JPS62215686A - Liquid crystal composition - Google Patents

Liquid crystal composition

Info

Publication number
JPS62215686A
JPS62215686A JP5867386A JP5867386A JPS62215686A JP S62215686 A JPS62215686 A JP S62215686A JP 5867386 A JP5867386 A JP 5867386A JP 5867386 A JP5867386 A JP 5867386A JP S62215686 A JPS62215686 A JP S62215686A
Authority
JP
Japan
Prior art keywords
liquid crystal
voltage
crystal composition
chain alkyl
transmittance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5867386A
Other languages
Japanese (ja)
Inventor
Rei Miyazaki
礼 宮崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP5867386A priority Critical patent/JPS62215686A/en
Publication of JPS62215686A publication Critical patent/JPS62215686A/en
Pending legal-status Critical Current

Links

Landscapes

  • Liquid Crystal Substances (AREA)

Abstract

PURPOSE:A liquid crystal composition for display, which has improved dynamic drive characteristics especially in electric field effect mode and a wide nematic liquid crystal temperature range and is chemically stable, consisting of specific four compounds. CONSTITUTION:The aimed liquid crystal composition consisting of (A) preferably 7-72wt% compound shown by formula I (R1 and R2 are 1-12C straight-chain alkyl), (B) preferably 5-46.5wt% compound shown by formula II (R3 and R4 are 1-10C straight-chain alkyl), (C) preferably 5-38wt% compound shown by formula III (R5 is 1-10C straight-chain alkyl) and (D) preferably 3-30wt% (especially 5-25wt%) compound shown by formula IV (R6 and R7 are 1-10C straight-chain alkyl).

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は表示装置用液晶組成物、特に゛1界効果モード
に於てダイナミック駆動特性が良好なる液晶組成物に関
する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a liquid crystal composition for display devices, and particularly to a liquid crystal composition that has good dynamic drive characteristics in the "1-field effect mode."

〔従来の技術〕[Conventional technology]

従来1表示V装置用ネマチック液晶組成物は1例えば特
開昭54−85694号公報などに明示されているよう
に、一般式R四トC0O−o−0−R’ (R。
Conventionally, a nematic liquid crystal composition for a display V device has a general formula R4TOC0O-o-0-R' (R), as disclosed in, for example, Japanese Patent Application Laid-Open No. 54-85694.

R′は各々任意の炭素数の直鎖アルキル基を示す)で表
わされる化合物(以後本文中に於てgol(と略記する
)などのNn液晶をペースにして、これらに一般式R#
−o−C00ベニM3N(R’は任意の炭素数の直鎖ア
ルキル基を示す)で表わされる化合物(以後本文中に於
てp−zと略記する)などのNp液晶を添加し光学的し
きい値電圧を低下せしめる。但し、Np液晶の添加量が
多くなると後述の急・疫性などの1気光学特性が低下す
るので必要以上にNp液晶を添加することは得策でない
う更に上記Nn液晶及びNp液晶に加えて一般式R′#
刊卜0−・チ(J (R−は任意の炭素数の直鎖アルキ
ル基を示す)で表わされる化合物などを添加する事によ
り透明点を高くし液晶温度範囲を広くしている。
Each R' represents a linear alkyl group having an arbitrary number of carbon atoms.
-o-C00 BeniM3N (R' represents a straight-chain alkyl group with an arbitrary number of carbon atoms) is added with Np liquid crystal such as a compound (hereinafter abbreviated as p-z in the text). Lowers the threshold voltage. However, if the amount of Np liquid crystal added increases, the optical properties such as suddenness and susceptibility, which will be described later, will deteriorate, so it is not a good idea to add more Np liquid crystal than necessary. Formula R'#
The clearing point is raised and the liquid crystal temperature range is widened by adding a compound represented by J (R- represents a linear alkyl group having any number of carbon atoms).

(発明が解決しようとする問題点〕 今日、ネマチック液晶組成物に要求される特性の条件は ■ 電圧−透過率曲線の光学的しきい値電圧付近の立ち
上がりが、@1.+唆であること(以後本文中に於て急
峻性と略記する) (2)を圧の変化に対して透過率の応答速度が速いこと (V 室温を中心として広い温度範囲で駆動できること
、即ち広いネマチック液晶範囲を持つこと ■ 化学的に安定で耐湿性・耐光性に浸れること ■ [勧電圧(または光学的しきい値電圧)が自由に選
べること などがある。
(Problems to be Solved by the Invention) The characteristics required of nematic liquid crystal compositions today are: ■ The rise of the voltage-transmittance curve near the optical threshold voltage is @1.+. (Hereinafter, this will be abbreviated as "steepness" in the text.) (2) The response speed of transmittance to changes in pressure is fast (V) The ability to drive in a wide temperature range centered around room temperature, that is, the ability to operate in a wide nematic liquid crystal range. Possibilities ■ Be chemically stable and have moisture and light resistance ■ [There are things like being able to freely select the voltage threshold (or optical threshold voltage).

単純マトリクス表示体に於てダイナミック駆動をした時
、嘔動回路に二って選択電極部または非選択電極部の液
晶に印加される実効電圧を各々V On 、 V Of
f とし、走査電極の本数t−n本とすれば比V Or
x/V Offは yon/voff=1−工−F’T−1)  −−−−
−曲(1)なる関係があり、nが多くなるにつれて比■
On/VOffも小さくなって行く。
When a simple matrix display is dynamically driven, the effective voltage applied to the liquid crystal of the selected electrode part or the non-selected electrode part by the vibration circuit is V On and V Of , respectively.
f and the number of scanning electrodes t−n, the ratio V Or
x/V Off is yon/voff=1-Eng-F'T-1) -----
- Song (1) There is a relationship such that as n increases, the ratio ■
On/Voff also decreases.

一万、液晶表示裟噴の一つであるツイスト・ネマチック
・モードの液晶セルを直交偏光子間に置き、第1図に示
す電気光学特性測定装置を用いて該セル4の透過率t−
yes増倍管でFM察しながら駆瞼回路6により該セル
4に印加する実効電圧を変えて行くと第2図に示される
如き実効電圧−相対透過率曲線が得られる。電圧を上げ
て行き透過率が変化し始める実効電圧を光学的しきい値
電圧vth (本明細書中に於ては透過率f10%だけ
変化させるのに必要な実効電圧値をvthとする)。
10,000, a twisted nematic mode liquid crystal cell, which is one type of liquid crystal display, was placed between orthogonal polarizers, and the transmittance t-
By changing the effective voltage applied to the cell 4 by the eyelid driving circuit 6 while observing FM using a multiplier, an effective voltage-relative transmittance curve as shown in FIG. 2 is obtained. The effective voltage at which the transmittance begins to change as the voltage is increased is the optical threshold voltage vth (in this specification, the effective voltage value required to change the transmittance by f10% is defined as vth).

更に電圧を上げて行き透過率が光学的飽和電圧全v8a
℃(本明細書中に於ては透過率を90%変化させるのに
必要な実効電圧値?Vaatとする)とすると、非選択
電極部では印加される実効電圧V offが光学的しき
い値電圧vthより小さければ。
As the voltage is further increased, the transmittance reaches the optical saturation voltage V8A.
℃ (in this specification, the effective voltage value required to change the transmittance by 90%?Vaat), the effective voltage V off applied to the non-selected electrode portion is the optical threshold value. If the voltage is smaller than vth.

即ち Vuff<Vth         ・・・・・・・・
・・・・・・・(21であれば電圧が印加されていない
時と比較してその透過率は変化せず全く選択されなく1
選択電極部では印加される実効電圧wonが飽和電圧V
8atよシ大きければ、即ち Won≧V sat           …・・・・
・・・・・・・・(31であれば透過駆は十分変化し選
択された事になる従って(31式を(2)式で割れば μ h h   ど σ)+ffl aJi+? 礒:
gσ h ザr〆)庄勢づヒJ七マ彎シ誓 L−[株]
択電極の透過率の差が十分となる。更に(1)式と(4
)式から V 5atF賓ア了 □≦             ・山・・・・・(5)
vth となる。走査線の本数nが多くなるにつれ右辺は小さく
なt)1に近づいて行く。このため選択電極と非選択゛
成極で十分なコントラストを得るには、Veht/Vt
hも1に近い方が有利となる。即ち第2図の実効電圧−
相対透過率曲線の光学的しきいイ直電圧から光学的飽和
電圧にかけての曲線の勾配が急vqな程、コントラスト
を一定(または良くした上に)走査線本数を増やす事が
できる。以上が条件■が必要となる理由である。しかし
従来、電気光学特性に於ける温度依存性の除去が重要視
されていた為条件■そのものを改良する具体的方策が示
されておらず問題である。これに対してfA度依存性は
ICが安価になった現在#A度補償回路を駆1回路に組
み込む事によシ容易に取り除く事ができるように成った
That is, Vuff<Vth...
・・・・・・・・・(If it is 21, the transmittance will not change compared to when no voltage is applied and it will not be selected at all.
In the selection electrode section, the effective voltage won applied is equal to the saturation voltage V
If it is larger than 8at, that is, Won≧V sat...
・・・・・・・・・(If it is 31, the transmission drive has changed sufficiently and has been selected. Therefore, if you divide the equation 31 by the equation (2), μ h h do σ)+ffl aJi+?
gσ h za r〆)Sho Sezuhi J 7 ma kashi oath L-[shares]
The difference in transmittance between the selective electrodes is sufficient. Furthermore, equation (1) and (4
) From the formula, V 5atF guest a completed □≦ ・Mountain...(5)
It becomes vth. As the number n of scanning lines increases, the right side becomes smaller and approaches t)1. Therefore, in order to obtain sufficient contrast between the selective electrode and non-selective polarization, Vh/Vt
It is also advantageous for h to be close to 1. That is, the effective voltage in Fig. 2 -
The steeper the slope vq of the relative transmittance curve from the optical threshold direct voltage to the optical saturation voltage, the more the number of scanning lines can be increased while maintaining (or improving) the contrast. The above is the reason why condition (2) is necessary. However, since conventionally, emphasis has been placed on eliminating temperature dependence in electro-optical characteristics, no concrete measures have been proposed to improve condition (2) itself, which is a problem. On the other hand, the fA degree dependence can now be easily eliminated by incorporating an #A degree compensation circuit into the driver circuit as ICs have become cheaper.

池の問題点として応答速IWがある。A problem with the pond is the response speed IW.

静止1.[1Ilf象全表示する場会応答速度はそれ程
間遣とならない。しかしコンピュータ端末やワード・プ
ロセッサーなどの様に画1′象を類繁に切り換える必要
のある場会、高速応答性が要求されるようになる。テレ
ビ画像などの動画を表示する場廿更に速い応答性が要求
されるのは言うまでもない。
Stillness 1. [1Ilf When displaying all images, the response speed is not that slow. However, in applications such as computer terminals and word processors, where images need to be changed frequently, high-speed responsiveness is required. Needless to say, even faster response is required when displaying moving images such as television images.

本発明は以上の間魂点を解決するもので、その目的とす
るところは表示装置用のネマチック液晶組成物の急峻性
を改良しダイナばツク駆動特性全向上させ、かつネマチ
ック液晶温度範囲を広くし動作温度範囲を広げ、更に化
学的に安定なネマチック液晶組成物を提供する事にある
The present invention has been made to solve the above-mentioned problems, and its purpose is to improve the steepness of nematic liquid crystal compositions for display devices, to improve the dynamic driving characteristics, and to widen the temperature range of nematic liquid crystals. The object of the present invention is to provide a nematic liquid crystal composition that has a wider operating temperature range and is chemically stable.

[間1を解決するための手段〕 本発明の液晶組成物は少なくとも一般式が下記Aで表わ
される化合物の少なくとも一槌、一般式が下記Bで表わ
される化合物の少なくとも一種、一般式が下記Cで表わ
される化合物の少なくとも一種、及び一般式が下記りで
表わされる化合物の少なくとも一種から成る事を特徴と
する。
[Means for Solving Problem 1] The liquid crystal composition of the present invention includes at least one compound whose general formula is represented by the following A, at least one compound whose general formula is represented by the following B, and at least one compound whose general formula is represented by the following C. It is characterized by comprising at least one kind of compound represented by the following and at least one kind of compound represented by the following general formula.

A・・・R1べ針すO−R。A...R1 needle O-R.

B・・・R1−0−yl−■−R2 C・・・R@−、チCOOべ■−CN D・・・R6云0−(←◎→トRt 但し、 R8及びR8は炭素数1〜12個の直鎖アルキル基 R3及びR4は炭素数1〜10個の直鎖アルキル基 R1は炭素r11〜101固のIK鎖アルキル基R8及
びR1は炭素数1〜10個の+!鎖アルキル基 を表わす。
B...R1-0-yl-■-R2 C...R@-, ChiCOObe■-CN D...R6云0-(←◎→トRt However, R8 and R8 have 1 carbon number ~12 straight chain alkyl groups R3 and R4 are straight chain alkyl groups having 1 to 10 carbon atoms R1 are IK chain alkyl groups having 11 to 101 carbon atoms R8 and R1 are +! chain alkyl groups having 1 to 10 carbon atoms represents a group.

一般式Aで表わされる化合物(以後本文中に於ぞ化合物
Aと略記する)は応答速度全速くするために有効なNn
液晶であり7重穢憾未満では効果が小さくその含有jI
kは多い程良い・しかし透明点が比較的低いため化合物
Aの含itが72]t%を越えるとネマチック液晶組成
物の透明点も低くなり、ひいてはネマチック液晶組成物
のネマチック液晶範囲を狭くするため好ましくない。従
って化合物Aの含有量は7重譬釜〜72重世幅が望まし
い。
The compound represented by the general formula A (hereinafter abbreviated as compound A in the text) is an effective Nn compound for increasing the response speed.
Since it is a liquid crystal, the effect is small if the content is less than 7 times.
The higher the value of k, the better.However, since the clearing point is relatively low, if the content of compound A exceeds 72]t%, the clearing point of the nematic liquid crystal composition will also become low, which will narrow the nematic liquid crystal range of the nematic liquid crystal composition. Therefore, it is undesirable. Therefore, the content of compound A is desirably in the range of 7 to 72 layers.

一般式Bで表わされる化合物(以後本文中に於て化合物
Bと略記する)は従来の単なるNn液晶及びNp液晶か
ら成るネマチック液晶組成物に添加下る嘔により急峻性
全向上させるために有効なNn液晶であり、5重量暢未
満では効果が小さくその含有量は多い程良い。しかし4
6.5ijil憾を越えると共晶組成からのズレが大き
く成り過ぎ(凝固点降下の成果が得られず低温に於て析
出するように成るため5重、!1%〜4&5重量僑が望
ましい。
The compound represented by the general formula B (hereinafter abbreviated as compound B in the text) is a Nn compound that is effective for completely improving steepness when added to a conventional nematic liquid crystal composition consisting of a simple Nn liquid crystal and an Np liquid crystal. It is a liquid crystal, and if it is less than 5% by weight, the effect is small, so the higher the content, the better. But 4
If it exceeds 6.5 weight, the deviation from the eutectic composition will become too large (the result of lowering the freezing point will not be obtained and precipitation will occur at low temperatures, so 5 weight, !1% to 4 & 5 weight weight is desirable).

一般式Cで表わされる化合物(以f&本文中に於て化合
物Cと略記する)はNp液晶でありその含有量の多少に
より光学的しきい値電圧を低くまた高くできる。また、
透明点全高くするのに有利である。しかし、含有量を多
くし過ぎると急峻性などの電気光学特性の性+4@を低
下させ、また、共晶組成からのズレが大きくなり過ぎて
凝固点降下の効果が得られず低温に於て析出するように
成る。
The compound represented by the general formula C (hereinafter abbreviated as compound C in the text) is an Np liquid crystal, and the optical threshold voltage can be lowered or increased depending on its content. Also,
This is advantageous in increasing the clearing point. However, if the content is too high, the electro-optical properties such as steepness will decrease +4@, and the deviation from the eutectic composition will become too large, making it impossible to obtain the effect of lowering the freezing point and causing precipitation at low temperatures. become like that.

従って化分*Bの含有量は、5重量憾から58Qi遺幅
が望ましい。
Therefore, the content of chemical component *B is preferably from 5 weight to 58 Qi.

一般式りで表わされる化合物(以後本文中に於て出会’
q’sDと略記する)はネマチック液晶組成物の透明点
を高くするのに有効である。しかし5重量幅未満では効
果が小さくその含有量は多い程良い。しかし50重を壬
を越えると低温でスメクチック相が出現し好ましくない
。従って化合物りの含有量は5〜50重量係が望ましく
、より望1しくは5〜25瓜欧鴫である。
Compounds represented by the general formula (hereinafter referred to in the text)
(abbreviated as q'sD) is effective in increasing the clearing point of a nematic liquid crystal composition. However, if the weight range is less than 5, the effect is small and the higher the content, the better. However, if it exceeds 50 weights, a smectic phase will appear at low temperatures, which is undesirable. Therefore, the content of the compound is preferably 5 to 50% by weight, more preferably 5 to 25% by weight.

〔実施列〕[Implementation row]

以下1本発明について実施列に基づき詳細に説明する。 EMBODIMENT OF THE INVENTION Below, one invention will be described in detail based on the series of implementations.

尚、液晶組成物の特性の測定は次の如ぐ行った。The characteristics of the liquid crystal composition were measured as follows.

第1図は1気光学特性に対する測定系を表わしたもので
ある。測定セル4はガラス製基板の片面に蒸着などの操
作により酸化錫などの透明t+fiを設け、更にその面
を有機薄膜で覆い配向処理′ft施し念上、スペーサー
の役割e−AIEねtナイロン・フィルム製の枠を闇に
挾んで液晶全封入し念時液晶j−が所望の厚みと成るよ
うに2枚の該ガラス基板を対向させて固定したものであ
シ、該セルの両面には各々1枚づつの偏光板を電圧が印
加されていない暁光が透過し、電圧が印加された暁光が
遮断されるように偏光軸の向きft#I整して貼付けで
ある。
FIG. 1 shows a measurement system for one-dimensional optical characteristics. The measurement cell 4 is made of a glass substrate with transparent T+FI made of tin oxide or the like by vapor deposition or other operations, and then covered with an organic thin film and subjected to an alignment treatment. The liquid crystal is completely enclosed in a film frame in the dark, and the two glass substrates are fixed facing each other so that the liquid crystal has the desired thickness. Each polarizing plate is pasted with its polarization axis oriented in such a way that the morning light to which no voltage is applied passes through, and the morning light to which a voltage is applied is blocked.

尚、本文中に於てガラス基板とガラス基板の間隔(即ち
、液晶層の厚さ)をセル厚と略記する。白色光源1から
出九光線はレンズ系5を通りセル4に垂直方向から入射
し、後方に設けられた検出器でその透過光強度が測定さ
れる。この時セル4には急動回路5によって任意の実効
イ直電圧を持つ周波数1キロ・ヘルツの交番矩形電圧を
印加されている。第1図の測定系を用いて液晶セルを測
定した実効心圧−相対透過率曲線が第2図である。第2
図に於て透過率は通常の印加電圧範囲で最も明るくなっ
た時及び最も暗くなった時の透過率を各々100暢及び
0暢として表わし印加電圧を透過率100暢の電圧から
始めて徐々に上げて行き透過率が10%だけ変化した時
の実効値電圧を光学的しきい値電圧vthまた更に印加
電圧を上げて透過率が100壬の時から90憾変化した
時の実効値電圧を光学的飽和1圧V satと各々定め
る、この時、実効電圧−相対透過率曲線の光学的しきい
値電圧付近の立ち上がり(°即ち、急1唆性)は下式に
於けるβ1直として定められる。
In the text, the distance between the glass substrates (ie, the thickness of the liquid crystal layer) is abbreviated as cell thickness. Nine light rays emitted from the white light source 1 pass through a lens system 5 and enter the cell 4 from the vertical direction, and the intensity of the transmitted light is measured by a detector provided at the rear. At this time, an alternating rectangular voltage having a frequency of 1 kilohertz and having an arbitrary effective direct voltage is applied to the cell 4 by the rapid-acting circuit 5. FIG. 2 shows an effective cardiac pressure-relative transmittance curve obtained by measuring a liquid crystal cell using the measurement system shown in FIG. Second
In the figure, the transmittance is expressed as the brightest and darkest transmittance in the normal applied voltage range as 100 and 0, respectively, and the applied voltage is gradually increased starting from the voltage at which the transmittance is 100. The optical threshold voltage is the effective value voltage when the transmittance changes by 10%, or the optical threshold voltage is the effective value voltage when the applied voltage is further increased and the transmittance changes by 90% from 100mm. At this time, the rise of the effective voltage-relative transmittance curve near the optical threshold voltage (°, that is, the steepness) is defined as β1 in the following equation.

 sat β=□ vth 点燈時(マトリクス・セルに於て選択された時)の実効
値電圧(Vonと表わす)がV satに等しく。
sat β=□ vth The effective value voltage (denoted as Von) when turned on (when selected in the matrix cell) is equal to V sat.

非点燈時(非選択時)の実効電圧(vOfでと表わす)
がVth K等しい電気g1号が印加された時各々透過
率が90%及び10幅と成り1画素の点燈及び非点燈が
認識される事と成る。更に言えばTonがV satよ
りヤや太き(、Voffがvthよ、6やや小さければ
各々の透過率は90暢以上と10鴫以下と成る。この時
Won/VOff > Vliat/Vth =βであ
る。これとは逆にvanがVsat、より小さく。
Effective voltage when not lit (not selected) (expressed in vOf)
When electricity g1 equal to Vth K is applied, the transmittance becomes 90% and 10 width, respectively, and one pixel is recognized as being lit or not being lit. Furthermore, if Ton is a little thicker than V sat (and Voff is vth, which is a little smaller than 6), the respective transmittances will be 90 or more and 10 or less.In this case, Won/Voff > Vliat/Vth = β. On the contrary, van is smaller than Vsat.

VOf’fがvthより大きければ各々の透過率は90
僑以下と10暢以上と成シ視認性が悪くなってしまう。
If VOf'f is larger than vth, each transmittance is 90
The visibility of children below 10 years of age and above 10 years is poor.

即ち、Won/VOff<V13at、/’Vth =
β なる信号電圧が印加された場伊視認性が悪く−なる
のである。この様にβ値が電気信号の実効電圧比von
/’Tl0f!より小さければ視認性の良い画素表示が
得られ、同じ画@表示を得るのにβ値が小さい程Ton
/V、off比も小さく済む。単純マトリクス表示体で
は走査線本数全多くする程’10n/Voffが小さく
なる定めβ値も小さい(1に近づく)事が必要である。
That is, Won/Voff<V13at, /'Vth=
When a signal voltage β is applied, visibility becomes poor. In this way, the β value is the effective voltage ratio von
/'Tl0f! The smaller the β value, the better the visibility of the pixel display, and the smaller the β value is, the more the Ton
/V, off ratio can also be small. In a simple matrix display, as the total number of scanning lines increases, '10n/Voff decreases, and the β value also needs to be small (approaching 1).

以上β値はVOn/VOffが許容される最小値を示す
ためマルチプレックス特性の指標となる。
Since the β value indicates the minimum allowable value of VOn/Voff, it serves as an index of multiplex characteristics.

印加電圧の変化に対する応答速度は次の通シとする、白
刃Ωする実効値電圧を瞬間的にvthからVeatへ切
り換えた時定常状態での各々実効値電圧に対する透過率
同志の差の90#Iだけ透過率が変1ヒするのに要する
時間(即ち透過率が90%から18%へ変化するのに要
する時間)をミリ秒単位でTonと表わし、同様にvs
atからvthへ実効値電圧を瞬間的に切シ換えた時定
常状態での各々の実効電圧だ対する透過率同志の差の9
0憾だけ透過率が変化するのに要する時間(透過率が1
0暢から82優へ変化するのに要する時間)tミリ秒単
位でT Offと表わす。TonとT off f足し
たT(ミリ秒単位)を以て応答速度の指標とする。
The response speed to changes in applied voltage is as follows: When the effective value voltage of Ω is instantaneously switched from Vth to Veat, the difference in transmittance for each effective value voltage in a steady state is 90#I. The time required for the transmittance to change by 1 (i.e., the time required for the transmittance to change from 90% to 18%) is expressed as Ton in milliseconds, and similarly vs.
When the effective value voltage is instantaneously switched from at to vth, the difference in transmittance for each effective voltage in a steady state is 9.
The time required for the transmittance to change by 0 (when the transmittance is 1)
The time required to change from 0 to 82 excellent) is expressed as T Off in units of t milliseconds. T (in milliseconds), which is the sum of Ton and Toff, is used as an index of response speed.

尚、一般に印加電圧′fr:0から任意の電圧ν(V)
へ瞬間的に切夛換えてから透過率が00状態から90係
へ変化するのに要する時間fton、印加電圧をνから
0へ瞬間的に切り換えてから透過率が100%の状態か
ら1011変化するのに要する時間ft%toff と
すると下記の式で表わされる事が知られている(参考文
献: M、5chadt 日本学術振興会情報科学用有
機材料第142委員会A部会(液晶グループ)第11回
研究会資料1978年)。
In general, the applied voltage 'fr: any voltage ν (V) from 0
The time fton required for the transmittance to change from 00 to 90 after instantaneously switching from ν to 0 is the time required for the transmittance to change from 100% to 1011 after instantaneously switching the applied voltage from ν to 0. It is known that the time required for Research group materials 1978).

ton = v/(ε0ΔεK”−K(7)”)= 4
1・η/(ε。ΔεIt −にπすt Off ”マ/
K(τ)2 = d”・マ/にπ2 (ここで、ηはバルク粘度、ε0は真空誘電率、lεは
相対−11率の異方性、には電場、KはK。十に□−2
Ktt)/’なる弾性定数項、仇はセル厚を各々表わし
%可、ΔεおよびKは液晶組成物に個有である)、従っ
てton及びt、 offは共に(L”&C比例して長
くなる。
ton = v/(ε0ΔεK”−K(7)”)=4
1・η/(ε.ΔεIt − πst Off ”Ma/
K(τ)2 = d”・ma/π2 (where η is the bulk viscosity, ε0 is the vacuum dielectric constant, lε is the anisotropy of the relative -11 index, is the electric field, and K is K. -2
Ktt)/' is the elastic constant term, each represents the cell thickness (%), Δε and K are specific to the liquid crystal composition), so ton, t, and off are both (L"&C become proportionally longer). .

本実施例で定義したTなる応答速度もセル厚と密接な関
係があり、定性的ではあるがセル厚が薄いとTは短か(
、セル厚が厚いと長い傾向を見出した、これらの関係は
当業者ならば納得するに難しくない。従って同じ液晶組
成物音用いて液晶表示体を作った場忙セル厚を薄くする
程、応答速度全速くする事ができる。
The response speed T defined in this example is also closely related to the cell thickness, and qualitatively speaking, if the cell thickness is thin, T will be short (
, found that the longer the cell thickness is, the longer the cell thickness becomes. These relationships are not difficult for those skilled in the art to understand. Therefore, when a liquid crystal display is made using the same liquid crystal composition, the response speed can be increased as the cell thickness is made thinner.

一方、急峻性βはセルIlj d (μ)と屈折率異方
性Δnの積であるΔn−dがCL8〜1.0付近の時、
最も小さくなる(最良となる)事が見出されている(参
考文献:山崎淑夫、竹下裕、永田光夫、宮地幸夫、 P
roceedinqs of the 5rd工nte
rnattonaIDisplay Re5earch
Oonforence ’JAPAN DI8PIaA
Y′86“、520頁: 1985年、■Sより)。従
ってコントラストを重視する場@r、セル厚ctyΔn
−aが、[18〜1.0付近に成る様に液晶表示体を作
るのが最も得鐵であり、液晶組成物の急峻性の比較もこ
のセル厚で行うのが最も妥当であると考えられる。応答
時間も先に記した如くセル厚と関係するため液晶組成物
の応答時Ivlを比較するには適当な厚みで測定する事
が必要である。
On the other hand, the steepness β is obtained when Δn-d, which is the product of the cell Ilj d (μ) and the refractive index anisotropy Δn, is around CL8 to 1.0.
It has been found that the smallest (best) result (References: Yoshio Yamazaki, Yutaka Takeshita, Mitsuo Nagata, Yukio Miyaji, P.
roceedinqs of the 5th grade
rnattonaIDisplay Re5earch
Oonforce 'JAPAN DI8PIaA
Y'86", p. 520: 1985, from ■S). Therefore, when emphasis is placed on contrast, @r, cell thickness ctyΔn
It is believed that it is most advantageous to make a liquid crystal display so that -a is around [18 to 1.0, and it is most appropriate to compare the steepness of liquid crystal compositions using this cell thickness. It will be done. As mentioned above, the response time is also related to the cell thickness, so it is necessary to measure at an appropriate thickness in order to compare the response Ivl of liquid crystal compositions.

以上を鑑み、本実施例では急峻性、応答速度及び、光学
的しきい値電圧の測定は全て急1唆性βが最小となるセ
ル厚のセルを用いて測定した。
In view of the above, in this example, the steepness, response speed, and optical threshold voltage were all measured using a cell having a cell thickness that minimized the steepness β.

測定温度は全て摂氏20#とした。The measurement temperature was 20 degrees Celsius in all cases.

1几配向の均一性を高める几め本発明のネマチック液晶
組成物にitのコレステリック物質を添加したものをセ
ルに封止した。
1. A nematic liquid crystal composition of the present invention with a cholesteric substance added thereto was sealed in a cell in order to improve the uniformity of alignment.

ネマチック液晶相の安定性はセルに封入した状態で高温
液晶性及び低温液晶性を以て表わした。
The stability of the nematic liquid crystal phase was expressed by high-temperature liquid crystallinity and low-temperature liquid crystallinity when sealed in a cell.

即ち年平均気温の平年値が東京で15℃、那覇で22℃
である(a理府統計局編「日本の統計」昭和55年度版
 6.7頁)から室rJA1に20℃と仮定しセルを恒
温槽に設置し、それより更に60℃高い(Mlに於てネ
マチック相が安定か否か全高温液晶性と称することにし
、ネマチック相が安定なら○印1等方性液体(180t
ropic 1iqu1a )ならIで表わす。低温液
晶性はセルを設置した恒温槽の![kzo℃から始め1
日につき5℃ずつ下げて行った時、室温として仮定した
20℃より50℃低くなつ之時(即ち、恒温槽温度−1
0℃)ネマチック液晶相が安定か否かを低温液晶性と称
し、ネマチック液晶相が安定なら○印を、スメクチック
液晶相ならSm′ft、固体状態を呈しているかまたは
析出を生じていれば×印を以って表わす。
In other words, the average annual temperature is 15℃ in Tokyo and 22℃ in Naha.
(a) compiled by the Rifu Statistics Bureau, "Japanese Statistics", 1980 edition, p. 6.7), the cell was installed in a thermostat in room rJA1, assuming the temperature to be 20°C, and the temperature was 60°C higher than that (in Ml). Whether the nematic phase is stable or not is referred to as total high-temperature liquid crystallinity.If the nematic phase is stable, it is marked as an isotropic liquid
ropic 1iqu1a) is represented by I. Low-temperature liquid crystallinity is achieved by using a constant temperature bath in which the cell is installed! [Starting from kzo℃1
When the temperature is lowered by 5℃ per day, when the room temperature is 50℃ lower than the assumed room temperature of 20℃ (i.e., the thermostatic chamber temperature -1
0°C) Whether or not the nematic liquid crystal phase is stable is referred to as low-temperature liquid crystallinity. If the nematic liquid crystal phase is stable, mark it with ○, if it is smectic liquid crystal phase, mark Sm'ft, and if it is in a solid state or has precipitation, × It is represented by a mark.

〔実施列−1〕 本発明による実施列−1の組成及び特性を第1表に示す
・但し、本実施列は化廿物Bとして一般式R3−OAヒ
トR4(式中R4及びR1は炭素数1〜10個の直鎖ア
ルキル基を示す)で表わされる化合物全含有して成る事
を特徴としている。
[Execution row-1] The composition and properties of implementation row-1 according to the present invention are shown in Table 1. However, this example row is a chemical compound B with the general formula R3-OA human R4 (wherein R4 and R1 are carbon It is characterized by containing all the compounds represented by (1 to 10 linear alkyl groups).

また、従来列としてECH及びP−11iを含有して成
る液晶組成物の組成及び特性を第2表に示す。
Further, Table 2 shows the composition and properties of a liquid crystal composition containing ECH and P-11i as a conventional liquid crystal composition.

従来ヴリ−1で急峻性?表わすβ値が1.265である
のに対して、実施9’1J−1のβ値は1.221と良
好である。即ち、単純マトリクス1極を用いた液晶パネ
ルに於て透過率を選択電極で10%以下(暗状態)に、
非選択1に極で90%以上(明状態)に各々するために
は、従来fj+j−tでは走査t+=の数は、17本以
下しか駆動できないのに対して実施例−1では26本以
上jlA勅することができる。
Steepness with conventional Vly-1? The β value expressed is 1.265, whereas the β value of Example 9'1J-1 is 1.221, which is good. That is, in a liquid crystal panel using a single simple matrix pole, the transmittance can be reduced to 10% or less (dark state) using selective electrodes.
In order to achieve 90% or more (bright state) at the non-selection 1 pole, in the conventional fj+j-t, the number of scanning t+= can be driven only 17 or less, whereas in Example-1, the number of scanning t+= can be driven at 26 or more. jlA can be ordered.

光学的しきい値電圧Vth?i、従来例−1が2.59
Vであるのに対して、実施例−1のvthはλ51Vで
多少低くなっている。
Optical threshold voltage Vth? i, conventional example-1 is 2.59
In contrast, vth in Example-1 is λ51V, which is somewhat lower.

更に、応答速度は従来列−1が444 < 17秒であ
るのに対して、実施列−1は168 < 17秒と大幅
に速くなっている。
Furthermore, the response speed of the conventional train-1 is 444 < 17 seconds, whereas the response speed of the implementation train-1 is significantly faster, 168 < 17 seconds.

実施例−1は摂氏50)fに於ける高温液晶性及び摂氏
マイナス10度に於ける低温液晶性もあり十分安定で、
通常の表示体だ用いるのには十分広いネマチック液晶@
度範囲を有している。更に。
Example-1 has high temperature liquid crystallinity at 50) degrees Celsius and low temperature liquid crystallinity at minus 10 degrees Celsius, and is sufficiently stable.
Nematic liquid crystal is wide enough to be used as a normal display.
It has a degree range. Furthermore.

詳しくは、高温側では摂氏65度に於ても、また低温側
では摂氏マイナス20度に於ても液晶性を有し、苛酷な
条件下での表示体にも用いることが可能である。
Specifically, it has liquid crystal properties even at a high temperature of 65 degrees Celsius and a low temperature of -20 degrees Celsius, and can be used for displays even under severe conditions.

以上、本発明による実施列−1は、従来汐l1−1と比
較して、光学的しきい値電圧vthが多少低くなり、β
値が大きく改良されている。更に応答速度がかなり速く
、ネマチック液晶TJA度範囲も十分広い。
As described above, the implementation row-1 according to the present invention has a somewhat lower optical threshold voltage vth than the conventional Shio l1-1, and β
The value has been greatly improved. Furthermore, the response speed is quite fast and the nematic liquid crystal TJA degree range is sufficiently wide.

第1表 第2表 〔発明の効果〕 以上述べたように1本発明によれば、少なくとも一般式
R3−@−+o−R霊で表わされる化会物、一般式R$
−0−’I’→−R2で表わされる化合物、一般式島−
o−t: o oベトCNで表わされる化会物、一般式
R6十かOつ−R7で表わされる化合物を用いてネマチ
ック液晶組成物を構成した事によりネマチック液晶温度
範囲が摂氏寸イナス20度から摂氏65度と広く、急峻
性が優れ、応答速度が速く。
Table 1 Table 2 [Effects of the Invention] As described above, according to the present invention, at least a compound represented by the general formula R3-@-+o-R, a compound of the general formula R$
Compound represented by -0-'I'→-R2, general formula island-
o-t: o o By constructing a nematic liquid crystal composition using a compound represented by CN and a compound represented by the general formula R6-R7, the nematic liquid crystal temperature range is -20 degrees Celsius. to 65 degrees Celsius, excellent steepness, and fast response speed.

更に、光学的しきい値電圧が低く、ダイナずツク駆動特
性に優れたネマチック液晶組成物を得ることができる。
Furthermore, a nematic liquid crystal composition having a low optical threshold voltage and excellent dynamic drive characteristics can be obtained.

本発明によるネマチック液晶組成物を用いればツイスト
ネマチックモードを始めとし、ゲスト−ホスト効果モー
ド(ゲスト液晶として)などの表示素子に於て優れた表
示コントラストを得るのに多大の効果がある。
The use of the nematic liquid crystal composition according to the present invention is highly effective in obtaining excellent display contrast in display elements such as twisted nematic mode and guest-host effect mode (as guest liquid crystal).

【図面の簡単な説明】 涜1)12I!lげ宙添偏1f然イ田1八今摺1192
棋鋳ち慕もナハード図、第2図は該測定装#を用いて一
般的に得られる相対透過率−実効電圧の変化を示した曲
線図。 1・・・光源 2・・・光線 5・・・レンズ及びフィルター系 4・・−セル 5・・・受光部(光電槽倍管) 以   上
[Brief explanation of the drawing] Blasphemy 1) 12I! 1st place, 1f, 1st place, 1192 imazuri
Fig. 2 is a curve diagram showing changes in relative transmittance-effective voltage generally obtained using the measuring device #. 1...Light source 2...Light beam 5...Lens and filter system 4...-Cell 5...Light receiving section (photocell doubler)

Claims (1)

【特許請求の範囲】 少なくとも一般式が下記Aで表わされる化合物の少なく
とも一種、一般式が下記Bで表わされる化合物の少なく
とも一種、一般式が下記Cで表わされる化合物の少なく
とも一種、及び一般式が下記Dで表わされる化合物の少
なくとも一種から成る事を特徴とする液晶組成物。 A・・・▲数式、化学式、表等があります▼ B・・・▲数式、化学式、表等があります▼ C・・・▲数式、化学式、表等があります▼ D・・・▲数式、化学式、表等があります▼ 但し、 R_1及びR_2は炭素数1〜12個の直鎖アルキル基 R_3及びR_4は炭素数1〜10個の直鎖アルキル基 R_5は炭素数1〜10個の直鎖アルキル基R_6及び
R_7は炭素数1〜10個の直鎖アルキル基 を表わす。
[Scope of Claims] At least one compound whose general formula is represented by the following A, at least one compound whose general formula is represented by the following B, at least one compound whose general formula is represented by the following C, and whose general formula is A liquid crystal composition comprising at least one compound represented by D below. A...▲There are mathematical formulas, chemical formulas, tables, etc.▼ B...▲There are mathematical formulas, chemical formulas, tables, etc.▼ C...▲There are mathematical formulas, chemical formulas, tables, etc.▼ D...▲Mathematical formulas, chemical formulas , tables, etc. ▼ However, R_1 and R_2 are straight chain alkyl groups having 1 to 12 carbon atoms R_3 and R_4 are straight chain alkyl groups having 1 to 10 carbon atoms R_5 is a straight chain alkyl group having 1 to 10 carbon atoms Groups R_6 and R_7 represent straight-chain alkyl groups having 1 to 10 carbon atoms.
JP5867386A 1986-03-17 1986-03-17 Liquid crystal composition Pending JPS62215686A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5867386A JPS62215686A (en) 1986-03-17 1986-03-17 Liquid crystal composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5867386A JPS62215686A (en) 1986-03-17 1986-03-17 Liquid crystal composition

Publications (1)

Publication Number Publication Date
JPS62215686A true JPS62215686A (en) 1987-09-22

Family

ID=13091100

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5867386A Pending JPS62215686A (en) 1986-03-17 1986-03-17 Liquid crystal composition

Country Status (1)

Country Link
JP (1) JPS62215686A (en)

Similar Documents

Publication Publication Date Title
US3756694A (en) Electric field controllable birefringence liquid crystal media and optical display devices for use thereof
KR100745115B1 (en) Liquid crystal display devices
US6245258B1 (en) Smectic liquid crystal material and liquid crystal optical element
US3922067A (en) Electro-optical display device including an improved liquid crystal composition
JPS62215686A (en) Liquid crystal composition
JPH0699683B2 (en) Nematic liquid crystal composition
JPH0721141B2 (en) Liquid crystal composition for dynamic drive liquid crystal display device
JPS62243682A (en) Liquid crystal composition
US5250215A (en) Ferroelectric liquid-crystal mixtures containing mercapto compounds
JPH01247482A (en) Liquid crystal composition
JPS62100581A (en) Liquid crystal composition
JPH0696705B2 (en) Liquid crystal composition
JPS6245685A (en) Liquid crystal composition
JPS6121186A (en) Nematic liquid crystal composition
JPS62100583A (en) Liquid crystal composition
JPS62184089A (en) Liquid crystal composition
JPH0222382A (en) Liquid crystal composition
JPS62100585A (en) Liquid crystal composition
JPS62218480A (en) Liquid crystal composition
JPS62218479A (en) Liquid crystal composition
JPH0229489A (en) Liquid crystal composition
JPS62215687A (en) Liquid crystal composition
JPS62100584A (en) Liquid crystal composition
JPS6346289A (en) Liquid crystal composition
JPS61275386A (en) Liquid crystal composition