JP5053563B2 - Conductive oxide sintered body, thermistor element using the same, and temperature sensor using thermistor element - Google Patents

Conductive oxide sintered body, thermistor element using the same, and temperature sensor using thermistor element Download PDF

Info

Publication number
JP5053563B2
JP5053563B2 JP2006107891A JP2006107891A JP5053563B2 JP 5053563 B2 JP5053563 B2 JP 5053563B2 JP 2006107891 A JP2006107891 A JP 2006107891A JP 2006107891 A JP2006107891 A JP 2006107891A JP 5053563 B2 JP5053563 B2 JP 5053563B2
Authority
JP
Japan
Prior art keywords
thermistor element
sintered body
temperature
conductive oxide
oxide sintered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006107891A
Other languages
Japanese (ja)
Other versions
JP2006315946A (en
Inventor
義人 溝口
康之 沖村
健 光岡
和重 大林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Spark Plug Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP2006107891A priority Critical patent/JP5053563B2/en
Publication of JP2006315946A publication Critical patent/JP2006315946A/en
Application granted granted Critical
Publication of JP5053563B2 publication Critical patent/JP5053563B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Thermistors And Varistors (AREA)
  • Conductive Materials (AREA)

Description

本発明は、導電性を有し、その抵抗値が温度によって変化する導電性酸化物焼結体、これを用いたサーミスタ素子、さらには、これを用いた温度センサに関する。   The present invention relates to a conductive oxide sintered body having conductivity and a resistance value that varies with temperature, a thermistor element using the same, and a temperature sensor using the same.

従来より、導電性を有し、その抵抗値(比抵抗)が温度によって変化する導電性酸化物焼結体、これを用いて温度測定を行うサーミスタ素子、さらには、このサーミスタ素子を用いた温度センサが知られている(特許文献1,2)。
このうち、特許文献1には、300℃から1000℃の範囲にわたって温度検知ができるサーミスタ素子として、Sr,Y,Mn,Al,Fe及びOを含有し、ペロブスカイト型酸化物及びガーネット型酸化物の各結晶相を含有し、Sr−Al系酸化物及びSr−Fe系酸化物の少なくとも一方の結晶相を含有するサーミスタ素子用焼結体が開示されている。
さらに、特許文献2には、室温から1000℃の範囲にわたって適切な比抵抗値を有する導電性酸化物焼結体として、M1aM2bM3cM4dO3で表され、a,b,c,dが所定の条件式を満足する導電性酸化物焼結体が開示されている。
Conventionally, a conductive oxide sintered body that has conductivity and whose resistance value (specific resistance) varies depending on temperature, a thermistor element that performs temperature measurement using the sintered body, and a temperature using this thermistor element Sensors are known (Patent Documents 1 and 2).
Among these, Patent Document 1 contains Sr, Y, Mn, Al, Fe and O as thermistor elements capable of detecting temperature over a range of 300 ° C. to 1000 ° C., and includes perovskite oxides and garnet oxides. A sintered body for a thermistor element containing each crystal phase and containing at least one crystal phase of Sr—Al-based oxide and Sr—Fe-based oxide is disclosed.
Further, in Patent Document 2, as a conductive oxide sintered body having an appropriate specific resistance value in a range from room temperature to 1000 ° C., it is expressed by M1aM2bM3cM4dO 3 , and a, b, c, and d are predetermined conditional expressions. A satisfactory conductive oxide sintered body is disclosed.

特開2004−221519号公報JP 2004-221519 A 特開2003−183075号公報JP 2003-183075 A

サーミスタ素子、温度センサの用途として、自動車エンジンなどの内燃機関からの排ガス温度測定がある。これらの用途では、近年、DPFやNOx還元触媒の保護等のため、サーミスタ素子に対し、900℃付近の高温域における温度検知が要求される。
その一方、OBDシステム(On-Board Diagnostic systems)などにおける温度センサの故障(断線)検知のため、エンジンの始動時やキーオン時など低温下でもその温度を検知可能とすることが望まれている。この場合、特に寒冷地では、始動時の温度が氷点下となる場合もあるため、−40℃でも測温可能なサーミスタ素子が望まれている。
As an application of the thermistor element and temperature sensor, there is an exhaust gas temperature measurement from an internal combustion engine such as an automobile engine. In these applications, in recent years, thermistor elements are required to detect temperature in a high temperature region around 900 ° C. in order to protect DPF and NOx reduction catalyst.
On the other hand, in order to detect a failure (disconnection) of a temperature sensor in an OBD system (On-Board Diagnostic systems) or the like, it is desired that the temperature can be detected even at a low temperature such as when the engine is started or when a key is turned on. In this case, particularly in cold regions, the starting temperature may be below freezing point, so a thermistor element capable of measuring temperature even at −40 ° C. is desired.

しかしながら、前述の特許文献1,2には、常温あるいは300℃以上から1000℃の範囲で測温可能とするサーミスタ素子あるいは焼結体が開示されており、この温度範囲で、適切な抵抗変化をするように、温度勾配定数(B定数)を4000K程度あるいはそれ以上としている(例えば特許文献2の表4参照)。
このため、これらの焼結体を用いたサーミスタ素子あるいはサーミスタ素子では、温度勾配定数(B定数)が大きく、−40℃の低温下では、サーミスタ素子の抵抗値が高くなりすぎて、その抵抗値測定が困難となるために温度計測が困難となる。
However, the above-mentioned Patent Documents 1 and 2 disclose a thermistor element or a sintered body capable of measuring temperature at room temperature or in the range of 300 ° C. or higher to 1000 ° C., and an appropriate resistance change is achieved in this temperature range. As described above, the temperature gradient constant (B constant) is about 4000 K or more (see, for example, Table 4 of Patent Document 2).
For this reason, the thermistor element or thermistor element using these sintered bodies has a large temperature gradient constant (B constant), and the resistance value of the thermistor element becomes too high at a low temperature of −40 ° C. Temperature measurement becomes difficult because measurement becomes difficult.

本発明は、かかる問題点に鑑みてなされたものであって、−40℃の低温下から900℃以上の高温域までの温度範囲において、適切に温度検知ができる導電性酸化物焼結体、これを用いたサーミスタ素子、及び、このサーミスタ素子を用いた温度センサを提供することを目的とする。   The present invention has been made in view of such problems, and in a temperature range from a low temperature of −40 ° C. to a high temperature range of 900 ° C. or higher, a conductive oxide sintered body capable of appropriately detecting temperature, An object is to provide a thermistor element using the same and a temperature sensor using the thermistor element.

その解決手段は、Y,Nd,Ybから選ばれる1種またはそれ以上の元素をM1とし、Mg,Ca,Srから選ばれる1種またはそれ以上の元素をM2とし、Mn,Feから選ばれる1種またはそれ以上の元素をM3としたとき、組成式M1aM2bM3cAldCrefで表記され、ペロブスカイト型結晶構造を有する導電性酸化物焼結体であって、a,b,c,d,e,fが下記条件式を満たす導電性酸化物焼結体である。
0.600≦a≦1.000
0≦b≦0.400
0.150≦c<0.600
0.400≦d≦0.800
0.005≦e≦0.050
0<e/(c+e)≦0.18
2.80≦f≦3.30
The solution means that one or more elements selected from Y, Nd, and Yb are M1, one or more elements selected from Mg, Ca, and Sr are M2, and one selected from Mn and Fe when the seed or more elements M3, is expressed by the composition formula M1 a M2 b M3 c Al d Cr e O f, a conductive sintered oxide that have a perovskite crystal structure, a , B, c, d, e, and f are conductive oxide sintered bodies that satisfy the following conditional expression.
0.600 ≦ a ≦ 1.000
0 ≦ b ≦ 0.400
0.150 ≦ c <0.600
0.400 ≦ d ≦ 0.800
0.005 ≦ e ≦ 0.050
0 <e / (c + e) ≦ 0.18
2.80 ≦ f ≦ 3.30

a,b,c,d,e,fが上述の条件式を満たす本発明の導電性酸化物焼結体は、−40℃〜+900℃の温度範囲における温度勾配定数(B定数)が、2000〜3000Kとなり、このような広い温度範囲において、適切に温度を測定することができる。
しかも、本発明の導電性酸化物焼結体は、ペロブスカイト型(ABO 3 )の結晶構造を有している。通常Aサイトが(M1 a M2 b )、Bサイトが(M3 c Al d Cr e )である(M1 a M2 b )(M3 c Al d Cr e )O 3 で示される組成となる。ただし、a,b,c,d,eは上述の条件を満たす。
このような結晶構造を有する場合、Aサイトを占める元素M1,M2はイオン半径が近接しており、元素同士で互いに容易に置換できるものであり、これらの元素からなる副生成物の生成が少なく、置換された組成で安定に存在する。同様に、Bサイトを占める元素M3,Al,Crはイオン半径が近接しており、元素同士で互いに容易に置換できるものであり、これらの元素からなる副生成物の生成が少なく、置換された組成で安定に存在する。このため、広い組成範囲で連続的に組成比を変えて、導電性酸化物焼結体の比抵抗値やその温度勾配定数(B定数)を調整することができる。
加えて、本発明の導電性酸化物焼結体では、元素M1をY,Nd,Ybから選ばれる1種またはそれ以上の元素とし、元素M2をMg,Ca,Srから選ばれる1種またはそれ以上の元素とし、元素M3をMn,Feから選ばれる1種またはそれ以上の元素としている。これらの元素を選択することにより、上記した範囲のB定数が安定して得られるものとし易く好ましい。
The conductive oxide sintered body of the present invention in which a, b, c, d, e, and f satisfy the above-described conditional expression has a temperature gradient constant (B constant) in the temperature range of −40 ° C. to + 900 ° C. of 2000. The temperature can be appropriately measured in such a wide temperature range.
Moreover, the conductive oxide sintered body of the present invention has a perovskite (ABO 3 ) crystal structure. Usually the A site (M1 a M2 b), B site a composition represented by a (M3 c Al d Cr e) (M1 a M2 b) (M3 c Al d Cr e) O 3. However, a, b, c, d, and e satisfy the above-described conditions.
In the case of such a crystal structure, the elements M1 and M2 occupying the A site have close ionic radii and can be easily replaced with each other, and there are few by-products formed of these elements. Exist stably in the substituted composition. Similarly, the elements M3, Al, and Cr occupying the B site have close ionic radii and can be easily replaced with each other, and the generation of by-products composed of these elements is small and replaced. Stable in composition. Therefore, the specific resistance value of the conductive oxide sintered body and its temperature gradient constant (B constant) can be adjusted by continuously changing the composition ratio in a wide composition range.
In addition, in the conductive oxide sintered body of the present invention, the element M1 is one or more elements selected from Y, Nd, and Yb, and the element M2 is one or more elements selected from Mg, Ca, and Sr. The above elements are used, and the element M3 is one or more elements selected from Mn and Fe. By selecting these elements, it is preferable that the B constant in the above range can be obtained stably.

なお、導電性酸化物焼結体を構成する結晶粒子の大きさを示す平均粒径は、好ましくは7μm以下、より好ましくは0.1〜7μm、更に好ましくは0.1〜3μmである。結晶粒子の平均粒子径が大きくなりすぎると、狙いとする材料組成にズレを生じた導電性酸化物焼結体が得られることがあり、この焼結体あるいはこれを用いたサーミスタ素子の特性の不安定化を招く傾向があるためである。   In addition, the average particle diameter which shows the magnitude | size of the crystal particle which comprises an electroconductive oxide sintered compact becomes like this. Preferably it is 7 micrometers or less, More preferably, it is 0.1-7 micrometers, More preferably, it is 0.1-3 micrometers. If the average particle diameter of the crystal particles becomes too large, a conductive oxide sintered body with a deviation in the target material composition may be obtained. The characteristics of the sintered body or the thermistor element using the sintered body may be obtained. This is because it tends to cause instability.

さらに、上記の導電性酸化物焼結体であって、前記a,bが下記条件式を満たす導電性酸化物焼結体とすると良い。
0.600≦a<1.000
0<b≦0.400
Furthermore, the conductive oxide sintered body may be a conductive oxide sintered body in which the a and b satisfy the following conditional expression.
0.600 ≦ a <1.000
0 <b ≦ 0.400

本発明の導電性酸化物焼結体では、0.600≦a<1.000,及び0<b≦0.400、つまり、a<1.000,b>0としている。即ち、この焼結体は、Laを除く3A族元素のうち少なくとも1種の元素M1のほか、2A族のうち少なくとも1種の元素M2を必須成分として含みつつ、a及びbが上述の条件式を満たす組成を有する。この導電性酸化物焼結体(あるいはこれを用いたサーミスタ素子)では、元素M2を含まない(b=0)のものに比して、これを多数製造する場合にも、各々の導電性酸化物焼結体(サーミスタ素子)の個体間の特性バラツキ、焼成ロット間の特性バラツキを小さくすることができる利点がある。   In the conductive oxide sintered body of the present invention, 0.600 ≦ a <1.000 and 0 <b ≦ 0.400, that is, a <1.000, b> 0. That is, this sintered body contains at least one element M1 of the 3A group elements excluding La, and at least one element M2 of the 2A group as essential components, and a and b are the above-described conditional expressions. It has the composition which satisfy | fills. In this conductive oxide sintered body (or a thermistor element using the same), even when a large number of these are produced as compared with those containing no element M2 (b = 0), each conductive oxidation There is an advantage that it is possible to reduce the characteristic variation between the individual sintered compacts (thermistor elements) and the characteristic variation between the firing lots.

さらに、上記導電性酸化物焼結体であって、a,b,c,d,e,fが下記の条件式を満たす導電性酸化物焼結体とすると良い。
0.820≦a≦0.950
0.050≦b≦0.180
0.181≦c≦0.585
0.410≦d≦0.790
0.005≦e≦0.050
0<e/(c+e)≦0.18
2.91≦f≦3.27
Furthermore, the conductive oxide sintered body may be a conductive oxide sintered body in which a, b, c, d, e, and f satisfy the following conditional expressions.
0.820 ≦ a ≦ 0.950
0.050 ≦ b ≦ 0.180
0.181 ≦ c ≦ 0.585
0.410 ≦ d ≦ 0.790
0.005 ≦ e ≦ 0.050
0 <e / (c + e) ≦ 0.18
2.91 ≦ f ≦ 3.27

a〜fが上述の条件式を満たす本発明の導電性酸化物焼結体では、より確実に、−40℃〜900℃の温度範囲におけるB定数を2000〜3000Kの範囲内に調整することができる。
またa〜fが上述の条件式を満たすこの導電性酸化物焼結体では、a〜fをある数値に特定した導電性焼結体(これを用いたサーミスタ素子)を複数製造する場合にも、各導電性焼結体(サーミスタ素子)の個体間のばらつき、焼成ロット間のばらつきを一層小さくすることができる。
In the conductive oxide sintered body of the present invention in which a to f satisfy the above-described conditional expression, the B constant in the temperature range of −40 ° C. to 900 ° C. can be more reliably adjusted to the range of 2000 to 3000K. it can.
Moreover, in this conductive oxide sintered body in which a to f satisfy the above-described conditional expression, a plurality of conductive sintered bodies (thermistor elements using the same) in which a to f are specified to a certain numerical value are also manufactured. The variation among individual conductive sintered bodies (thermistor elements) and the variation among firing lots can be further reduced.

さらに、a,b,c,d,e,fが下記の条件式を満たす導電性酸化物焼結体とするのが好ましい。
0.850≦b≦0.940
0.060≦b≦0.150
0.181≦c≦0.545
0.450≦d≦0.780
0.005≦e≦0.050
0<e/(c+e)≦0.18
2.92≦f≦3.25
Furthermore, it is preferable to use a conductive oxide sintered body in which a, b, c, d, e, and f satisfy the following conditional expressions.
0.850 ≦ b ≦ 0.940
0.060 ≦ b ≦ 0.150
0.181 ≦ c ≦ 0.545
0.450 ≦ d ≦ 0.780
0.005 ≦ e ≦ 0.050
0 <e / (c + e) ≦ 0.18
2.92 ≦ f ≦ 3.25

あるいは、前記いずれかに記載の導電性酸化物焼結体であって、前記元素M1がYであり、前記元素M2がSrであり、前記M3がMnである導電性酸化物焼結体とすると良い。   Alternatively, the conductive oxide sintered body according to any one of the above, wherein the element M1 is Y, the element M2 is Sr, and the M3 is Mn. good.

特に本発明の導電性酸化物焼結体では、元素M1をYとし、元素M2をSrとし、元素M3をMnとしている。これにより、上記した範囲のB定数が安定して得られるものとしやすく好ましい。   In particular, in the conductive oxide sintered body of the present invention, the element M1 is Y, the element M2 is Sr, and the element M3 is Mn. Thereby, it is easy to obtain a B constant in the above range stably, which is preferable.

なお、本発明の導電性酸化物焼結体を作製する際の焼成条件(酸化、還元等の焼成雰囲気、及び焼成温度など)や、Aサイト及びBサイトにおける元素同士の置換の量比により、酸素の過剰或いは欠損を生じることがある。従って、上述の組成式における酸素原子と(M1aM2b)とのモル比、及び酸素原子と(M3cAldCre)とのモル比は、それぞれ正確に3:1となっていなくても、ペロブスガイト型の結晶構造が維持されていればよい。   In addition, depending on the firing conditions (the firing atmosphere such as oxidation and reduction, and the firing temperature) when producing the conductive oxide sintered body of the present invention, and the substitutional ratio of elements at the A site and B site, Oxygen excess or deficiency may occur. Therefore, even if the molar ratio of oxygen atom to (M1aM2b) and the molar ratio of oxygen atom to (M3cAldCre) in the above composition formula are not exactly 3: 1, the perovskite-type crystal structure is It only has to be maintained.

さらに、上記いずれか1項に記載の導電性酸化物焼結体を用いてなるサーミスタ素子とすると良い。   Further, a thermistor element using the conductive oxide sintered body according to any one of the above is preferable.

本発明のサーミスタ素子は、前述の導電性酸化物焼結体を用いているので、−40〜900℃の広い温度範囲にわたって温度測定が可能な、適切な温度勾配定数を有するサーミスタ素子となる。   Since the thermistor element of the present invention uses the above-mentioned conductive oxide sintered body, it becomes a thermistor element having an appropriate temperature gradient constant capable of temperature measurement over a wide temperature range of −40 to 900 ° C.

さらに、上記のサーミスタ素子を用いてなる温度センサとすると良い。   Furthermore, a temperature sensor using the thermistor element is preferable.

本発明の温度センサでは、前述の導電性酸化物焼結体を用いたサーミスタ素子を用いてなるので、−40〜900℃の広い温度範囲にわたって温度測定が可能な温度センサとなる。   In the temperature sensor of the present invention, since the thermistor element using the conductive oxide sintered body is used, the temperature sensor can measure the temperature over a wide temperature range of −40 to 900 ° C.

本発明に係る導電性酸化物焼結体1を用いたサーミスタ素子2の実施例を、比較例と対比して説明する。   An example of the thermistor element 2 using the conductive oxide sintered body 1 according to the present invention will be described in comparison with a comparative example.

(実施例1〜8)
まず、実施例1〜8及び比較例1,2にかかる導電性酸化物焼結体1及びサーミスタ素子2の製造について説明する。原料粉末として、Y23,SrCO3,MnO2,Al23,Cr23(全て純度99%以上の市販品を用いた。)を用いて、化学式(組成式)YaSrbMncAldCreO3としたときのa,b,c,d,eが、表1に示すモル数となるように、それぞれ秤量し、これらの原料粉末を湿式混合して乾燥することにより原料粉末混合物を調整した。次いで、この原料粉末混合物を大気雰囲気下1400℃で2Hr仮焼し、平均粒径1〜2μmの仮焼粉末を得た。その後、樹脂ポットと高純度Al23玉石とを用い、エタノールを分散媒として、湿式混合粉砕を行った。
(Examples 1-8)
First, manufacture of the electroconductive oxide sintered compact 1 and the thermistor element 2 concerning Examples 1-8 and Comparative Examples 1 and 2 is demonstrated. As raw material powder, Y 2 O 3 , SrCO 3 , MnO 2 , Al 2 O 3 , Cr 2 O 3 (all commercially available products with a purity of 99% or more) were used, and the chemical formula (composition formula) YaSrbMncAldCreO 3 and The raw material powder mixture was prepared by weighing each of the raw material powders so that a, b, c, d, and e would be the number of moles shown in Table 1, and wet mixing and drying these raw material powders. Subsequently, this raw material powder mixture was calcined for 2 hours at 1400 ° C. in an air atmosphere to obtain a calcined powder having an average particle diameter of 1 to 2 μm. Thereafter, wet mixing and pulverization were performed using a resin pot and high-purity Al 2 O 3 boulder using ethanol as a dispersion medium.

次いで得られたスラリーを80℃で2Hr乾燥し、サーミスタ合成粉末を得た。その後このサーミスタ合成粉末100重量部に対し、ポリビニルブチラールを主成分とするバインダーを20重量部添加して混合、乾燥する。さらに、250μmメッシュの篩を通して造粒し、造粒粉末を得た。
なお、使用しうるバインダーとしては、上述のポリビニルブチラールに特に限定されず、例えばポリビニルアルコール、アクリル系バインダー等が挙げられる。バインダーの配合量は上述の仮焼粉末全量に対し、通常5〜20重量部、好ましくは10〜20重量部とする。
また、バインダーと混合するにあたり、サーミスタ合成粉末の平均粒子径は2.0μm以下としておくのが好ましく、これによって均一に混合することができる。
Next, the obtained slurry was dried at 80 ° C. for 2 hours to obtain a thermistor synthetic powder. Thereafter, 20 parts by weight of a binder mainly composed of polyvinyl butyral is added to 100 parts by weight of the thermistor synthetic powder, mixed and dried. Furthermore, it granulated through the sieve of a 250 micrometer mesh, and the granulated powder was obtained.
In addition, as a binder which can be used, it is not specifically limited to the above-mentioned polyvinyl butyral, For example, polyvinyl alcohol, an acrylic binder, etc. are mentioned. The amount of the binder is usually 5 to 20 parts by weight, preferably 10 to 20 parts by weight, based on the total amount of the calcined powder.
Moreover, when mixing with a binder, it is preferable that the average particle diameter of the thermistor synthetic powder is 2.0 μm or less, whereby uniform mixing is possible.

ついで上述の造粒粉末を用いて、金型成型法にてプレス成形(プレス圧:4500kg/cm3)して、図1に示すように、Pt−Rh合金製の一対の電極線2a,2bの一端側が埋設された六角形板状(厚さ1.24mm)の未焼成成形体を得る。その後、大気中1500℃で2Hr焼成し、実施例1〜8のサーミスタ素子2を製造した。なお、比較例1,2に係るサーミスタ素子も、同様にして製造した。
サーミスタ素子2の各寸法は、一辺1.15mmの六角形状で、厚み1.00mm、電極線2a,2bの径φ0.3mm、電極中心間距離0.74mm(ギャップ0.44mm)、電極挿入量1.10mmである。
Subsequently, the above granulated powder was used for press molding (press pressure: 4500 kg / cm 3 ) by a die molding method, and a pair of electrode wires 2a and 2b made of Pt—Rh alloy as shown in FIG. A non-fired molded body having a hexagonal plate shape (thickness: 1.24 mm) in which one end thereof is embedded is obtained. Then, thermistor element 2 of Examples 1-8 was manufactured by baking for 2 hours at 1500 ° C. in the atmosphere. The thermistor elements according to Comparative Examples 1 and 2 were manufactured in the same manner.
Each dimension of the thermistor element 2 is a hexagonal shape with a side of 1.15 mm, a thickness of 1.00 mm, a diameter φ0.3 mm of the electrode wires 2a and 2b, an electrode center distance of 0.74 mm (gap 0.44 mm), and an electrode insertion amount 1.10 mm.

ついで、本実施例1〜8のサーミスタ素子について、以下のようにしてB定数(温度勾配定数)を測定した。即ち、まず、サーミスタ素子2を、T(-40)=233K(=-40℃)の環境下に放置し、その状態でのサーミスタ素子2の初期抵抗値R(-40)を測定した。ついで、サーミスタ素子2を、T(900)=1173K(=900℃)の環境下に放置し、その状態でのサーミスタ素子2の初期抵抗値R(900)を測定した。そして、B定数:B(-40〜900)を、以下の式(1)に従って算出した。
B(-40〜900)=ln[R(900)/R(-40)]/[1/T(900)−1/T(-40)] …(1)
なお、R(-40):−40℃におけるサーミスタ素子の抵抗値(kΩ)、R(900):900℃におけるサーミスタ素子の抵抗値(kΩ)である。
Next, for the thermistor elements of Examples 1 to 8, the B constant (temperature gradient constant) was measured as follows. That is, first, the thermistor element 2 was left in an environment of T (−40) = 233 K (= −40 ° C.), and the initial resistance value R (−40) of the thermistor element 2 in that state was measured. Next, the thermistor element 2 was left in an environment of T (900) = 1173K (= 900 ° C.), and the initial resistance value R (900) of the thermistor element 2 in that state was measured. And B constant: B (-40-900) was computed according to the following formula | equation (1).
B (-40 ~ 900) = ln [R (900) / R (-40)] / [1 / T (900) -1 / T (-40)] (1)
R (-40): resistance value (kΩ) of the thermistor element at −40 ° C., R (900): resistance value (kΩ) of the thermistor element at 900 ° C.

さらに、実施例3に係るサーミスタ素子2について、後述するようにして温度センサ100に組み込み、この温度センサ100の状態でのサーミスタ素子2の初期抵抗値R(-40)及びR(900)を測定した。ついで、大気中で1050℃×50Hr保持し、その後、上述と同様にして、−40℃及び900℃におけるサーミスタ素子の熱処理後抵抗値R'(-40)、R'(900)をそれぞれ測定した。その上で、−40℃における初期抵抗値R(-40)と熱処理後抵抗値R'(-40)との比較から、熱処理による抵抗変化の温度変化換算値CT(-40)(単位:deg)を、下記式(2)により算出した。900℃における初期抵抗値R(900)と熱処理後抵抗値R'(900)との比較からも、同様の式(3)により温度変化換算値CT(900)を算出した。その上で、温度変化換算値CT(-40)とCT(900)うち大きい方を、温度変化換算値CT(deg)として表1に示した。
CT(-40)=[(B(-40〜900)×T(-40))/[ln(R'(-40)/R(-40))×T(-40)+B(-40〜900)]]−T(-40) …(2)
CT(900)=[(B(-40〜900)×T(900))/[ln(R'(900)/R(900))×T(900)+B(-40〜900)]]−T(900) …(3)
なお、温度センサ100のうち、金属チューブ3の内周面及びシース部材8を構成する金属製の外筒には、予め酸化皮膜が形成されている。これにより、この温度センサ100のサーミスタ素子2近傍を高温とした場合でも、金属チューブ3やシース8の外筒の酸化が抑制され、この金属チューブ3内の雰囲気が還元雰囲気となることが防止されている。従って、センサ素子2が還元されて、その抵抗値が変化することが防止されている。
Further, the thermistor element 2 according to the third embodiment is incorporated in the temperature sensor 100 as described later, and the initial resistance values R (-40) and R (900) of the thermistor element 2 in the state of the temperature sensor 100 are measured. did. Next, the temperature was maintained at 1050 ° C. × 50 Hr in the atmosphere, and then the resistance values R ′ (− 40) and R ′ (900) after the heat treatment of the thermistor element at −40 ° C. and 900 ° C. were measured in the same manner as described above. . Then, from the comparison between the initial resistance value R (−40) at −40 ° C. and the post-heat treatment resistance value R ′ (− 40), the temperature change converted value CT (−40) of the resistance change due to the heat treatment (unit: deg ) Was calculated by the following formula (2). From the comparison between the initial resistance value R (900) at 900 ° C. and the post-heat treatment resistance value R ′ (900), the temperature change conversion value CT (900) was calculated by the same equation (3). In addition, the larger one of the temperature change converted values CT (-40) and CT (900) is shown in Table 1 as the temperature change converted value CT (deg).
CT (-40) = [(B (-40 ~ 900) × T (-40)) / [ln (R '(-40) / R (-40)) × T (-40) + B (-40 ~ 900)]]-T (-40) (2)
CT (900) = [(B (-40 to 900) × T (900)) / [ln (R '(900) / R (900)) × T (900) + B (-40 to 900)]] -T (900) (3)
Note that, in the temperature sensor 100, an oxide film is formed in advance on the inner peripheral surface of the metal tube 3 and the metal outer cylinder constituting the sheath member 8. Thereby, even when the vicinity of the thermistor element 2 of the temperature sensor 100 is set to a high temperature, oxidation of the outer tube of the metal tube 3 and the sheath 8 is suppressed, and the atmosphere in the metal tube 3 is prevented from becoming a reducing atmosphere. ing. Therefore, the sensor element 2 is prevented from being reduced and its resistance value is changed.

さらに、各実施例及び比較例に係るサーミスタ素子2(単体)について、繰り返し温度変化を与えた場合の抵抗変化を評価した。具体的には、室温(25℃)から−40℃まで、-80deg/Hrの降温速度で冷却し、−40℃環境下に2.5Hr放置後、サーミスタ素子の抵抗値R1(-40)を測定する。その後、900℃まで+300deg/Hrの昇温速度で昇温させ、900℃環境下に2Hr保持し、抵抗値R1(900)を測定する。ついで再び、−40℃まで-80deg/Hrの降温速度で冷却し、−40℃環境下に2.5Hr保持し、サーミスタ素子の抵抗値R2(-40)を測定する。その後さらに、900℃まで+300deg/Hrの昇温速度で昇温させ、900℃環境下に2Hr保持し、抵抗値R2(900)を測定する。
その上で、−40℃における抵抗値R1(-40)と抵抗値R2(-40)との比較から、繰り返し温度変化による抵抗変化の温度変化換算値DT(-40)(単位:deg)を、下記式(4)により算出した。また、900℃における抵抗値R1(900)と抵抗値R2(900)との比較からも、同様の式(5)により温度変化換算値DT(900)を算出した。その上で、温度変化換算値DT(-40)とDT(900)うち大きい方を、温度変化換算値DT(deg)として表1に示した。
DT(-40)=[(B(-40〜900)×T(-40))/[ln(R2(-40)/R1(-40))×T(-40)+B(-40〜900)]]−T(-40) …(4)
DT(900)=[(B(-40〜900)×T(900))/[ln(R2(900)/R1(900))×T(900)+B(-40〜900)]]−T(900) …(5)
これらの結果を、表1に示す。
Furthermore, with respect to the thermistor element 2 (single unit) according to each of the examples and the comparative example, the resistance change when the temperature change was repeatedly applied was evaluated. Specifically, it is cooled from room temperature (25 ° C.) to −40 ° C. at a temperature decrease rate of −80 deg / Hr, and left at −40 ° C. for 2.5 hours, and the resistance value R1 (−40) of the thermistor element is taking measurement. Thereafter, the temperature is increased to 900 ° C. at a temperature increase rate of +300 deg / Hr, maintained at 900 ° C. for 2 hours, and the resistance value R1 (900) is measured. Next, the temperature is cooled again to −40 ° C. at a temperature drop rate of −80 deg / Hr, maintained at −40 ° C. for 2.5 hours, and the resistance value R 2 (−40) of the thermistor element is measured. Thereafter, the temperature is further increased to 900 ° C. at a temperature increase rate of +300 deg / Hr, maintained at 900 ° C. for 2 hours, and the resistance value R2 (900) is measured.
Based on the comparison between the resistance value R1 (-40) and resistance value R2 (-40) at -40 ° C, the temperature change conversion value DT (-40) (unit: deg) It was calculated by the following formula (4). Further, from the comparison between the resistance value R1 (900) and the resistance value R2 (900) at 900 ° C., the temperature change converted value DT (900) was calculated by the same equation (5). The larger one of the temperature change converted values DT (-40) and DT (900) is shown in Table 1 as the temperature change converted value DT (deg).
DT (-40) = [(B (-40 ~ 900) x T (-40)) / [ln (R2 (-40) / R1 (-40)) x T (-40) + B (-40 ~ 900)]] − T (-40) (4)
DT (900) = [(B (-40 to 900) × T (900)) / [ln (R2 (900) / R1 (900)) × T (900) + B (-40 to 900)]] − T (900) ... (5)
These results are shown in Table 1.

Figure 0005053563
Figure 0005053563

この表1によれば、組成式YaSrbMncAldCreOfの値a,b,c,d,e,fが、下記の条件式を満たす、実施例1〜8の組成を有する導電性酸化物焼結体1を用いたサーミスタ素子2では、B定数:B(-40〜900)が、B(-40〜900)=2000〜3000Kという、従来に比して相対的に低い値の導電性酸化物焼結体1(サーミスタ素子2)となる。このような導電性酸化物焼結体1を用いたサーミスタ素子2では、−40℃の低温下から900℃の高温までの広い範囲にわたり、適切な抵抗値を有し、適切に温度測定が可能となる。
値fについては、表1に記載していないが、蛍光X線分析を用いたY,Sr,Mn,Al,Cr,Oの各元素の組成比から、f=2.80〜3.30の範囲内であることを確認している。これは、後述する実施例9〜17における導電性酸化物焼結体1(サーミスタ素子2)についても同様である。
0.600≦a≦1.000
0≦b≦0.400
0.150≦c<0.600
0.400≦d≦0.800
0<e≦0.050
0<e/(c+e)≦0.18
2.80≦f≦3.30
According to Table 1, the conductive oxide sintered body 1 having the compositions of Examples 1 to 8 in which the values a, b, c, d, e, and f of the composition formula YaSrbMncAldCreOf satisfy the following conditional expressions. In the used thermistor element 2, the B constant: B (−40 to 900) is B (−40 to 900) = 2000 to 3000 K, which is a relatively low value compared to the conventional conductive oxide sintered body. 1 (thermistor element 2). The thermistor element 2 using such a conductive oxide sintered body 1 has an appropriate resistance value over a wide range from a low temperature of −40 ° C. to a high temperature of 900 ° C., and can perform temperature measurement appropriately. It becomes.
Although the value f is not described in Table 1, it is in the range of f = 2.80 to 3.30 from the composition ratio of each element of Y, Sr, Mn, Al, Cr, O using fluorescent X-ray analysis. I have confirmed that. The same applies to the conductive oxide sintered body 1 (thermistor element 2) in Examples 9 to 17 described later.
0.600 ≦ a ≦ 1.000
0 ≦ b ≦ 0.400
0.150 ≦ c <0.600
0.400 ≦ d ≦ 0.800
0 <e ≦ 0.050
0 <e / (c + e) ≦ 0.18
2.80 ≦ f ≦ 3.30

なお、実施例8では、Srを含まない導電性酸化物焼結体1を用いたサーミスタ素子2を示したが、Yのほか、Srを含む導電性酸化物焼結体1(サーミスタ素子2)を用いるのが好ましい。
即ち、実施例1〜7に示すように、a<1.000,b>0とするのが好ましい。Sr(2A族の元素M2)を含まない(b=0)実施例8にかかる焼結体1では、この焼結体1(サーミスタ素子2)を多数製造すると、各個体間の特性バラツキや焼成ロット間の特性ばらつきが大きくなり易い傾向がある。これに比して、Y(3A族の元素M1)のほかにSr(2A族の元素M2)を含む、例えば実施例1〜7の焼結体1では、相対的に、個体間の特性バラツキや焼成ロット間の特性ばらつきが小さくできる。
In Example 8, the thermistor element 2 using the conductive oxide sintered body 1 containing no Sr was shown. However, in addition to Y, the conductive oxide sintered body 1 containing Sr (thermistor element 2). Is preferably used.
That is, as shown in Examples 1 to 7, it is preferable that a <1.000, b> 0. In the sintered body 1 according to Example 8 that does not contain Sr (2A group element M2), when a large number of this sintered body 1 (thermistor element 2) is manufactured, characteristic variation and firing among the individual bodies There is a tendency that characteristic variation between lots tends to increase. In comparison with this, for example, in the sintered body 1 of Examples 1 to 7 containing Sr (2A group element M2) in addition to Y (3A group element M1), the characteristic variation among individuals is relatively large. And variations in characteristics between firing lots can be reduced.

なお、B定数の範囲は、好ましくは、B(-40〜900)=2000〜2900Kとなるようにすると良く、さらに好ましくは、B(-40〜900)=2000〜2800Kとなるようにすると良い。   The range of the B constant is preferably B (-40 to 900) = 2000 to 2900K, and more preferably B (-40 to 900) = 2000 to 2800K. .

一方、比較例1,2を見ると理解できるように、本発明の範囲を外れると、B定数:B(-40〜900)が、B(-40〜900)=2000〜3000Kに範囲を外れることが判る。具体的には、dの値が上述の条件式の範囲(d≦0.800)を超えている比較例1の場合、及びe/(c+e)の値が上述の条件式の範囲(e/(c+e)≦0.18)を超えている比較例2の場合のいずれの場合にも、B定数が3000Kを越えることが判る。この場合には、−40℃〜900℃の温度範囲における、サーミスタ素子の抵抗変化が大きくなりすぎて、この温度範囲全域に亘っての適切な抵抗測定が困難となり、適切な温度測定が困難となる。
また、比較例としては示していないが、組成によっては(例えば、Alのモル比を示すdが上述の条件式の範囲(d≧0.400)を下回る場合などには)、B定数が2000Kを下回ることもある。この場合には、サーミスタ素子の抵抗変化が小さくなりすぎて、−40℃〜900℃の温度範囲全域に亘っての抵抗測定は可能であるが、抵抗値の測定精度が低下することにより、適切な温度測定が困難となる。
なお、この表1における比較例2は、特許文献2において実施例20として示されているものに相当する。
On the other hand, as can be seen from Comparative Examples 1 and 2, when the value is out of the range of the present invention, the B constant: B (−40 to 900) is out of the range of B (−40 to 900) = 2000 to 3000K. I understand that. Specifically, in the case of Comparative Example 1 where the value of d exceeds the range of the above conditional expression (d ≦ 0.800), and the value of e / (c + e) is within the range of the above conditional expression (e / It can be seen that the B constant exceeds 3000K in any case of Comparative Example 2 exceeding (c + e) ≦ 0.18). In this case, the resistance change of the thermistor element in the temperature range of −40 ° C. to 900 ° C. becomes too large, making it difficult to measure appropriate resistance over the entire temperature range, making it difficult to measure temperature appropriately. Become.
Although not shown as a comparative example, depending on the composition (for example, when d indicating the molar ratio of Al is below the range of the conditional expression (d ≧ 0.400)), the B constant is 2000K. May fall below. In this case, the resistance change of the thermistor element becomes too small, and resistance measurement over the entire temperature range of −40 ° C. to 900 ° C. is possible. Temperature measurement becomes difficult.
Note that Comparative Example 2 in Table 1 corresponds to that shown as Example 20 in Patent Document 2.

さらに、実施例3の導電性酸化物焼結体1を用いたサーミスタ素子2において、温度変化換算値CT(deg)が+5degとなった。当該焼結体1(サーミスタ素子2)が熱履歴に対する抵抗変化が少ない特性を有するものか否かを判断する目安が、温度変化換算値CTが±10degであると考えられる。実施例3の焼結体1(サーミスタ素子2)は、この目安の範囲に含まれており、比較例2の焼結体とも遜色のない、良好な温度特性の高温耐久性を示し、熱履歴に対する抵抗変化が小さい焼結体1、及びこれを用いたサーミスタ素子2となることが判る。
なお、他の実施例1,2,4〜8の焼結体については、温度変化換算値CTの測定結果を明示していない。
Furthermore, in the thermistor element 2 using the conductive oxide sintered body 1 of Example 3, the temperature change converted value CT (deg) was +5 deg. A standard for determining whether or not the sintered body 1 (thermistor element 2) has a characteristic that the resistance change with respect to the thermal history is small is considered that the temperature change conversion value CT is ± 10 deg. The sintered body 1 (thermistor element 2) of Example 3 is included in the range of this guideline, exhibits a high temperature durability with good temperature characteristics that is comparable to the sintered body of Comparative Example 2, and has a thermal history. It turns out that it becomes the sintered compact 1 with a small resistance change with respect to, and the thermistor element 2 using this.
In addition, about the sintered compact of other Examples 1, 2, 4-8, the measurement result of temperature change conversion value CT is not specified.

但し、前述の方法で測定した温度変化換算値DTについては、いずれの実施例及び比較例についても測定してある。いずれの実施例でも、この温度変化換算値DTは±0degとなった。
この温度変化換算値DTついても、当該焼結体1(サーミスタ素子2)が熱履歴に対する抵抗変化が少ない特性を有するものか否かを判断する目安が、温度変化換算値DTが±10degであると考えられる。各実施例1〜8の焼結体1(サーミスタ素子2)は、この目安の範囲に含まれており、本実施例1〜8のサーミスタ素子2は、いずれも熱履歴に対する抵抗変化が小さく、実用上問題なく使用可能な焼結体(サーミスタ素子)であることが判る。特に、本実施例1〜7では、いずれも温度変化換算値DTが±0degとなったことから、特に本実施例1〜7で用いた元素及び組成比において、良好な熱履歴に対する抵抗変化、温度特性の高温耐久性を有していることが判る。
However, the temperature change conversion value DT measured by the above-described method is measured for any of the examples and comparative examples. In any of the examples, the temperature change conversion value DT was ± 0 deg.
The temperature change conversion value DT is ± 10 deg as a guideline for determining whether or not the sintered body 1 (thermistor element 2) has the characteristic that the resistance change with respect to the thermal history is small even with this temperature change conversion value DT. it is conceivable that. The sintered bodies 1 (thermistor elements 2) of Examples 1 to 8 are included in the range of this guideline, and the thermistor elements 2 of Examples 1 to 8 all have a small resistance change with respect to thermal history. It turns out that it is a sintered body (thermistor element) which can be used practically without any problem. In particular, in all of Examples 1 to 7, since the temperature change conversion value DT was ± 0 deg., Particularly in the elements and composition ratios used in Examples 1 to 7, resistance change with respect to a good thermal history, It turns out that it has the high temperature durability of a temperature characteristic.

ついで、本実施例に係るサーミスタ素子2を用いた温度センサ100の構成について、図2を参照して説明する。この温度センサ100は、サーミスタ素子2を感温素子として用いるものであり、この温度センサ100を自動車の排気管の取付部に装着して、サーミスタ素子2を排気ガスが流れる排気管内に配置させて、排気ガスの温度検出に使用するものである。   Next, the configuration of the temperature sensor 100 using the thermistor element 2 according to the present embodiment will be described with reference to FIG. The temperature sensor 100 uses the thermistor element 2 as a temperature sensing element. The temperature sensor 100 is mounted on a mounting portion of an exhaust pipe of an automobile, and the thermistor element 2 is disposed in an exhaust pipe through which exhaust gas flows. It is used for detecting the temperature of exhaust gas.

温度センサ100のうち、軸線に沿う方向(以下、軸線方向ともいう)に延びる金属チューブ3は、先端部31側(図2中、下方)が閉塞した有底筒状をなしており、この先端部31の内側に本実施例のサーミスタ素子2を収納してなる。この金属チューブ3は、予め熱処理が施されており、その外側面及び内側面が酸化されて酸化皮膜に覆われている。金属チューブ3の内側でサーミスタ素子2の周囲には、セメント10が充填されて、サーミスタ素子2を固定している。金属チューブ3の後端32は開放されており、この後端32部分は、フランジ部材4の内側に圧入、挿通されている。   In the temperature sensor 100, the metal tube 3 extending in the direction along the axis (hereinafter also referred to as the axial direction) has a bottomed cylindrical shape with the tip 31 side (downward in FIG. 2) closed. The thermistor element 2 of this embodiment is housed inside the portion 31. This metal tube 3 is heat-treated in advance, and the outer side surface and the inner side surface thereof are oxidized and covered with an oxide film. Cement 10 is filled around the thermistor element 2 inside the metal tube 3 to fix the thermistor element 2. The rear end 32 of the metal tube 3 is open, and the rear end 32 portion is press-fitted and inserted into the flange member 4.

フランジ部材4は、軸線方向に延びる筒状の鞘部42と、この鞘部42の先端側(図2中、下方)に位置し、この鞘部42よりも大きい外径を有して径方向外側に突出するフランジ部41とを備えている。フランジ部41の先端側には、排気管の取付部とシールを行うテーパ状の座面45を有している。また、鞘部42は、先端側に位置する先端側鞘部44とこれよりも径小の後端側鞘部43とからなる二段形状をなしている。   The flange member 4 is positioned on the distal end side (downward in FIG. 2) of the cylindrical sheath portion 42 extending in the axial direction, and has a larger outer diameter than the sheath portion 42 and has a radial direction. And a flange portion 41 protruding outward. On the distal end side of the flange portion 41, there is a tapered seating surface 45 that performs sealing with the attachment portion of the exhaust pipe. Moreover, the sheath part 42 has comprised the two-stage shape which consists of the front end side sheath part 44 located in the front end side, and the rear end side sheath part 43 smaller in diameter than this.

そして、フランジ部材4内に圧入された金属チューブ3は、その外周面が後端側鞘部43と周方向全周に亘り部位L1でレーザー溶接されることで、フランジ4に強固に固定されている。また、フランジ部材4の先端側鞘部44には、概略円筒形状の金属カバー部材6が圧入され、周方向全周に亘り部位L2でレーザ溶接されて、気密状態で接合されている。   The metal tube 3 press-fitted into the flange member 4 is firmly fixed to the flange 4 by laser welding of the outer peripheral surface of the metal tube 3 at the portion L1 over the entire circumference in the circumferential direction. Yes. Moreover, the substantially cylindrical metal cover member 6 is press-fitted into the distal end side sheath portion 44 of the flange member 4, and is laser-welded at the portion L2 over the entire circumference in the circumferential direction and joined in an airtight state.

また、フランジ部材4及び金属カバー部材6の周囲には、六角ナット部51およびネジ部52を有する取り付け部材5が回動自在に嵌挿されている。本実施例の温度センサ100は、排気管(図示しない)の取付部にフランジ部材4のフランジ部41の座面45を当接させ、ナット5を取付部に螺合させることにより、排気管に固定する。   Further, a mounting member 5 having a hexagonal nut portion 51 and a screw portion 52 is rotatably fitted around the flange member 4 and the metal cover member 6. The temperature sensor 100 of the present embodiment is configured so that the seat surface 45 of the flange portion 41 of the flange member 4 is brought into contact with the attachment portion of the exhaust pipe (not shown) and the nut 5 is screwed into the attachment portion, thereby Fix it.

金属チューブ3、フランジ部材4および金属カバー部材6の内側には、一対の芯線7を内包するシース部材8が配置されている。このシース部材8は、金属製の外筒と、導電性の一対の芯線7と、外筒内に充填され外筒と各芯線7のと間を絶縁しつつ芯線7を保持する絶縁粉末とから構成されている。なお、このシース8の外筒にも熱処理により、予め酸化皮膜が形成されている。金属チューブ3の内部においてシース部材8の外筒の先端から(図中下方に)突出する芯線7には、サーミスタ素子2の電極線2a,2bがレーザ溶接により接続されている。
一方、シース部材8から後端側に突き出した芯線7は、加締め端子11を介して一対のリード線12に接続されている。芯線7同士及び加締め端子11同士は、絶縁チューブ15により互いに絶縁されている。
Inside the metal tube 3, the flange member 4, and the metal cover member 6, a sheath member 8 that includes a pair of core wires 7 is disposed. The sheath member 8 includes a metal outer tube, a pair of conductive core wires 7, and an insulating powder that fills the outer tube and holds the core wire 7 while insulating between the outer tube and each core wire 7. It is configured. Note that an oxide film is also formed in advance on the outer cylinder of the sheath 8 by heat treatment. The electrode wires 2a and 2b of the thermistor element 2 are connected by laser welding to the core wire 7 protruding from the tip of the outer cylinder of the sheath member 8 inside the metal tube 3 (downward in the figure).
On the other hand, the core wire 7 protruding from the sheath member 8 toward the rear end side is connected to a pair of lead wires 12 via a crimping terminal 11. The core wires 7 and the crimping terminals 11 are insulated from each other by an insulating tube 15.

この一対のリード線12は、金属カバー部材6の後端部内側に挿入された弾性シール部材13のリード線挿通孔を通って、金属カバー部材6の内側から外部に向かって引き出され、外部回路(図示しない。例えば、ECU)と接続するためのコネクタ21の端子部材に接続されている。これにより、サーミスタ素子2の出力は、シース部材8の芯線7からリード線12、コネクタ21を介して図示しない外部回路に取り出され、排気ガスの温度が検出される。リード線12には、飛石等の外力から保護するためのガラス編組チューブ20が被せられており、このガラス編組チューブ20は、自身の先端部が弾性シール部材13と共に金属カバー部材6に加締め固定されている。   The pair of lead wires 12 are drawn out from the inside of the metal cover member 6 to the outside through the lead wire insertion holes of the elastic seal member 13 inserted inside the rear end portion of the metal cover member 6, (It is not shown. For example, it is connected to the terminal member of the connector 21 for connecting with ECU.). As a result, the output of the thermistor element 2 is taken out from the core wire 7 of the sheath member 8 to the external circuit (not shown) via the lead wire 12 and the connector 21, and the temperature of the exhaust gas is detected. The lead wire 12 is covered with a glass braided tube 20 for protection from external forces such as stepping stones, and the glass braided tube 20 is fixed by crimping to the metal cover member 6 with its elastic end member 13 together with the elastic seal member 13. Has been.

このような構造を有する温度センサ100では、前述の導電性酸化物焼結体1からなるサーミスタ素子2を用いているので、自動車エンジンの排気ガスの温度について、−40℃の低温下から900℃の高温までの広い領域に亘り、適切に温度を測定することができる温度センサとなる。   In the temperature sensor 100 having such a structure, since the thermistor element 2 made of the conductive oxide sintered body 1 is used, the exhaust gas temperature of the automobile engine is set to 900 ° C. from a low temperature of −40 ° C. The temperature sensor can measure the temperature appropriately over a wide area up to a high temperature.

(実施例9)
ついで、Nd23,SrCO3,Fe23,Al23,Cr23(全て純度99%以上の市販品)を用いて、化学式(組成式)NdaSrbFecAldCreO3としたときのa,b,c,d,eが、表2の実施例9に示すモル数となる導電性酸化物焼結体1を用いたサーミスタ素子2について、B(-40〜900)の測定結果を表2に示す。
なお、実施例9に示す組成を有する導電性酸化物焼結体1を用いたサーミスタ素子2も、原料が異なる以外は、前述した実施例1等と同様にして作成する。また、B(-40〜900)の測定方法も同様である。
Example 9
Then, using Nd 2 O 3 , SrCO 3 , Fe 2 O 3 , Al 2 O 3 , Cr 2 O 3 (all commercially available products with a purity of 99% or more), the chemical formula (composition formula) NdaSrbFecAldCreO 3 a , B, c, d, e are the thermistor elements 2 using the conductive oxide sintered body 1 having the number of moles shown in Example 9 of Table 2, and the measurement results of B (-40 to 900) are shown. It is shown in 2.
The thermistor element 2 using the conductive oxide sintered body 1 having the composition shown in Example 9 is also produced in the same manner as in Example 1 described above except that the raw materials are different. The measurement method for B (-40 to 900) is also the same.

Figure 0005053563
Figure 0005053563

この表2によれば、実施例9の導電性酸化物焼結体1を用いたサーミスタ素子2でも、同様に、B定数を、B(-40〜900)=2000〜3000K、具体的には、B(-40〜900)=2740Kにすることができることが判る。従って、このような導電性酸化物焼結体1を用いたサーミスタ素子2では、−40℃の低温下から900℃の高温までの広い範囲にわたり、適切な抵抗値を有し、適切に温度測定が可能となる。
なお、実施例9について、温度変化換算値CTの測定結果を明示していないが、温度変化換算値DTについては、DT=−10degとなり、前述の目安である±10deg以内となっている。このことから、本実施例9の焼結体1(サーミスタ素子2)も熱履歴に対する抵抗変化が小さく、実用上問題なく使用可能な焼結体(サーミスタ素子)であることが判る。
According to Table 2, in the thermistor element 2 using the conductive oxide sintered body 1 of Example 9, the B constant is similarly B (−40 to 900) = 2000 to 3000K, specifically , B (−40 to 900) = 2740K. Therefore, the thermistor element 2 using such a conductive oxide sintered body 1 has an appropriate resistance value over a wide range from a low temperature of −40 ° C. to a high temperature of 900 ° C., and appropriately measures the temperature. Is possible.
In addition, although the measurement result of the temperature change converted value CT is not clearly shown for Example 9, the temperature change converted value DT is DT = −10 deg, which is within ± 10 deg which is the above-mentioned standard. From this, it can be seen that the sintered body 1 (thermistor element 2) of Example 9 is also a sintered body (thermistor element) that has a small resistance change with respect to the thermal history and can be used practically without any problem.

(実施例10,11)
さらに、Y23,SrCO3,CaCO3,MnO2,Al23,Cr23(全て純度99%以上の市販品を用いた。)を用いて、化学式(組成式)YaSrb1Cab2MncAldCreO3としたときのa,b(=b1+b2),c,d,eが、表3の実施例10,11に示すモル数となる導電性酸化物焼結体1を用いたサーミスタ素子2について、B(-40〜900)、及び温度変化換算値CTの測定結果を表3に示す。
なお、実施例10,11に示す組成を有する導電性酸化物焼結体1を用いたサーミスタ素子2も、原料が異なる以外は、前述した実施例1等と同様にして作成する。また、B(-40〜900)及び温度変化換算値CTの測定方法も前述と同様である。
(Examples 10 and 11)
Furthermore, using Y 2 O 3 , SrCO 3 , CaCO 3 , MnO 2 , Al 2 O 3 , Cr 2 O 3 (all commercially available products with a purity of 99% or more) were used, the chemical formula (composition formula) YaSrb 1 Cab 2. About the thermistor element 2 using the conductive oxide sintered body 1 in which a, b (= b1 + b2), c, d, e when MncAldCreO 3 is used are the number of moles shown in Examples 10 and 11 of Table 3. , B (−40 to 900), and the measurement result of the temperature change converted value CT are shown in Table 3.
The thermistor element 2 using the conductive oxide sintered body 1 having the composition shown in Examples 10 and 11 is also produced in the same manner as Example 1 described above except that the raw materials are different. Further, the measurement method of B (−40 to 900) and the temperature change converted value CT is the same as described above.

Figure 0005053563
Figure 0005053563

この表3によれば、実施例10,11の導電性酸化物焼結体1を用いたサーミスタ素子2でも、同様に、B定数を、B(-40〜900)=2000〜3000K、具体的には、B(-40〜900)=2913K(実施例10)、あるいは2814K(実施例11)にすることができることが判る。従って、このような導電性酸化物焼結体1を用いたサーミスタ素子2では、−40℃の低温下から900℃の高温までの広い範囲にわたり、適切な抵抗値を有し、適切に温度測定が可能となる。   According to Table 3, also in the thermistor element 2 using the conductive oxide sintered bodies 1 of Examples 10 and 11, the B constant is B (−40 to 900) = 2000 to 3000K, specifically It can be seen that B (−40 to 900) = 2913 K (Example 10) or 2814 K (Example 11) can be obtained. Therefore, the thermistor element 2 using such a conductive oxide sintered body 1 has an appropriate resistance value over a wide range from a low temperature of −40 ° C. to a high temperature of 900 ° C., and appropriately measures the temperature. Is possible.

さらに、実施例10の焼結体(サーミスタ素子)は、温度変化換算値CT=±5degであり、実施例3と同等の良好な温度特性の高温耐久性を有していることが判る。同様に温度変化換算値DTもDT=±0degという良好な値となった。
なお、具体的な温度変化換算値CTの測定結果を明示していないが、温度変化換算値DTについては、DT=±0degであり、実施例11の焼結体1(サーミスタ素子2)も、実施例10と同様熱履歴に対する抵抗変化が小さく、実用上問題なく使用可能な焼結体(サーミスタ素子)であることが判る。
Furthermore, it can be seen that the sintered body (thermistor element) of Example 10 has a temperature change conversion value CT = ± 5 deg and has high temperature durability with good temperature characteristics equivalent to Example 3. Similarly, the temperature change conversion value DT was a good value of DT = ± 0 deg.
In addition, although the measurement result of specific temperature change conversion value CT is not specified, about temperature change conversion value DT, it is DT = ± 0deg and the sintered compact 1 (thermistor element 2) of Example 11 is also It can be seen that this is a sintered body (thermistor element) that has a small resistance change with respect to the thermal history as in Example 10 and can be used practically without problems.

(実施例12〜14)
さらに、Y23,SrCO3,MgO,MnO2,Al23,Cr23(全て純度99%以上の市販品を用いた。)を用いて、化学式(組成式)YaSrb1Mgb2MncAldCreO3としたときのa,b(=b1+b2),c,d,eが、表4の実施例12〜14に示すモル数となる導電性酸化物焼結体1を用いたサーミスタ素子2について、B(-40〜900)の測定結果を、表4に示す。
なお、実施例12〜14に示す組成を有する導電性酸化物焼結体1を用いたサーミスタ素子2も、原料が異なる以外は、前述した実施例1等と同様にして作成する。また、B(-40〜900)の測定方法も前述と同様である。
(Examples 12 to 14)
Furthermore, using Y 2 O 3 , SrCO 3 , MgO, MnO 2 , Al 2 O 3 , Cr 2 O 3 (all commercial products with a purity of 99% or more were used), the chemical formula (composition formula) YaSrb 1 Mgb 2 MncAldCreO About the thermistor element 2 using the conductive oxide sintered body 1 in which a, b (= b1 + b2), c, d, e when 3 is set to the number of moles shown in Examples 12 to 14 of Table 4, Table 4 shows the measurement results of B (-40 to 900).
The thermistor element 2 using the conductive oxide sintered body 1 having the composition shown in Examples 12 to 14 is also produced in the same manner as in Example 1 described above except that the raw materials are different. The measurement method for B (-40 to 900) is the same as described above.

Figure 0005053563
Figure 0005053563

この表4によれば、実施例12〜14の導電性酸化物焼結体1を用いたサーミスタ素子2でも、同様に、B定数を、B(-40〜900)=2000〜3000K、具体的には、B(-40〜900)=2950K(実施例12)、2920K(実施例13)、あるいは2688K(実施例14)にすることができることが判る。従って、このような導電性酸化物焼結体1を用いたサーミスタ素子2では、−40℃の低温下から900℃の高温までの広い範囲にわたり、適切な抵抗値を有し、適切に温度測定が可能となる。   According to Table 4, also in the thermistor element 2 using the conductive oxide sintered bodies 1 of Examples 12 to 14, the B constant is B (-40 to 900) = 2000 to 3000K, specifically It can be seen that B (−40 to 900) = 2950K (Example 12), 2920K (Example 13), or 2688K (Example 14). Therefore, the thermistor element 2 using such a conductive oxide sintered body 1 has an appropriate resistance value over a wide range from a low temperature of −40 ° C. to a high temperature of 900 ° C., and appropriately measures the temperature. Is possible.

なお、実施例12〜14では、具体的な温度変化換算値CTの測定結果を明示していないが、温度変化換算値DTについては、実施例12,13ではDT=+10degと、また実施例14ではDT=+8degになり、前述の目安である±10deg以内となっている。このことから、本実施例12〜14の焼結体1(サーミスタ素子2)も熱履歴に対する抵抗変化が小さく、実用上問題なく使用可能な焼結体(サーミスタ素子)であることが判る。   In Examples 12 to 14, the specific measurement result of the temperature change converted value CT is not clearly shown, but the temperature change converted value DT is DT = + 10 deg in Examples 12 and 13, and Example 14 Then, DT = + 8 deg, which is within ± 10 deg which is the above-mentioned standard. From this, it can be understood that the sintered bodies 1 (thermistor elements 2) of Examples 12 to 14 are also small sintered bodies (thermistor elements) that can be used practically without any problem in resistance change with respect to the thermal history.

(実施例15〜17)
さらに、Y23,Yb23,SrCO3,MnO2,Al23,Cr23(全て純度99%以上の市販品を用いた。)を用いて、化学式(組成式)Ya1Yba2SrbMncAldCreO3としたときのa(=a1+a2),b,c,d,eが、表5の実施例15〜17に示すモル数となる導電性酸化物焼結体1を用いたサーミスタ素子2について、B(-40〜900)の測定結果を、表5に示す。
なお、実施例15〜17に示す組成を有する導電性酸化物焼結体1を用いたサーミスタ素子2も、原料が異なる以外は、前述した実施例1等と同様にして作成する。また、B(-40〜900)の測定方法も前述と同様である。
(Examples 15 to 17)
Furthermore, using Y 2 O 3 , Yb 2 O 3 , SrCO 3 , MnO 2 , Al 2 O 3 , Cr 2 O 3 (all commercially available products with a purity of 99% or more were used), chemical formula (composition formula) A thermistor element using the conductive oxide sintered body 1 in which a (= a1 + a2), b, c, d, e in the case of Ya1Yba 2 SrbMncAldCreO 3 has the number of moles shown in Examples 15 to 17 in Table 5 Table 5 shows the measurement results for B (−40 to 900).
The thermistor element 2 using the conductive oxide sintered body 1 having the composition shown in Examples 15 to 17 is also produced in the same manner as Example 1 described above except that the raw materials are different. The measurement method for B (-40 to 900) is the same as described above.

Figure 0005053563
Figure 0005053563

この表5によれば、実施例15〜17の導電性酸化物焼結体1を用いたサーミスタ素子2でも、同様に、B定数を、B(-40〜900)=2000〜3000K、具体的には、B(-40〜900)=2734K(実施例15)、2401K(実施例16)、あるいは2438K(実施例17)にすることができることが判る。従って、このような導電性酸化物焼結体1を用いたサーミスタ素子2では、−40℃の低温下から900℃の高温までの広い範囲にわたり、適切な抵抗値を有し、適切に温度測定が可能となる。   According to Table 5, also in the thermistor element 2 using the conductive oxide sintered bodies 1 of Examples 15 to 17, the B constant is B (-40 to 900) = 2000 to 3000K, specifically It can be seen that B (−40 to 900) = 2734K (Example 15), 2401K (Example 16), or 2438K (Example 17). Therefore, the thermistor element 2 using such a conductive oxide sintered body 1 has an appropriate resistance value over a wide range from a low temperature of −40 ° C. to a high temperature of 900 ° C., and appropriately measures the temperature. Is possible.

なお、実施例15〜17では、具体的な温度変化換算値CTの測定結果を明示していないが、温度変化換算値DTについては、実施例15ではDT=±0に、実施例16ではDT=+5degに、また実施例17ではDT=+8degになり、前述の目安である±10deg以内となっている。このことから、本実施例15〜17の焼結体1(サーミスタ素子2)も熱履歴に対する抵抗変化が小さく、実用上問題なく使用可能な焼結体(サーミスタ素子)であることが判る。   In Examples 15 to 17, the specific measurement result of the temperature change converted value CT is not clearly shown, but the temperature change converted value DT is DT = ± 0 in Example 15 and DT in Example 16. = + 5 deg, and in Example 17, DT = + 8 deg, which is within ± 10 deg which is the above-mentioned standard. From this, it can be understood that the sintered bodies 1 (thermistor elements 2) of Examples 15 to 17 are also sintered bodies (thermistor elements) that have a small resistance change with respect to thermal history and can be used practically without problems.

以上において、本発明を実施例に即して説明したが、本発明は上記実施例に限定されるものではなく、その要旨を逸脱しない範囲で、適宜変更して適用できることはいうまでもない。
例えば、実施例9〜17に係るサーミスタ素子2についても、温度センサ100(図2参照)に適用することができ、これにより、自動車エンジンの排気ガスの温度について、−40℃の低温下から900℃の高温までの広い領域に亘り、適切に温度を測定することができる温度センサとなしうる。
また、導電性酸化物焼結体(サーミスタ素子)の製造において、原料粉末としては、各実施例において例示した各元素を含む化合物の粉末を使用することができる。そのほか、酸化物、炭酸塩、水酸化物、硝酸塩等の化合物を用いることができる。なお、特に酸化物、炭酸塩を用いるのが好ましい。
In the above, the present invention has been described with reference to the embodiments. However, the present invention is not limited to the above embodiments, and it is needless to say that the present invention can be appropriately modified and applied without departing from the gist thereof.
For example, the thermistor element 2 according to Examples 9 to 17 can also be applied to the temperature sensor 100 (see FIG. 2), whereby the temperature of the exhaust gas of the automobile engine is reduced from a low temperature of −40 ° C. to 900 ° C. A temperature sensor capable of appropriately measuring the temperature over a wide range up to a high temperature of ° C. can be obtained.
In the production of the conductive oxide sintered body (thermistor element), as the raw material powder, a powder of a compound containing each element exemplified in each example can be used. In addition, compounds such as oxides, carbonates, hydroxides, and nitrates can be used. In particular, oxides and carbonates are preferably used.

また、導電性酸化物焼結体の焼結性、B定数、温度特性の高温耐久性など、導電性酸化物焼結体、サーミスタ素子、あるいは温度センサに要求されると特性を損なわない範囲で、導電性酸化物焼結体に、Na,K,Ga,Si,C,Cl,S等の他の成分を含有していてもよい。   In addition, when required for conductive oxide sintered bodies, thermistor elements, or temperature sensors, such as the sinterability of conductive oxide sintered bodies, the B constant, and the high temperature durability of temperature characteristics, the characteristics are not impaired. The conductive oxide sintered body may contain other components such as Na, K, Ga, Si, C, Cl, and S.

本実施例に係るサーミスタ素子の形状を示す説明図である。It is explanatory drawing which shows the shape of the thermistor element which concerns on a present Example. 図1のサーミスタ素子を用いた温度センサの構造を示す部分破断断面図である。It is a fragmentary sectional view which shows the structure of the temperature sensor using the thermistor element of FIG.

符号の説明Explanation of symbols

1 導電性酸化物焼結体
2 サーミスタ素子
2a,2b 電極線
100 温度センサ
DESCRIPTION OF SYMBOLS 1 Conductive oxide sintered body 2 Thermistor element 2a, 2b Electrode wire 100 Temperature sensor

Claims (6)

Y,Nd,Ybから選ばれる1種またはそれ以上の元素をM1とし、
Mg,Ca,Srから選ばれる1種またはそれ以上の元素をM2とし、
Mn,Feから選ばれる1種またはそれ以上の元素をM3としたとき、
組成式M1aM2bM3cAldCrefで表記され、ペロブスカイト型結晶構造を有する導電性酸化物焼結体であって、
a,b,c,d,e,fが下記条件式を満たす
導電性酸化物焼結体。
0.600≦a≦1.000
0≦b≦0.400
0.150≦c<0.600
0.400≦d≦0.800
0.005≦e≦0.050
0<e/(c+e)≦0.18
2.80≦f≦3.30
One or more elements selected from Y, Nd, and Yb are defined as M1,
One or more elements selected from Mg, Ca, Sr is M2,
When one or more elements selected from Mn and Fe are M3,
Is expressed by the composition formula M1 a M2 b M3 c Al d Cr e O f, a conductive sintered oxide that have a perovskite crystal structure,
A conductive oxide sintered body in which a, b, c, d, e, and f satisfy the following conditional expression.
0.600 ≦ a ≦ 1.000
0 ≦ b ≦ 0.400
0.150 ≦ c <0.600
0.400 ≦ d ≦ 0.800
0.005 ≦ e ≦ 0.050
0 <e / (c + e) ≦ 0.18
2.80 ≦ f ≦ 3.30
請求項1に記載の導電性酸化物焼結体であって、
前記a,bが下記条件式を満たす
導電性酸化物焼結体。
0.600≦a<1.000
0<b≦0.400
The conductive oxide sintered body according to claim 1,
A conductive oxide sintered body in which a and b satisfy the following conditional expression.
0.600 ≦ a <1.000
0 <b ≦ 0.400
請求項2に記載の導電性酸化物焼結体であって、
a,b,c,d,e,fが下記条件式を満たす
導電性酸化物焼結体。
0.820≦a≦0.950
0.050≦b≦0.180
0.181≦c≦0.585
0.410≦d≦0.790
0.005≦e≦0.050
0<e/(c+e)≦0.18
2.91≦f≦3.27
The conductive oxide sintered body according to claim 2,
A conductive oxide sintered body in which a, b, c, d, e, and f satisfy the following conditional expression.
0.820 ≦ a ≦ 0.950
0.050 ≦ b ≦ 0.180
0.181 ≦ c ≦ 0.585
0.410 ≦ d ≦ 0.790
0.005 ≦ e ≦ 0.050
0 <e / (c + e) ≦ 0.18
2.91 ≦ f ≦ 3.27
請求項1〜請求項3のいずれか1項に記載の導電性酸化物焼結体であって、
前記元素M1がYであり、
前記元素M2がSrであり、
前記M3がMnである
導電性酸化物焼結体。
The conductive oxide sintered body according to any one of claims 1 to 3 , wherein
The element M1 is Y;
The element M2 is Sr;
A conductive oxide sintered body in which M3 is Mn.
請求項1〜請求項4のいずれか1項に記載の導電性酸化物焼結体を用いてなるサーミスタ素子。 The thermistor element which uses the electroconductive oxide sintered compact of any one of Claims 1-4 . 請求項5に記載のサーミスタ素子を用いてなる温度センサ。 A temperature sensor using the thermistor element according to claim 5 .
JP2006107891A 2005-04-11 2006-04-10 Conductive oxide sintered body, thermistor element using the same, and temperature sensor using thermistor element Active JP5053563B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006107891A JP5053563B2 (en) 2005-04-11 2006-04-10 Conductive oxide sintered body, thermistor element using the same, and temperature sensor using thermistor element

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005113920 2005-04-11
JP2005113920 2005-04-11
JP2006107891A JP5053563B2 (en) 2005-04-11 2006-04-10 Conductive oxide sintered body, thermistor element using the same, and temperature sensor using thermistor element

Publications (2)

Publication Number Publication Date
JP2006315946A JP2006315946A (en) 2006-11-24
JP5053563B2 true JP5053563B2 (en) 2012-10-17

Family

ID=37536937

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006107891A Active JP5053563B2 (en) 2005-04-11 2006-04-10 Conductive oxide sintered body, thermistor element using the same, and temperature sensor using thermistor element

Country Status (1)

Country Link
JP (1) JP5053563B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3079032A1 (en) 2015-04-06 2016-10-12 NGK Spark Plug Co., Ltd. Sintered electrically conductive oxide, thermistor element employing the oxide, and temperature sensor employing the thermistor
JP2016196392A (en) * 2015-04-06 2016-11-24 日本特殊陶業株式会社 Sintered electroconductive oxide, and thermistor element and temperature sensor employing the same
US10186355B2 (en) 2016-04-13 2019-01-22 Ngk Spark Plug Co., Ltd. Thermistor element and manufacturing method therefor

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5053564B2 (en) * 2005-04-11 2012-10-17 日本特殊陶業株式会社 Conductive oxide sintered body, thermistor element using the same, and temperature sensor using thermistor element
JP4996196B2 (en) * 2006-10-12 2012-08-08 日本特殊陶業株式会社 THERMISTOR ELEMENT, TEMPERATURE SENSOR USING SAME, AND METHOD FOR PRODUCING THERMISTOR ELEMENT
DE102007012468A1 (en) * 2007-03-15 2008-09-18 Epcos Ag Ceramic material and electroceramic component with the ceramic material
JP4990072B2 (en) * 2007-08-30 2012-08-01 株式会社大泉製作所 Thermistor for high temperature
ATE458255T1 (en) * 2007-12-21 2010-03-15 Vishay Resistors Belgium Bvba STABLE THERMISTOR
DE102008046858A1 (en) * 2008-09-12 2010-03-18 Epcos Ag Ceramic material, method for producing a ceramic material, electroceramic component comprising the ceramic material
JP5421267B2 (en) * 2009-02-20 2014-02-19 日本特殊陶業株式会社 Conductive oxide sintered body, thermistor element using the same, and temperature sensor using thermistor element
JP6440641B2 (en) * 2016-01-08 2018-12-19 日本特殊陶業株式会社 Conductive oxide sintered body, thermistor element using the same, and temperature sensor using thermistor element

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0244122B2 (en) * 1983-02-03 1990-10-02 Ngk Spark Plug Co KOONYOSAAMISUTA
JP4527347B2 (en) * 2001-10-11 2010-08-18 日本特殊陶業株式会社 Sintered body for thermistor
JP3970851B2 (en) * 2001-11-16 2007-09-05 日本特殊陶業株式会社 Sintered body for thermistor element, manufacturing method thereof, and temperature sensor
JP4302487B2 (en) * 2002-11-29 2009-07-29 日本特殊陶業株式会社 Sintered body for thermistor, thermistor element, and temperature sensor
JP5053564B2 (en) * 2005-04-11 2012-10-17 日本特殊陶業株式会社 Conductive oxide sintered body, thermistor element using the same, and temperature sensor using thermistor element

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3079032A1 (en) 2015-04-06 2016-10-12 NGK Spark Plug Co., Ltd. Sintered electrically conductive oxide, thermistor element employing the oxide, and temperature sensor employing the thermistor
JP2016196392A (en) * 2015-04-06 2016-11-24 日本特殊陶業株式会社 Sintered electroconductive oxide, and thermistor element and temperature sensor employing the same
US9790098B2 (en) 2015-04-06 2017-10-17 Ngk Spark Plug Co., Ltd. Sintered electrically conductive oxide, thermistor element employing the oxide, and temperature sensor employing the thermistor
US10186355B2 (en) 2016-04-13 2019-01-22 Ngk Spark Plug Co., Ltd. Thermistor element and manufacturing method therefor

Also Published As

Publication number Publication date
JP2006315946A (en) 2006-11-24

Similar Documents

Publication Publication Date Title
JP5053563B2 (en) Conductive oxide sintered body, thermistor element using the same, and temperature sensor using thermistor element
JP5053564B2 (en) Conductive oxide sintered body, thermistor element using the same, and temperature sensor using thermistor element
KR101155688B1 (en) Sintered electroconductive oxide, thermister element using sintered electroconductive oxide, and temperature sensor using thermister element
JP5059332B2 (en) THERMISTOR ELEMENT, TEMPERATURE SENSOR USING SAME, AND METHOD FOR PRODUCING THERMISTOR ELEMENT
JP5140441B2 (en) Thermistor element and temperature sensor
JP5546995B2 (en) Conductive oxide sintered body, thermistor element using the same, and temperature sensor using thermistor element
JP6010473B2 (en) Conductive oxide sintered body, thermistor element and temperature sensor
JP5421267B2 (en) Conductive oxide sintered body, thermistor element using the same, and temperature sensor using thermistor element
JP5546996B2 (en) Conductive oxide sintered body, thermistor element using the same, and temperature sensor using thermistor element
JP6491074B2 (en) Conductive oxide sintered body, thermistor element and temperature sensor using the same
CN100471820C (en) Sintered electroconductive oxide, thermister element using sintered electroconductive oxide, and temperature sensor using thermistor element
JP4996196B2 (en) THERMISTOR ELEMENT, TEMPERATURE SENSOR USING SAME, AND METHOD FOR PRODUCING THERMISTOR ELEMENT
JP5140450B2 (en) Thermistor element and temperature sensor
JP6154283B2 (en) Thermistor element and temperature sensor
JP6440641B2 (en) Conductive oxide sintered body, thermistor element using the same, and temperature sensor using thermistor element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120309

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120703

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120726

R150 Certificate of patent or registration of utility model

Ref document number: 5053563

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150803

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250