焼成ロット間の特性ばらつきが大きくなり易い傾向がある。これに比して、Y等(3A族の元素M1)のほかにSr等(2A族の元素M2)を含む、例えば実施例1〜17の焼結体1では、相対的に、個体間の特性バラツキや焼成ロット間の特性ばらつきが小さくできる。
In Example 18, the conductive oxide sintered body 1 (thermistor element 2) having a perovskite phase not containing Sr (b = 0) was shown. However, in addition to Y, a conductive oxide containing Sr is also included. It is preferable to use the sintered product 1 (thermistor element 2).
That is, as shown in Examples 1 to 17, it is preferable that a <1.000, b> 0. In the sintered body 1 according to Example 18 having a perovskite phase that does not contain Sr or the like (2A group element M2) (b = 0), when a large number of sintered bodies 1 (thermistor elements 2) are produced, There is a tendency that the characteristic variation and the characteristic variation between firing lots tend to be large. In comparison, for example, in the sintered body 1 of Examples 1 to 17 that includes Sr and the like (Group 2A element M2) in addition to Y and the like (Group 3A element M1), relatively between the individual Characteristic variation and characteristic variation between firing lots can be reduced.
またさらに、耐還元性被膜1bを有する実施例17に係るサーミスタ素子2でも、実施例1〜7と同様、同様に適切な範囲のB定数及び抵抗値を有するサーミスタ素子2とすることができる。さらにこの実施例17に係るサーミスタ素子2では、耐還元性被膜1bを有する。このため、例えば、後述する温度センサ100にこの実施例17に係るサーミスタ素子2を組み付けた場合、金属チューブ3やシース部材8の外筒に形成した酸化皮膜の一部が何等かの原因で破損したり、酸化皮膜に欠損があるために、金属チューブ3やシース部材8の外筒が酸化することにより、サーミスタ素子2の周囲が還元性雰囲気となった場合でも、内部の焼結体1が還元されることが防止されるので、さらに抵抗値を安定して維持することができる。 Further, the thermistor element 2 according to Example 17 having the reduction-resistant coating 1b can be similarly formed as the thermistor element 2 having an appropriate range of B constant and resistance as in Examples 1-7. Furthermore, the thermistor element 2 according to Example 17 has a reduction resistant coating 1b. Therefore, for example, when the thermistor element 2 according to Example 17 is assembled to the temperature sensor 100 described later, a part of the oxide film formed on the outer tube of the metal tube 3 or the sheath member 8 is damaged for some reason. Even if the outer periphery of the thermistor element 2 becomes a reducing atmosphere due to oxidation of the outer tube of the metal tube 3 or the sheath member 8 due to defects in the oxide film, the inner sintered body 1 is Since the reduction is prevented, the resistance value can be further stably maintained.
なお、比較例1の焼結体は、d=0、即ち、ペロブスカイト相にAlを含んでいないものとした。この比較例1に係る焼結体(サーミスタ素子)は、B定数は適当な値となる(B(-40〜900)=2137K)が、多量の金属酸化物相を生成させ、ペロブスカイト相の面積分率を17%程度としているにも拘わらず、初期抵抗値Rs(-40)=14kΩ、Rs(900)=0.009kΩとなる。ペロブスカイト相の導電性が高く(比抵抗が低く)、多量の金属酸化物相の存在によっても、サーミスタ素子の抵抗値が十分に高くできないためである。このように、a〜fが前述の条件式の範囲を外れているペロブスカイト相を有する焼結体においては、比抵抗(従ってサーミスタ素子の抵抗値)やB定数が適切でなくなる。 In the sintered body of Comparative Example 1, d = 0, that is, the perovskite phase does not contain Al. In the sintered body (thermistor element) according to Comparative Example 1, the B constant is an appropriate value (B (−40 to 900) = 2137K), but a large amount of metal oxide phase is generated and the area of the perovskite phase is increased. Even though the fraction is about 17%, the initial resistance values Rs (-40) = 14 kΩ and Rs (900) = 0.09 kΩ. This is because the conductivity of the perovskite phase is high (specific resistance is low), and the resistance value of the thermistor element cannot be sufficiently high even by the presence of a large amount of metal oxide phase. Thus, in a sintered body having a perovskite phase in which a to f are out of the range of the conditional expression described above, the specific resistance (and hence the resistance value of the thermistor element) and the B constant are not appropriate.
かくして、本実施例の各組成を有する導電性酸化物焼結体1を用いたサーミスタ素子2は、−40℃の低温下から900℃の高温までの広い範囲にわたって抵抗測定を行うのに適する、2000〜3000KのB定数を有するものとすることができる。さらに、このサーミスタ素子2は、その形状、電極線の間隔等に応じて、焼結体1における金属酸化物相の多寡、つまりペロブスカイト相の面積分率を適宜調整することで、抵抗値の大きさを調整することができ、−40℃の低温下から900℃の高温までの広い範囲にわたって適切な抵抗値となるものにできる。これにより、本実施例のサーミスタ素子2によれば、−40℃の低温下から900℃の高温までの広い範囲にわたって適切に温度測定が可能となる。 Thus, the thermistor element 2 using the conductive oxide sintered body 1 having each composition of the present example is suitable for measuring resistance over a wide range from a low temperature of −40 ° C. to a high temperature of 900 ° C. It can have a B constant of 2000-3000K. Furthermore, the thermistor element 2 has a large resistance value by appropriately adjusting the number of metal oxide phases in the sintered body 1, that is, the area fraction of the perovskite phase, according to the shape, the distance between the electrode wires, and the like. The thickness can be adjusted, and an appropriate resistance value can be obtained over a wide range from a low temperature of −40 ° C. to a high temperature of 900 ° C. Thereby, according to the thermistor element 2 of a present Example, it becomes possible to measure temperature appropriately over the wide range from the low temperature of -40 degreeC to the high temperature of 900 degreeC.
なお、B定数の範囲は、好ましくは、B(-40〜900)=2000〜2900Kとなるようにすると良く、さらに好ましくは、B(-40〜900)=2000〜2800Kとなるようにすると良い。 The range of the B constant is preferably B (-40 to 900) = 2000 to 2900K, and more preferably B (-40 to 900) = 2000 to 2800K. .
さらに、表1において、実施例1,2,3,6,17の欄に示す導電性酸化物焼結体1を用いたサーミスタ素子2を組み付けた温度センサ100では、温度変化換算値CT(deg)が±10deg以内の良好な値となった。当該焼結体1(サーミスタ素子2、温度センサ100)が熱履歴に対する抵抗変化が少ない特性を有するものであるか否かを判断する目安が、温度変化換算値CTが±10degであると考えられる。各実施例の焼結体1(サーミスタ素子2)は、この目安の範囲に含まれているからである。特に、実施例2,3,6,17の焼結体1(サーミスタ素子2、温度センサ100)においては、CTが±3deg以内の値となり、特に良好な温度特性の高温耐久性を示し、熱履歴に対する抵抗変化が小さい焼結体(サーミスタ素子)となることが判る。
なお、他の実施例4,5,7〜16,18の焼結体については、温度変化換算値CTの測定結果を明示していない。
Further, in Table 1, in the temperature sensor 100 assembled with the thermistor element 2 using the conductive oxide sintered body 1 shown in the columns of Examples 1, 2, 3, 6, and 17, the temperature change converted value CT (deg ) Was a good value within ± 10 deg. A standard for determining whether or not the sintered body 1 (thermistor element 2, temperature sensor 100) has a characteristic that the resistance change with respect to the thermal history is small is considered that the temperature change conversion value CT is ± 10 deg. . This is because the sintered body 1 (thermistor element 2) of each example is included in the range of this standard. In particular, in the sintered bodies 1 (thermistor element 2 and temperature sensor 100) of Examples 2, 3, 6, and 17, CT is a value within ± 3 deg, exhibiting particularly high temperature durability with good temperature characteristics, It turns out that it becomes a sintered compact (thermistor element) with a small resistance change with respect to a log | history.
In addition, about the sintered compact of other Examples 4, 5, 7-16, 18, the measurement result of temperature change conversion value CT is not specified.
但し、前述の方法で測定した温度変化換算値DTについては、いずれの実施例及び比較例についても測定してある。いずれの実施例でも、この温度変化換算値DTは±10deg以内となった。
この温度変化換算値DTついても、当該焼結体1(サーミスタ素子2)が熱履歴に対する抵抗変化が少ない特性を有するものか否かを判断する目安が、温度変化換算値DTが±10degであると考えられる。各実施例1〜18の焼結体1(サーミスタ素子2)は、いずれもこの目安の範囲に含まれていることから、本実施例1〜18のサーミスタ素子2は、いずれも熱履歴に対する抵抗変化が小さく、実用上問題なく使用可能な焼結体(サーミスタ素子)であることが判る。
However, the temperature change conversion value DT measured by the above-described method is measured for any of the examples and comparative examples. In any of the examples, the temperature change conversion value DT was within ± 10 deg.
The temperature change conversion value DT is ± 10 deg as a guideline for determining whether or not the sintered body 1 (thermistor element 2) has the characteristic that the resistance change with respect to the thermal history is small even with this temperature change conversion value DT. it is conceivable that. Since all the sintered bodies 1 (thermistor elements 2) of Examples 1 to 18 are included in the range of this guideline, the thermistor elements 2 of Examples 1 to 18 are all resistant to thermal history. It can be seen that the sintered body (thermistor element) is small in change and can be used practically without any problem.
ついで、本実施例に係るサーミスタ素子2を用いた温度センサ100の構成について、図2を参照して説明する。この温度センサ100は、サーミスタ素子2を感温素子として用いるものであり、この温度センサ100を自動車の排気管の取付部に装着して、サーミスタ素子2を排気ガスが流れる排気管内に配置させて、排気ガスの温度検出に使用するものである。 Next, the configuration of the temperature sensor 100 using the thermistor element 2 according to the present embodiment will be described with reference to FIG. The temperature sensor 100 uses the thermistor element 2 as a temperature sensing element. The temperature sensor 100 is mounted on a mounting portion of an exhaust pipe of an automobile, and the thermistor element 2 is disposed in an exhaust pipe through which exhaust gas flows. It is used for detecting the temperature of exhaust gas.
温度センサ100のうち、軸線に沿う方向(以下、軸線方向ともいう)に延びる金属チューブ3は、先端部31側(図2中、下方)が閉塞した有底筒状をなしており、この先端部31の内側に本実施例のサーミスタ素子2を収納してなる。この金属チューブ3は、予め熱処理が施されており、その外側面及び内側面が酸化されて酸化皮膜に覆われている。金属チューブ3の内側でサーミスタ素子2の周囲には、セメント10が充填されて、サーミスタ素子2を固定している。金属チューブ3の後端32は開放されており、この後端32部分は、フランジ部材4の内側に圧入、挿通されている。 In the temperature sensor 100, the metal tube 3 extending in the direction along the axis (hereinafter also referred to as the axial direction) has a bottomed cylindrical shape with the tip 31 side (downward in FIG. 2) closed. The thermistor element 2 of this embodiment is housed inside the portion 31. This metal tube 3 is heat-treated in advance, and the outer side surface and the inner side surface thereof are oxidized and covered with an oxide film. Cement 10 is filled around the thermistor element 2 inside the metal tube 3 to fix the thermistor element 2. The rear end 32 of the metal tube 3 is open, and the rear end 32 portion is press-fitted and inserted into the flange member 4.
フランジ部材4は、軸線方向に延びる筒状の鞘部42と、この鞘部42の先端側(図2中、下方)に位置し、この鞘部42よりも大きい外径を有して径方向外側に突出するフランジ部41とを備えている。フランジ部41の先端側には、排気管の取付部とシールを行うテーパ状の座面45を有しいる。また、鞘部42は、先端側に位置する先端側鞘部44とこれよりも径小の後端側鞘部43とからなる二段形状をなしている。 The flange member 4 is positioned on the distal end side (downward in FIG. 2) of the cylindrical sheath portion 42 extending in the axial direction, and has a larger outer diameter than the sheath portion 42 and has a radial direction. And a flange portion 41 protruding outward. On the distal end side of the flange portion 41, there is a tapered seating surface 45 that seals with the attachment portion of the exhaust pipe. Moreover, the sheath part 42 has comprised the two-stage shape which consists of the front end side sheath part 44 located in the front end side, and the rear end side sheath part 43 smaller in diameter than this.
そして、フランジ部材4内に圧入された金属チューブ3は、その外周面が後端側鞘部43と周方向全周に亘り部位L1でレーザー溶接されることで、フランジ4に強固に固定されている。また、フランジ部材4の先端側鞘部44には、概略円筒形状の金属カバー部材6が圧入され、周方向全周に亘り部位L2でレーザ溶接されて、気密状態で接合されている。 The metal tube 3 press-fitted into the flange member 4 is firmly fixed to the flange 4 by laser welding of the outer peripheral surface of the metal tube 3 at the portion L1 over the entire circumference in the circumferential direction. Yes. Moreover, the substantially cylindrical metal cover member 6 is press-fitted into the distal end side sheath portion 44 of the flange member 4, and is laser-welded at the portion L2 over the entire circumference in the circumferential direction and joined in an airtight state.
また、フランジ部材4及び金属カバー部材6の周囲には、六角ナット部51およびネジ部52を有する取り付け部材5が回動自在に嵌挿されている。本実施例の温度センサ100は、排気管(図示しない)の取付部にフランジ部材4のフランジ部41の座面45を当接させ、ナット5を取付部に螺合させることにより、排気管に固定する。 Further, a mounting member 5 having a hexagonal nut portion 51 and a screw portion 52 is rotatably fitted around the flange member 4 and the metal cover member 6. The temperature sensor 100 of the present embodiment is configured so that the seat surface 45 of the flange portion 41 of the flange member 4 is brought into contact with the attachment portion of the exhaust pipe (not shown) and the nut 5 is screwed into the attachment portion, thereby Fix it.
金属チューブ3、フランジ部材4および金属カバー部材6の内側には、一対の芯線7を内包するシース部材8が配置されている。このシース部材8は、金属製の外筒と、導電性の一対の芯線7と、外筒内に充填され外筒と各芯線7のと間を絶縁しつつ芯線7を保持する絶縁粉末とから構成されている。なお、このシース部材8の外筒にも熱処理により、予め酸化皮膜が形成されている。
金属チューブ3の内部においてシース部材8の外筒の先端から(図中下方に)突出する芯線7には、サーミスタ素子2の電極線2a,2bがレーザ溶接により接続されている。
一方、シース部材8から後端側に突き出した芯線7は、加締め端子11を介して一対のリード線12に接続されている。芯線7同士及び加締め端子11同士は、絶縁チューブ15により互いに絶縁されている。
Inside the metal tube 3, the flange member 4, and the metal cover member 6, a sheath member 8 that includes a pair of core wires 7 is disposed. The sheath member 8 includes a metal outer tube, a pair of conductive core wires 7, and an insulating powder that fills the outer tube and holds the core wire 7 while insulating between the outer tube and each core wire 7. It is configured. An oxide film is also formed in advance on the outer cylinder of the sheath member 8 by heat treatment.
The electrode wires 2a and 2b of the thermistor element 2 are connected by laser welding to the core wire 7 protruding from the tip of the outer cylinder of the sheath member 8 inside the metal tube 3 (downward in the figure).
On the other hand, the core wire 7 protruding from the sheath member 8 toward the rear end side is connected to a pair of lead wires 12 via a crimping terminal 11. The core wires 7 and the crimping terminals 11 are insulated from each other by an insulating tube 15.
この一対のリード線12は、金属カバー部材6の後端部内側に挿入された弾性シール部材13のリード線挿通孔を通って、金属カバー部材6の内側から外部に向かって引き出され、外部回路(図示しない。例えば、ECU)と接続するためのコネクタ21の端子部材に接続されている。これにより、サーミスタ素子2の出力は、シース部材8の芯線7からリード線12、コネクタ21を介して図示しない外部回路に取り出され、排気ガスの温度が検出される。リード線12には、飛石等の外力から保護するためのガラス編組チューブ20が被せられており、このガラス編組チューブ20は、自身の先端部が弾性シール部材13と共に金属カバー部材6に加締め固定されている。 The pair of lead wires 12 are drawn out from the inside of the metal cover member 6 to the outside through the lead wire insertion holes of the elastic seal member 13 inserted inside the rear end portion of the metal cover member 6, (It is not shown. For example, it is connected to the terminal member of the connector 21 for connecting with ECU.). As a result, the output of the thermistor element 2 is taken out from the core wire 7 of the sheath member 8 to the external circuit (not shown) via the lead wire 12 and the connector 21, and the temperature of the exhaust gas is detected. The lead wire 12 is covered with a glass braided tube 20 for protection from external forces such as stepping stones, and the glass braided tube 20 is fixed by crimping to the metal cover member 6 with its elastic end member 13 together with the elastic seal member 13. Has been.
このような構造を有する温度センサ100では、前述の導電性酸化物焼結体1からなるサーミスタ素子2を用いているので、自動車のエンジンの排気ガスの温度について、−40℃の低温下から900℃の高温までの広い領域に亘り、適切に温度を測定することができる温度センサとなる。 Since the temperature sensor 100 having such a structure uses the thermistor element 2 made of the conductive oxide sintered body 1 described above, the temperature of the exhaust gas of the engine of the automobile is 900 from a low temperature of −40 ° C. The temperature sensor can measure the temperature appropriately over a wide range up to a high temperature of ° C.
以上において、本発明を実施例に即して説明したが、本発明は上記実施例に限定されるものではなく、その要旨を逸脱しない範囲で、適宜変更して適用できることはいうまでもない。
導電性酸化物焼結体(サーミスタ素子)の製造において、原料粉末としては、実施例において例示した各元素を含む化合物の粉末を使用することができる。そのほか、酸化物、炭酸塩、水酸化物、硝酸塩等の化合物を用いることができる。なお、特に酸化物、炭酸塩を用いるのが好ましい。
また、導電性酸化物焼結体の焼結性、B定数、温度特性の高温耐久性など、導電性酸化物焼結体、サーミスタ素子、あるいは温度センサに要求されると特性を損なわない範囲で、導電性酸化物焼結体に、Na,K,Ga,Si,C,Cl,S等の他の成分を含有していてもよい。
In the above, the present invention has been described with reference to the embodiments. However, the present invention is not limited to the above embodiments, and it is needless to say that the present invention can be appropriately modified and applied without departing from the gist thereof.
In the production of a conductive oxide sintered body (thermistor element), as a raw material powder, a powder of a compound containing each element exemplified in the examples can be used. In addition, compounds such as oxides, carbonates, hydroxides, and nitrates can be used. In particular, oxides and carbonates are preferably used.
In addition, when required for conductive oxide sintered bodies, thermistor elements, or temperature sensors, such as the sinterability of conductive oxide sintered bodies, the B constant, and the high temperature durability of temperature characteristics, the characteristics are not impaired. The conductive oxide sintered body may contain other components such as Na, K, Ga, Si, C, Cl, and S.
1 導電性酸化物焼結体
1b 耐還元性被膜
2 サーミスタ素子
2a,2b 電極線
100 温度センサ
DESCRIPTION OF SYMBOLS 1 Conductive oxide sintered body 1b Reduction-resistant film 2 Thermistor element 2a, 2b Electrode wire 100 Temperature sensor
Claims (13)
2A族元素のうち少なくとも1種の元素をM2とし、
Crを除く4A,5A,6A,7A及び8族元素のうち少なくとも1種の元素をM3としたとき、
組成式M1aM2bM3cAldCreOfで表記され、
a,b,c,d,e,fが下記条件式を満たし、
ペロブスカイト型結晶構造を有する導電性のペロブスカイト相と、
上記ペロブスカイト相よりも導電性が低く、
上記ペロブスカイト相を構成する金属元素から選択された少なくとも1種の金属元素をMeとしたとき、
組成式MeOxで表記される結晶構造を有する少なくとも1種の金属酸化物相と、を含む
導電性酸化物焼結体。
0.600≦a≦1.000
0≦b≦0.400
0.150≦c<0.600
0.400≦d≦0.800
0<e≦0.050
0<e/(c+e)≦0.18
2.80≦f≦3.30 At least one of the 3A group elements excluding La is M1,
At least one of the 2A group elements is M2,
When at least one element of 4A, 5A, 6A, 7A and group 8 elements excluding Cr is M3,
Is expressed by the composition formula M1 a M2 b M3 c Al d Cr e O f,
a, b, c, d, e, f satisfy the following conditional expression,
A conductive perovskite phase having a perovskite crystal structure;
Less conductive than the perovskite phase,
When at least one metal element selected from the metal elements constituting the perovskite phase is Me,
A conductive oxide sintered body comprising at least one metal oxide phase having a crystal structure represented by a composition formula MeO x .
0.600 ≦ a ≦ 1.000
0 ≦ b ≦ 0.400
0.150 ≦ c <0.600
0.400 ≦ d ≦ 0.800
0 <e ≦ 0.050
0 <e / (c + e) ≦ 0.18
2.80 ≦ f ≦ 3.30
前記a,bが下記条件式を満たす導電性酸化物焼結体。
0.600≦a<1.000
0<b≦0.400 The conductive oxide sintered body according to claim 1,
A conductive oxide sintered body in which a and b satisfy the following conditional expression.
0.600 ≦ a <1.000
0 <b ≦ 0.400
前記元素M1がY,Nd,Ybから選ばれる1種またはそれ以上の元素であり、
前記元素M2がMg,Ca,Srから選ばれる1種またはそれ以上の元素であり、
前記元素M3がMn,Feから選ばれる1種またはそれ以上の元素である
導電性酸化物焼結体。 The conductive oxide sintered body according to claim 2,
The element M1 is one or more elements selected from Y, Nd, and Yb;
The element M2 is one or more elements selected from Mg, Ca and Sr;
A conductive oxide sintered body in which the element M3 is one or more elements selected from Mn and Fe.
前記元素M1がYであり、
前記元素M2がSrであり、
前記M3がMnである
導電性酸化物焼結体。 The conductive oxide sintered body according to claim 2,
The element M1 is Y;
The element M2 is Sr;
A conductive oxide sintered body in which M3 is Mn.
上記導電性酸化物焼結体の断面(断面積S)に現れた上記ペロブスカイト相の総断面積をSPとしたとき、
S及びSPが下記式を満たす導電性酸化物焼結体。
0.20≦SP/S≦0.80 The conductive oxide sintered body according to any one of claims 1 to 4, wherein
When the total cross-sectional area of the perovskite phase that appears in the cross-section (cross-sectional area S) of the conductive oxide sintered body is SP,
A conductive oxide sintered body in which S and SP satisfy the following formula.
0.20 ≦ SP / S ≦ 0.80
前記金属酸化物相に複酸化物を含む
導電性酸化物焼結体。 The conductive oxide sintered body according to any one of claims 1 to 5, wherein
A conductive oxide sintered body containing a double oxide in the metal oxide phase.
前記a,bが下記条件式を満たし、
0.600≦a<1.000
0<b≦0.400
前記金属酸化物相に、前記元素M1及び元素M2からなる複酸化物を含む
導電性酸化物焼結体。 The conductive oxide sintered body according to claim 6,
A and b satisfy the following conditional expression:
0.600 ≦ a <1.000
0 <b ≦ 0.400
A conductive oxide sintered body comprising a double oxide composed of the element M1 and the element M2 in the metal oxide phase.
前記元素M1はYを含み、
前記元素M2はSrを含み、
前記金属酸化物相は、組成式SrY2O4で表記される複酸化物を含む
導電性酸化物焼結体。 The conductive oxide sintered body according to claim 7,
The element M1 includes Y,
The element M2 includes Sr,
The metal oxide phase is a conductive oxide sintered body containing a double oxide represented by a composition formula SrY 2 O 4 .
前記a,bが下記条件式を満たし、
0.600≦a<1.000
0<b≦0.400
前記金属酸化物相に、前記元素M1及びM2の少なくともいずれかと、前記元素M3,Al及びCrの少なくともいずれかとの複酸化物を含む
導電性酸化物焼結体。 The conductive oxide sintered body according to claim 6,
A and b satisfy the following conditional expression:
0.600 ≦ a <1.000
0 <b ≦ 0.400
A conductive oxide sintered body containing, in the metal oxide phase, a double oxide of at least one of the elements M1 and M2 and at least one of the elements M3, Al, and Cr.
前記元素M2は、Srを含み、
前記金属酸化物相は、組成式SrAl2O4で表記される複酸化物を含む
導電性酸化物焼結体。 The conductive oxide sintered body according to claim 9,
The element M2 includes Sr,
The metal oxide phase is a conductive oxide sintered body containing a double oxide represented by a composition formula SrAl 2 O 4 .
上記導電性酸化物焼結体を被覆する耐還元性の耐還元性被膜と、を備える
サーミスタ素子。 The conductive oxide sintered body according to any one of claims 1 to 10,
A thermistor element comprising: a reduction-resistant reduction-resistant film that covers the conductive oxide sintered body.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006107906A JP5053564B2 (en) | 2005-04-11 | 2006-04-10 | Conductive oxide sintered body, thermistor element using the same, and temperature sensor using thermistor element |
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005113968 | 2005-04-11 | ||
JP2005113968 | 2005-04-11 | ||
JP2006039759 | 2006-02-16 | ||
JP2006039759 | 2006-02-16 | ||
JP2006107906A JP5053564B2 (en) | 2005-04-11 | 2006-04-10 | Conductive oxide sintered body, thermistor element using the same, and temperature sensor using thermistor element |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007246381A true JP2007246381A (en) | 2007-09-27 |
JP5053564B2 JP5053564B2 (en) | 2012-10-17 |
Family
ID=38591060
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006107906A Active JP5053564B2 (en) | 2005-04-11 | 2006-04-10 | Conductive oxide sintered body, thermistor element using the same, and temperature sensor using thermistor element |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5053564B2 (en) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006315946A (en) * | 2005-04-11 | 2006-11-24 | Ngk Spark Plug Co Ltd | Sintered electroconductive oxide compact, thermister element using the compact, and temperature sensor using the element |
JP2010521394A (en) * | 2007-03-15 | 2010-06-24 | エプコス アクチエンゲゼルシャフト | Ceramic material and electronic ceramic component including the ceramic material |
WO2010095691A1 (en) | 2009-02-20 | 2010-08-26 | 日本特殊陶業株式会社 | Electrically conductive oxide sintered compact, thermistor element employing the same, and temperature sensor employing the same |
JP2011033343A (en) * | 2009-07-29 | 2011-02-17 | Ngk Spark Plug Co Ltd | Temperature sensor |
JP2012501953A (en) * | 2008-09-12 | 2012-01-26 | エプコス アクチエンゲゼルシャフト | Ceramic material, method for producing the ceramic material, and electronic ceramic element made of the ceramic material |
EP2421007A2 (en) | 2010-08-17 | 2012-02-22 | NGK Sparkplug Co., Ltd. | Conductive sintered oxide, thermistor element including the same, and temperature sensor including the same |
US20120043513A1 (en) * | 2010-08-17 | 2012-02-23 | Ngk Spark Plug Co., Ltd. | Conductive sintered oxide, thermistor element including the same, and temperature sensor including the same |
JP2013234105A (en) * | 2012-04-10 | 2013-11-21 | Ngk Spark Plug Co Ltd | Conductive oxide sintered body, thermistor element and temperature sensor |
JP2016039276A (en) * | 2014-08-08 | 2016-03-22 | 日本特殊陶業株式会社 | Thermistor element, method of manufacturing thermistor element, and temperature sensor using thermistor sensor |
EP3079032A1 (en) * | 2015-04-06 | 2016-10-12 | NGK Spark Plug Co., Ltd. | Sintered electrically conductive oxide, thermistor element employing the oxide, and temperature sensor employing the thermistor |
JP2016196392A (en) * | 2015-04-06 | 2016-11-24 | 日本特殊陶業株式会社 | Sintered electroconductive oxide, and thermistor element and temperature sensor employing the same |
JP2018131347A (en) * | 2017-02-14 | 2018-08-23 | 日本特殊陶業株式会社 | Electroconductive oxide sintered body, and thermister device and temperature sensor using the same |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101538108B1 (en) * | 2014-04-25 | 2015-07-21 | 조선대학교산학협력단 | Compositie for temperature sensor increased high-temperature resistance and tprocess for producing same |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59143301A (en) * | 1983-02-03 | 1984-08-16 | 日本特殊陶業株式会社 | High temperature thermistor |
JP2003183075A (en) * | 2001-10-11 | 2003-07-03 | Ngk Spark Plug Co Ltd | Electrically conductive oxide sintered compact |
JP2004172640A (en) * | 2001-11-16 | 2004-06-17 | Ngk Spark Plug Co Ltd | Sintered body for thermistor element and its manufacturing method, and temperature sensor |
JP2004193572A (en) * | 2002-11-29 | 2004-07-08 | Ngk Spark Plug Co Ltd | Sintered compact for thermistor, thermistor element, and temperature sensor |
JP2004217500A (en) * | 2002-11-18 | 2004-08-05 | Ngk Spark Plug Co Ltd | Sintered compact for thermistor element and method for producing the same, thermistor element and temperature sensor |
JP2006315946A (en) * | 2005-04-11 | 2006-11-24 | Ngk Spark Plug Co Ltd | Sintered electroconductive oxide compact, thermister element using the compact, and temperature sensor using the element |
-
2006
- 2006-04-10 JP JP2006107906A patent/JP5053564B2/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59143301A (en) * | 1983-02-03 | 1984-08-16 | 日本特殊陶業株式会社 | High temperature thermistor |
JP2003183075A (en) * | 2001-10-11 | 2003-07-03 | Ngk Spark Plug Co Ltd | Electrically conductive oxide sintered compact |
JP2004172640A (en) * | 2001-11-16 | 2004-06-17 | Ngk Spark Plug Co Ltd | Sintered body for thermistor element and its manufacturing method, and temperature sensor |
JP2004217500A (en) * | 2002-11-18 | 2004-08-05 | Ngk Spark Plug Co Ltd | Sintered compact for thermistor element and method for producing the same, thermistor element and temperature sensor |
JP2004193572A (en) * | 2002-11-29 | 2004-07-08 | Ngk Spark Plug Co Ltd | Sintered compact for thermistor, thermistor element, and temperature sensor |
JP2006315946A (en) * | 2005-04-11 | 2006-11-24 | Ngk Spark Plug Co Ltd | Sintered electroconductive oxide compact, thermister element using the compact, and temperature sensor using the element |
Cited By (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006315946A (en) * | 2005-04-11 | 2006-11-24 | Ngk Spark Plug Co Ltd | Sintered electroconductive oxide compact, thermister element using the compact, and temperature sensor using the element |
JP2010521394A (en) * | 2007-03-15 | 2010-06-24 | エプコス アクチエンゲゼルシャフト | Ceramic material and electronic ceramic component including the ceramic material |
JP2012501953A (en) * | 2008-09-12 | 2012-01-26 | エプコス アクチエンゲゼルシャフト | Ceramic material, method for producing the ceramic material, and electronic ceramic element made of the ceramic material |
US8822044B2 (en) | 2008-09-12 | 2014-09-02 | Epcos Ag | Ceramic material, method for the manufacture of a ceramic material and electroceramic component comprising the ceramic material |
JP5421267B2 (en) * | 2009-02-20 | 2014-02-19 | 日本特殊陶業株式会社 | Conductive oxide sintered body, thermistor element using the same, and temperature sensor using thermistor element |
US20110220854A1 (en) * | 2009-02-20 | 2011-09-15 | Ngk Spark Plug Co., Ltd. | Electrically conductive oxide sintered compact, thermistor element employing the same, and temperature sensor employing the same |
WO2010095691A1 (en) | 2009-02-20 | 2010-08-26 | 日本特殊陶業株式会社 | Electrically conductive oxide sintered compact, thermistor element employing the same, and temperature sensor employing the same |
US8617432B2 (en) | 2009-02-20 | 2013-12-31 | Ngk Spark Plug Co., Ltd. | Electrically conductive oxide sintered compact, thermistor element employing the same, and temperature sensor employing the same |
JP2011033343A (en) * | 2009-07-29 | 2011-02-17 | Ngk Spark Plug Co Ltd | Temperature sensor |
JP2012043911A (en) * | 2010-08-17 | 2012-03-01 | Ngk Spark Plug Co Ltd | Conductive oxide sintering body, thermistor element using it, and temperature sensor using it |
US8771559B2 (en) | 2010-08-17 | 2014-07-08 | Ngk Spark Plug Co., Ltd. | Conductive sintered oxide, thermistor element including the same, and temperature sensor including the same |
KR101299293B1 (en) * | 2010-08-17 | 2013-08-26 | 니혼도꾸슈도교 가부시키가이샤 | Conductive sintered oxide, thermistor element including the same, and temperature sensor including the same |
EP2421007A2 (en) | 2010-08-17 | 2012-02-22 | NGK Sparkplug Co., Ltd. | Conductive sintered oxide, thermistor element including the same, and temperature sensor including the same |
US8617433B2 (en) | 2010-08-17 | 2013-12-31 | Ngk Spark Plug Co., Ltd. | Conductive sintered oxide, thermistor element including the same, and temperature sensor including the same |
JP2012043910A (en) * | 2010-08-17 | 2012-03-01 | Ngk Spark Plug Co Ltd | Conductive oxide sintering body, thermistor element using it, and temperature sensor using it |
US20120043513A1 (en) * | 2010-08-17 | 2012-02-23 | Ngk Spark Plug Co., Ltd. | Conductive sintered oxide, thermistor element including the same, and temperature sensor including the same |
EP2426471A1 (en) | 2010-08-17 | 2012-03-07 | NGK Sparkplug Co., Ltd. | Conductive sintered oxide, thermistor element including the same, and temperature sensor including the same |
JP2013234105A (en) * | 2012-04-10 | 2013-11-21 | Ngk Spark Plug Co Ltd | Conductive oxide sintered body, thermistor element and temperature sensor |
JP2016039276A (en) * | 2014-08-08 | 2016-03-22 | 日本特殊陶業株式会社 | Thermistor element, method of manufacturing thermistor element, and temperature sensor using thermistor sensor |
EP3079032A1 (en) * | 2015-04-06 | 2016-10-12 | NGK Spark Plug Co., Ltd. | Sintered electrically conductive oxide, thermistor element employing the oxide, and temperature sensor employing the thermistor |
JP2016196392A (en) * | 2015-04-06 | 2016-11-24 | 日本特殊陶業株式会社 | Sintered electroconductive oxide, and thermistor element and temperature sensor employing the same |
US9790098B2 (en) | 2015-04-06 | 2017-10-17 | Ngk Spark Plug Co., Ltd. | Sintered electrically conductive oxide, thermistor element employing the oxide, and temperature sensor employing the thermistor |
JP2018131347A (en) * | 2017-02-14 | 2018-08-23 | 日本特殊陶業株式会社 | Electroconductive oxide sintered body, and thermister device and temperature sensor using the same |
Also Published As
Publication number | Publication date |
---|---|
JP5053564B2 (en) | 2012-10-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5053564B2 (en) | Conductive oxide sintered body, thermistor element using the same, and temperature sensor using thermistor element | |
JP5053563B2 (en) | Conductive oxide sintered body, thermistor element using the same, and temperature sensor using thermistor element | |
KR101155688B1 (en) | Sintered electroconductive oxide, thermister element using sintered electroconductive oxide, and temperature sensor using thermister element | |
JP5059332B2 (en) | THERMISTOR ELEMENT, TEMPERATURE SENSOR USING SAME, AND METHOD FOR PRODUCING THERMISTOR ELEMENT | |
JP5140441B2 (en) | Thermistor element and temperature sensor | |
JP5546995B2 (en) | Conductive oxide sintered body, thermistor element using the same, and temperature sensor using thermistor element | |
JP6010473B2 (en) | Conductive oxide sintered body, thermistor element and temperature sensor | |
JP5546996B2 (en) | Conductive oxide sintered body, thermistor element using the same, and temperature sensor using thermistor element | |
JP5421267B2 (en) | Conductive oxide sintered body, thermistor element using the same, and temperature sensor using thermistor element | |
CN100471820C (en) | Sintered electroconductive oxide, thermister element using sintered electroconductive oxide, and temperature sensor using thermistor element | |
JP4996196B2 (en) | THERMISTOR ELEMENT, TEMPERATURE SENSOR USING SAME, AND METHOD FOR PRODUCING THERMISTOR ELEMENT | |
JP5140450B2 (en) | Thermistor element and temperature sensor | |
JP6154283B2 (en) | Thermistor element and temperature sensor | |
JP2018131347A (en) | Electroconductive oxide sintered body, and thermister device and temperature sensor using the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20081112 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20101130 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20101221 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110221 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120110 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120309 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120703 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120726 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5053564 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150803 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |