JPS62218479A - Liquid crystal composition - Google Patents

Liquid crystal composition

Info

Publication number
JPS62218479A
JPS62218479A JP5982686A JP5982686A JPS62218479A JP S62218479 A JPS62218479 A JP S62218479A JP 5982686 A JP5982686 A JP 5982686A JP 5982686 A JP5982686 A JP 5982686A JP S62218479 A JPS62218479 A JP S62218479A
Authority
JP
Japan
Prior art keywords
liquid crystal
voltage
transmittance
temperature
cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5982686A
Other languages
Japanese (ja)
Inventor
Rei Miyazaki
礼 宮崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP5982686A priority Critical patent/JPS62218479A/en
Publication of JPS62218479A publication Critical patent/JPS62218479A/en
Pending legal-status Critical Current

Links

Landscapes

  • Liquid Crystal Substances (AREA)

Abstract

PURPOSE:To provide a nematic liq. crystal compsn. which is wide in the nematic liq. crystal temp. range, excellent in the steepness, high in the speed of response, low in the optical threshold voltage, and excellent in the dynamic drive characteristics and which comprises three particular kinds of compds. CONSTITUTION:8-90wt% at least one compd. (A) of formula I (wherein R1-R2 are each a 1-10C straight-chain alkyl) is mixed with 4-38wt% at least one compd. (B) of formula II (wherein R3-R4 are each a 1-10C straight-chain alkyl), and 5-38wt% at least one compd. (C) of formula III (wherein R5 is a 1-10C straight-chain alkyl).

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は表示装置用液晶組成物、特に電界効果モードに
於てダイナミック駆動特性が良好なる液晶組成物に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a liquid crystal composition for display devices, and particularly to a liquid crystal composition that has good dynamic drive characteristics in field effect mode.

〔従来の技術〕[Conventional technology]

従来、表示装置用ネマチック液晶組成物は、例えば特開
昭54−85694号公報などに明示されているように
、一般式R+Coo−Q−o−R’ (R,R’は各々
任意の炭素数の直鎖アルキル基を示す)で表わされる化
合物(以後本文中に於てECHと略記する)などのNn
液晶をベースにして、これらに一般式R’−4−COO
+CN  (rは任意の炭素数の直鎖アルキル基を示す
)で表わされる化合物(以後本文中に於てP−Eと略記
する)などのNP液晶を添加し、光学的しきい値電圧を
低下せしめる。
Conventionally, nematic liquid crystal compositions for display devices have the general formula R+Coo-Q-o-R' (R and R' each have an arbitrary number of carbon atoms), as disclosed in, for example, Japanese Patent Application Laid-Open No. 54-85694. (hereinafter abbreviated as ECH in the text), etc.
Based on liquid crystals, these have the general formula R'-4-COO
Adding NP liquid crystal such as a compound represented by +CN (r represents a linear alkyl group with an arbitrary number of carbon atoms) (hereinafter abbreviated as P-E in the text) to lower the optical threshold voltage. urge

但し、NP液晶の添〃口賞が多くなると後述の急峻性な
どの電気光学特性が低下するので必要以上にNP液晶を
添加することは得策でない。更に上記Nn液晶及びNP
液晶に加えて一般式「(ト修す−CN(R“′は任意の
炭素数の直鎖アルキル基を示す)で表わされる化合物な
どを添加する事により透明点を高くし液晶温度範囲な広
くしている。
However, it is not a good idea to add more NP liquid crystal than necessary because as the amount of NP liquid crystal added increases, the electro-optical properties such as steepness, which will be described later, will deteriorate. Furthermore, the above Nn liquid crystal and NP
In addition to the liquid crystal, by adding a compound represented by the general formula ``-CN (R'' represents a linear alkyl group with any number of carbon atoms), the clearing point can be raised and the liquid crystal temperature range can be widened. are doing.

〔発明が解決しようとする問題点及び目的〕今日、ネマ
チック液晶組成物に要求される特性の条件は ■ 電圧−透過率曲線の光学的しきい値電圧付近の立ち
上がりが急峻であること(以後本文中に於て急峻性と略
記する) ■ 電圧の変化に対して透過率の応答速度が速いこと ■ 室温を中心として広い温度範囲で駆動できること、
即ち広いネマチック液晶範囲を持つとと■ 化学的に安
定で耐湿性・耐光性に優れるとと ■ 駆動電圧(または光学的しきい値電圧)が自由に選
べること などがある。
[Problems and Objectives to be Solved by the Invention] The characteristics required of nematic liquid crystal compositions today are: ■ A steep rise in the voltage-transmittance curve near the optical threshold voltage (hereinafter referred to in the main text) (abbreviated as “steepness”) ■ Fast response speed of transmittance to changes in voltage ■ Capable of driving in a wide temperature range centered around room temperature
That is, it has a wide nematic liquid crystal range, (1) it is chemically stable and has excellent moisture resistance and light resistance, and (2) the drive voltage (or optical threshold voltage) can be freely selected.

単純マトリクス表示体に於てダイナミック駆動をした時
、駆動回路によって選択電極部または非選択電極部の液
晶に印カロされる実効電圧を各々van”off とし
、走置電極の本数をn本とすれば比V。n/voffは Vo n/Vo t t =fンτfi−丁「丁・・・
・・・(りなる1関係があり、nが多くなるにつれて比
van/Voffも少さくなって行く。
When a simple matrix display is dynamically driven, the effective voltage applied to the liquid crystal of the selected electrode part or non-selected electrode part by the driving circuit is set to van'off, and the number of scanning electrodes is set to n. V.n/voff is Vo n/Vot t=fnτfi-Ding "Ding...
(There is a following relationship, and as n increases, the ratio van/Voff also decreases.

一方、液晶表示装置の一つであるツイスト・ネマチック
・モードの液晶セルを直交偏光子間に置き、第1図に示
す電気光学特性測定装置を用いて該セル4の透過率を光
電増倍管で観察しながら駆動回路6により該セル4に印
加する実効電圧を変えて行くと第2図に示される如き実
効電圧−相対透過率曲線が得られる。電圧を上げて行き
透過率が変化し始める実効電圧を光学的しきい値電圧v
th(本明細書中に於ては透過率を10チだけ変化させ
るのに必要な実効′畦圧値をvthとするλ更に電圧を
上げて行き透過率が光学的飽和電圧なVsat(本明細
書中に於ては透過率を90%変化させるのに必要な実効
電圧匝をVsatとする〕と非選択電極部では印加され
る実効電圧Voff  が光学的しきい値vthより小
さければ、即ちVo f f<Vt h  −−(2)
であれば電圧が印加されていない時と比軟してその透過
率は変化せず全く選択されなく、選択電極部では印加さ
れる実効電圧Vanが飽和電圧Vsatより大きければ
、即ち V o  n ′:2V  s  a  t     
−−(3)であれば透過率は十分変化し選択された事に
なる従って(3)式を(2)式で割れば □〉−□ ・・・・・・(4) Voff     Vth となり、この関係式が成り立つ時非選択電極と選択電極
の透過率の差が十分となる。更に(り式と(4)式から となる。走査線の本数わが多くなるにつれ右辺は小さく
なり1に近づいて行く。このため選択電極と非選択電極
で十分なコントラストを得るには、V s a t /
 V t h  も1に近い方が有利となる。即ち第2
図の実効電圧−相対透過率曲線の光学的しきい値電圧か
ら光学的飽和電圧にかけての曲線の勾配が急峻な程、コ
ントラストを一定(または良くした上に)走査線本数を
増やす事ができる。以上が条件■が必要となる理由であ
る。しかし従来、電気光学特性に於ける温度依存性の除
去が重要視されていた為条件■そのものを改良する具体
的方策が示されておらず問題である。これに対して温度
依存性はICが安価になった現在補償回路を駆動回路に
組み込む事により容易に取り除く事ができるように成っ
た。
On the other hand, a twisted nematic mode liquid crystal cell, which is one type of liquid crystal display device, is placed between orthogonal polarizers, and the transmittance of the cell 4 is measured using the electro-optic characteristic measuring device shown in FIG. By changing the effective voltage applied to the cell 4 by the drive circuit 6 while observing the cell 4, an effective voltage-relative transmittance curve as shown in FIG. 2 is obtained. The optical threshold voltage v is the effective voltage at which the transmittance begins to change as the voltage is increased.
th (in this specification, λ is the effective ridge pressure value required to change the transmittance by 10 cm, and vth is the value of λ).Vsat (in this specification, the voltage is further increased and the transmittance reaches the optical saturation voltage) In this book, the effective voltage required to change the transmittance by 90% is Vsat], and if the effective voltage Voff applied to the non-selected electrode part is smaller than the optical threshold value vth, that is, Vo f f<Vt h --(2)
If so, the transmittance is softer than when no voltage is applied, and the transmittance does not change and is not selected at all, and if the effective voltage Van applied to the selection electrode section is larger than the saturation voltage Vsat, that is, V o n ' :2V sat
--If it is (3), the transmittance has changed sufficiently and it has been selected.Therefore, dividing equation (3) by equation (2) gives □〉-□ ......(4) Voff Vth, When this relational expression holds true, the difference in transmittance between the non-selective electrode and the selective electrode becomes sufficient. Furthermore, it follows from equation (R) and equation (4). As the number of scanning lines increases, the right side becomes smaller and approaches 1. Therefore, in order to obtain sufficient contrast between the selected electrode and the non-selected electrode, V s at /
It is advantageous for V th to be close to 1 as well. That is, the second
The steeper the slope of the effective voltage-relative transmittance curve from the optical threshold voltage to the optical saturation voltage in the figure, the more the number of scanning lines can be increased while keeping (or improving) the contrast. The above is the reason why condition (2) is necessary. However, since conventionally, emphasis has been placed on eliminating temperature dependence in electro-optical characteristics, no concrete measures have been proposed to improve condition (2) itself, which is a problem. On the other hand, temperature dependence can now be easily removed by incorporating a compensation circuit into the drive circuit now that ICs have become cheaper.

他の問題点として応答速度がある。Another problem is response speed.

静止画像を表示する場合応答速度はそれ程問題とならな
い。しかしコンピュータ端末やワード・プロセンサーな
どの様に画像を頻繁に切り換える必要のある場合、高速
応答性が要求されるようになる。テレビ画像などの動画
を表示する場合更に速い応答性が要求されるのは言うま
でもない。
When displaying still images, response speed is not so much of an issue. However, in cases where images need to be changed frequently, such as in computer terminals and word processors, high-speed responsiveness is required. Needless to say, even faster response is required when displaying moving images such as television images.

本発明は以上の問題点を解決するもので、その目的とす
るところは表示装置用のネマチック液晶組成物の急峻性
を改良しダイナミック駆動特性を向上させ、かつネマチ
ック液晶温度範囲を広くし動作温度範囲を広げ、更に化
学的に安定なネマチック液晶組成物な提供する事にある
The present invention has been made to solve the above problems, and its purpose is to improve the steepness of nematic liquid crystal compositions for display devices, improve dynamic drive characteristics, and widen the nematic liquid crystal temperature range to increase the operating temperature. The purpose is to expand the scope of the invention and provide a chemically stable nematic liquid crystal composition.

〔問題を解決するための手段〕[Means to solve the problem]

本発明の液晶組成物は少なくとも一般式が下記Aで表わ
される化合物の少なくとも一種、一般式が下記Bで表わ
される化合物の少なくとも一種、及び一般式が下記Cで
弐わされる化合物の少なくとも一種から成る事を特徴と
する。
The liquid crystal composition of the present invention comprises at least one compound whose general formula is represented by the following A, at least one compound whose general formula is represented by the following B, and at least one compound whose general formula is represented by the following C. It is characterized by becoming.

A ・−−−−−Rt−e−coo−o−o−R。A・----Rt-e-coo-o-o-R.

B・・・・・・R3八IトR4 C・・・・・・R1+COO−トCN 但し、 Sl及びR1は炭素数1〜10個の直鎖アルキル基 R1及びR4は炭素数1〜10個の直鎖アルキル基 R1は炭素数1〜10個の直鎖アルキル基を表わす。B・・・・・・R38ItoR4 C...R1+COO-toCN however, Sl and R1 are straight chain alkyl groups having 1 to 10 carbon atoms R1 and R4 are straight chain alkyl groups having 1 to 10 carbon atoms R1 represents a straight chain alkyl group having 1 to 10 carbon atoms.

一般式人で表わされる化合物(以後本文中に於て化合物
Aと略記する)は急峻性を向上させ、かつ液晶温度範囲
も広げるために用いたものであり、8重量%未満では効
果が小さくその含有量は多い程良い。しかし90重量%
を越えると共晶組成からのズレが大きく成り過ぎて凝固
点降下の効果が得られず低温に於て析出するように成る
ため8重it%から90%重量が望ましい。
The compound represented by General Shikijin (hereinafter abbreviated as Compound A in the text) was used to improve the steepness and expand the liquid crystal temperature range, and if it is less than 8% by weight, the effect is small. The higher the content, the better. However, 90% by weight
If it exceeds 8% by weight, the deviation from the eutectic composition becomes too large and the effect of lowering the freezing point cannot be obtained and precipitation occurs at low temperatures.

一般式Bで表わされる化合物(以後本文中に於て化合物
Bと略記する)は従来の単なるNn液晶及びNP液晶か
ら成るネマチック液晶組成物に添710する事により急
峻性を向上させるために有効なNn液晶であり、4重量
%未満では効果が小さくその含有量は多い程良い。しか
し38重jt%を越えると共晶組成からのズレが大きく
成り過ぎ(#固点1赤下の効果が得られず低温に於て析
出するように成るため4車量チ〜68重量%が望ましい
The compound represented by the general formula B (hereinafter abbreviated as compound B in the text) is effective for improving steepness when added to a conventional nematic liquid crystal composition consisting of a simple Nn liquid crystal and an NP liquid crystal. It is a Nn liquid crystal, and if it is less than 4% by weight, the effect is small, so the higher the content, the better. However, if it exceeds 38 wt%, the deviation from the eutectic composition will become too large (# solid point 1 red lower effect will not be obtained and precipitation will occur at low temperatures, desirable.

一般式Cで表わされる化合物(以後本文中に於て化合物
Cと*記する)はNP液晶でありその含有量の多少によ
り光学的しきい値4圧を低くまた高くできる。また、透
明点を高くするのに有利である。しかし、含有量を多く
し過ぎると急峻性などの電気光学特性の性能を低下させ
、また、共晶組成からのズレが大きくなり過ぎて凝固点
降下の効果が得られず低温に於て析出するように成る。
The compound represented by the general formula C (hereinafter referred to as compound C in the text) is an NP liquid crystal, and the optical threshold value 4 pressure can be lowered or increased depending on its content. It is also advantageous in increasing the clearing point. However, if the content is too high, the performance of electro-optical properties such as steepness will deteriorate, and the deviation from the eutectic composition will become too large, making it impossible to obtain the effect of lowering the freezing point and causing precipitation at low temperatures. becomes.

従って化合物Bの含有量は、5重量%から38重量%が
望ましい。
Therefore, the content of compound B is preferably from 5% by weight to 38% by weight.

〔実施例〕〔Example〕

以下、本発明について実施例に基づき詳細に説明する。 Hereinafter, the present invention will be described in detail based on examples.

尚、液晶組成物の特性の測定は次の如く行った。The characteristics of the liquid crystal composition were measured as follows.

第1図は電気光学特性に対する測定系を表わしたもので
ある。測定セル4はガラス製基板の片面に蒸着などの操
作により酸化錫などの透明電極を設け、更にその面を有
機薄膜で覆い配向処理を施した上、スペーサーの役割を
兼ねたナイロン・フィ 。
FIG. 1 shows a measurement system for electro-optical characteristics. The measurement cell 4 has a transparent electrode made of tin oxide or the like formed by vapor deposition on one side of a glass substrate, which is then covered with an organic thin film for orientation treatment, and a nylon film that also serves as a spacer.

ルム製の枠を間に挾んで液晶を封入した時液晶層が所望
の厚みと成るように2枚の該ガラス基板を対向させて固
定したものであり、該セルの両面には各々1枚づつの偏
光板な′−圧が印加されていない時光が透過し、電圧が
印加された時光が遮断されるように偏光軸の向きを調整
して貼付けである。
The two glass substrates are fixed facing each other so that the liquid crystal layer has the desired thickness when the liquid crystal is sealed with a frame made of Luminous sandwiched between them, and one glass substrate is placed on each side of the cell. The direction of the polarizing axis is adjusted and pasted so that when no voltage is applied, light passes through the polarizing plate, and when voltage is applied, light is blocked.

尚、本文中に於てガラス基板とガラス基板の間隔(即ち
、液晶層の厚さ)をセル厚と略記する。白色光源1から
出た光線はレンズ系3を通りセル4に垂直方向から入射
し、後方に設けられた検出器4でその透過光強度が測定
される。この時セル4には駆動回路5によって任意の実
効値電圧を持つ周波数1キロ・ベルンの交番矩形電圧を
印加されている。第1図の測定系を用いて液晶セルを測
定した実効電圧−相対透過率曲線が42図である。
In the text, the distance between the glass substrates (ie, the thickness of the liquid crystal layer) is abbreviated as cell thickness. A light beam emitted from a white light source 1 passes through a lens system 3 and enters a cell 4 from a vertical direction, and the intensity of the transmitted light is measured by a detector 4 provided at the rear. At this time, an alternating rectangular voltage having a frequency of 1 km/Bern and having an arbitrary effective value voltage is applied to the cell 4 by the driving circuit 5. Figure 42 shows an effective voltage-relative transmittance curve obtained by measuring a liquid crystal cell using the measurement system shown in Figure 1.

第2図に於て透過率は通常の印71O’4圧範囲で最も
明るくなった時及び最も暗くなった時の透過率を各々1
00チ及び0チとして表わし印加電圧を透過率100チ
の電圧から始めて徐々に上げて行き透過率が10チだけ
変化した時の実効値電圧を光学的しきい値電圧vthま
た更に印加電圧を上げて透過率が100−の時から90
チ変化した時の実効値電圧を光学的飽和電圧Vsatと
各々定める。この時、実効電圧−相対透過率曲線の光学
的しきい値電圧付近の立ち上がり(即ち、急峻性)は下
式に於けるβ値として定められる。
In Figure 2, the transmittance is the normal mark 71O'4 The transmittance when it is the brightest and the transmittance when it is the darkest in the pressure range is 1, respectively.
The applied voltage is expressed as 00 and 0, and the applied voltage is gradually increased starting from the voltage at a transmittance of 100, and the effective value voltage when the transmittance changes by 10 is the optical threshold voltage vth or as the applied voltage is further increased. When the transmittance is 100-90
The effective value voltage when the temperature changes is defined as the optical saturation voltage Vsat. At this time, the rise (that is, the steepness) of the effective voltage-relative transmittance curve near the optical threshold voltage is determined as the β value in the following equation.

β=□ vth 点燈時(マトリクス・セルに於て選択された時)の実効
値電圧(Vanと表わす)がvaatに等しく、非点燈
時(非選択時)の実効電圧(Voffと表わす)がvt
hに等しい電気信号が印加された時各々透過率が90チ
及び10チと成り、画素の点燈及び非点燈が認識される
事と成る。更に言えばVanがVaatよりやや大きく
、Voffがvthよりやや小さければ各々の透過率は
90q6以上と10チ以下と成る。この時Vo n/V
 o f f)Vta a t/vth =βである。
β=□ vth The effective voltage (expressed as Van) when lit (selected in the matrix cell) is equal to vaat, and the effective voltage (expressed as Voff) when not lit (selected) is vt
When an electrical signal equal to h is applied, the transmittances become 90 and 10, respectively, and it is possible to recognize whether the pixel is lit or not. Furthermore, if Van is slightly larger than Vaat and Voff is slightly smaller than vth, the respective transmittances will be 90q6 or more and 10q or less. At this time Vo n/V
o f f)Vta a t/vth = β.

これとは逆にVanがVsatより小さく、Voffが
vthより大きげれば各々の透過率は90%以下と10
%以上と成り視認性が悪くなってしまう。即ち、Van
/Voff(Vaat/Vth:=βなる信号電圧が印
加された場合視認性が悪くなるのである。この様にβ値
が電気信号の実効′電圧比Van/Voff  より小
さければ視認性の良い画素表示が得られ、同じ画像表示
を得るのにβ値が小さい程Von/Voff比も小さく
済む。単純マトリクス表示体では走査線本数を多くする
程Von/Voffが小さくなるためβ値も小さい(1
に近づく)事が必要である。以上β値はVan/Vof
fが許容される最小値を示すためマルチプレックス特性
の指標となる。
On the other hand, if Van is smaller than Vsat and Voff is larger than vth, the respective transmittances will be 90% or less and 10
% or more, visibility becomes poor. That is, Van
/Voff(Vaat/Vth:=β) If a signal voltage of β is applied, visibility will be poor.As shown above, if the β value is smaller than the effective voltage ratio of the electric signal Van/Voff, the pixel display will have good visibility. is obtained, and to obtain the same image display, the smaller the β value, the smaller the Von/Voff ratio.In a simple matrix display, the larger the number of scanning lines, the smaller the Von/Voff, so the β value is also smaller (1
) is necessary. The above β value is Van/Vof
Since f indicates the minimum allowable value, it is an index of multiplex characteristics.

印加電圧の変化に対する応答速度は次の通りとする。印
加する実効値電圧を瞬間的にvthからVsatへ切り
換えた時定常状態での各々実効値電圧に対する透過率同
志の差の90%だけ透過率が変化するのに要する時間(
即ち透過率が9・0チから18チへ変化するのに要する
時間)をミリ秒単位でTonと表わし、同様にVsat
からvthへ実効値電圧を瞬間的に切り換えた時定常状
態での各々の実効′d圧に対する透過率同志の差の90
チだけ透過率が変化するのに要する時間(透過率が10
チから82%へ変化するのに安する時間)をミリ秒単位
でToffと表わす。TonとToffを足した’r 
(ミ+)秒単位)を以て応答速度の指標とする。
The response speed to changes in applied voltage is as follows. When the applied effective value voltage is instantaneously switched from vth to Vsat, the time required for the transmittance to change by 90% of the difference between the transmittances for each effective value voltage in a steady state (
In other words, the time required for the transmittance to change from 9.0 inches to 18 inches is expressed as Ton in milliseconds, and similarly, Vsat
90 of the difference in transmittance for each effective 'd pressure in a steady state when the effective voltage is instantaneously switched from to vth.
The time required for the transmittance to change by
The time it takes to change from 1 to 82% is expressed as Toff in milliseconds. 'r which is the sum of Ton and Toff
(in microseconds) is used as an index of response speed.

尚、一般に印加電圧を0から任意の電圧ν(v)へ瞬間
的に切り換えてから透過率が0の状態から90チへ変化
するのに要する時間をt o n、印加電圧をνから0
へ瞬間的に切り換えてから透過率が100%の状態から
10チ変化するのに要する時間を、toffとすると下
記の式で表わされる事が仰られている(参考文献:M、
5ehadt、日本学術振興情報科学用有機材料第14
2委員会A部会(液晶グループ)第11回研究会資料 
1978年)。
Generally, the time required for the transmittance to change from 0 to 90 after instantaneously switching the applied voltage from 0 to an arbitrary voltage ν(v) is t on n, and the applied voltage is changed from ν to 0.
It is said that the time required for the transmittance to change from 100% to 10 degrees after instantaneous switching to is expressed by the following formula (References: M,
5ehadt, Japan Society for the Promotion of Science Organic Materials for Information Science No. 14
2 Committee A Subcommittee (LCD Group) 11th Study Group Materials
(1978).

ton :η/(6o)#E”−K(−!−)”)==
 d!++ η/ (16/ a E”−Kxりtof
f=η/K(−!−)′ =d”*η/[1” (ここで、ηはバルク粘度、−0は真空誘it4゜〕C
は相対誘電率の異方性、Eは電場、にはK11+ KH
32Kxl ) / 4なる弾性定数項、dはセル厚を
各々表わし、η、コノ−よびKは液晶組成物に個有であ
る)0従ってton及びtoffは共に  。
ton: η/(6o)#E"-K(-!-)")==
d! ++ η/ (16/ a E”-Kxritof
f=η/K(-!-)' = d"*η/[1" (where η is the bulk viscosity, -0 is the vacuum induction it4°]C
is the anisotropy of the relative permittivity, E is the electric field, and is K11+ KH
The elastic constant term is 32Kxl)/4, d represents the cell thickness, η, Conno and K are specific to the liquid crystal composition)0, so ton and toff are both .

d2に比例して長くなる。It becomes longer in proportion to d2.

本実施例で定義したTなる応答速度もセル厚と密−な関
係があり、定性的ではあるがセル厚が薄いとTは短かく
、セル厚が厚いと長い傾向を見出した。これらの関係は
当業者ならば納得するに難しくない。従って同じ液晶組
成物を用いて液晶表示体を作った場合セル厚を薄くする
程、応答速度を速くする事ができる。
The response speed T defined in this example also has a close relationship with the cell thickness, and although qualitatively, it has been found that T tends to be short when the cell thickness is thin, and long when the cell thickness is thick. These relationships are not difficult for those skilled in the art to understand. Therefore, when a liquid crystal display is made using the same liquid crystal composition, the thinner the cell thickness is, the faster the response speed can be.

一方、急峻性βはセル厚d (/=)と屈折率異方性Δ
nの積であるΔnodが0.8〜1.0 付近の時、最
も小きくなる(最良となる)事が見出されている(参考
文献:山崎淑夫、竹下 裕、永田光夫、宮地幸夫、  
Proceedings of  the 3rd I
nternational Display Re5e
arch conf@rence’JAPAN DIS
PLAY ’83’ 、 520頁:1983年、■5
ID)、従ってコントラストを重視する場合、セル厚d
をΔnodが、α8〜1.0 付近に成る様に液晶表示
体を作るのが最も得策であり、液晶組成物の急峻性の比
較もこのセル厚で行うのが最も妥当であると考えられる
。応答時間も先に記した如〈セル厚と関係するため液晶
組成物の応答時間を比較するには適当な厚みで測定する
事が必要である。
On the other hand, the steepness β is determined by the cell thickness d (/=) and the refractive index anisotropy Δ
It has been found that Δnod, which is the product of n, is the smallest (best) when it is around 0.8 to 1.0 (References: Yoshio Yamazaki, Yutaka Takeshita, Mitsuo Nagata, Yukio Miyaji,
Proceedings of the 3rd I
international Display Re5e
arch conf@rence'JAPAN DIS
PLAY '83', 520 pages: 1983, ■5
ID), therefore, when emphasis is placed on contrast, the cell thickness d
It is most advisable to manufacture a liquid crystal display so that Δnod is around α8 to 1.0, and it is considered most appropriate to compare the steepness of liquid crystal compositions using this cell thickness. As mentioned above, the response time is also related to the cell thickness, so in order to compare the response times of liquid crystal compositions, it is necessary to measure at an appropriate thickness.

以上を鑑み、本実施例では急峻性、応答速度及び、光学
的しきい値電圧の測定は全て急峻性βが最小となるセル
厚のセルを用いて測定した。
In view of the above, in this example, steepness, response speed, and optical threshold voltage were all measured using a cell having a cell thickness that minimized steepness β.

測定温度は全て摂氏20度とした。The measurement temperature was 20 degrees Celsius in all cases.

また配向の均一性を高めるため本発明のネマチック液晶
組成物に微量のコレステリンク物質を添加したものをセ
ルに封止した。
Further, in order to improve the uniformity of alignment, the nematic liquid crystal composition of the present invention to which a trace amount of cholesterinic substance was added was sealed in a cell.

ネマチック液晶相の安定性はセルに封入した状態で高温
液晶性及び低温液晶性を以て表わした。
The stability of the nematic liquid crystal phase was expressed by high-temperature liquid crystallinity and low-temperature liquid crystallinity when sealed in a cell.

即ち年平均気温の平年値が東京で15C1那覇で220
である(総理府統計局編「日本の統計」昭和55年度版
 6,7貞)から室温を20Cと仮定しセルを恒温槽に
設置し、それより更に30C高い温度に於てネマチック
相が安定か否かを高温液晶性と称することにし、ネマチ
ック相が安定なら○印、等方性液体(jmotropi
c 1iquid)ならIで表わす。低温液晶性はセル
を設置した恒温槽・の温度を20℃から始め1日につき
5Cずつ下げて行った時、室温として仮定した20℃よ
り500低くなった時(即ち、恒温槽温度−1ΩC)、
ネマチック液晶相が安定か否かを低温液晶性と称し、ネ
マチック液晶相が安定なら○印を、スメクチック液晶相
ならSmを固体状態を呈してbるかまたは析出を生じて
いればx印を以って表わす。
In other words, the average annual temperature is 15C in Tokyo and 220C in Naha.
(Japanese Statistics, edited by the Statistics Bureau of the Prime Minister's Office, 1980 edition 6, 7), assuming the room temperature is 20C, the cell is placed in a constant temperature oven, and the nematic phase is stable at a temperature 30C higher than that. If the nematic phase is stable, it is referred to as high-temperature liquid crystallinity.
c 1iquid) is represented by I. Low-temperature liquid crystallinity is determined when the temperature of the constant temperature chamber in which the cell is installed starts at 20℃ and is lowered by 5C per day, and when it becomes 500 degrees lower than the assumed room temperature of 20℃ (i.e., constant temperature chamber temperature - 1ΩC). ,
Whether the nematic liquid crystal phase is stable or not is referred to as low-temperature liquid crystallinity. It is expressed as

〔実施例−1,2〕 本発明による実施例−1,2の組成及び特性を第1表に
示す。但し本実施例は化合物Bとして一般式R「■ベト
R4(式中Rs及びR6は炭素数1〜10個の直鎖アル
キル基を示す)で表わされる化合物を含有して成る事を
特徴としている。
[Examples 1 and 2] Table 1 shows the compositions and properties of Examples 1 and 2 according to the present invention. However, this example is characterized in that the compound B contains a compound represented by the general formula: .

また、従来例としてECH及びP−Eを含有して成る液
晶組成物の組成及び特性を第2表に示す。
Further, as a conventional example, the composition and characteristics of a liquid crystal composition containing ECH and PE are shown in Table 2.

従来例−1で急峻性を表わすβ値が1.265であるの
に対して、実施例−1のβ値は1.238.実施例−2
のβ値は1.252と改良されている。即ち単純マトリ
クス電極を用いた液晶パネルに於て透過率を選択電極で
10チ以下(暗状態)に、非選択電極で90%以上(門
状#I)に各々するためKは、従来例−1では走査電極
の数は、17本以下しか駆動できないのに対して、実施
例−1では23本以上、実施例−2では24本以上駆動
することができる。
While the β value representing steepness in Conventional Example-1 is 1.265, the β value in Example-1 is 1.238. Example-2
The β value of is improved to 1.252. That is, in a liquid crystal panel using simple matrix electrodes, in order to make the transmittance less than 10% (dark state) for the selective electrode and more than 90% (portal #I) for the non-selective electrode, K is the conventional example - In Example 1, only 17 or less scanning electrodes can be driven, whereas in Example-1, 23 or more scanning electrodes can be driven, and in Example-2, 24 or more scanning electrodes can be driven.

光学的しきい値電圧vthは従来例−1が2.59Vで
あるのに対して、実施例−1のvtbは2.38v1実
施例−2のvthは2.16vであり、イスれもかなり
良好である。
The optical threshold voltage vth is 2.59V in Conventional Example-1, whereas vtb in Example-1 is 2.38v1, and vth in Example-2 is 2.16V, with considerable distortion. In good condition.

応答速度は、従来例−1が444 ミ17秒であるのに
対して、実施例−1は312 ミ+)秒、実施例−2は
345ミリ秒と速くなっている。
The response speed of Conventional Example-1 is 444 milliseconds, whereas that of Example-1 is 312 milliseconds, and that of Example-2 is 345 milliseconds.

実施例−1,2は摂氏50度に於ける高温液晶性及び摂
氏マイナス10度に於ける低温液晶性もあり十分安定で
、通常の表示体に用いるのに十分広いネマチック液晶温
度範囲な有している。更に詳しくは、実施例−2は、高
温側では摂氏63度に於ても液晶性を有し、苛酷な条件
下での表示体にも用いることが可能である。
Examples 1 and 2 have high-temperature liquid crystal properties at 50 degrees Celsius and low-temperature liquid crystal properties at -10 degrees Celsius, and are sufficiently stable and have a sufficiently wide nematic liquid crystal temperature range to be used in ordinary displays. ing. More specifically, Example 2 has liquid crystal properties even at a high temperature of 63 degrees Celsius, and can be used for displays under severe conditions.

以上、従来例−1のβ値が1.265であるのに−17
一 対して、本発明による実施例−1は1.258、実施例
−2は1.232と良好である。また、光学的しきい値
電圧も低く、応答速度も速く、爽にネマチック液晶温度
範囲も十分である。
As mentioned above, although the β value of conventional example -1 is 1.265, it is -17
On the other hand, Example-1 according to the present invention has a good value of 1.258, and Example-2 has a good value of 1.232. Furthermore, the optical threshold voltage is low, the response speed is fast, and the nematic liquid crystal temperature range is refreshingly sufficient.

第2表 〔発明の効果〕 以上述べたように、本発明によれば、少なくとも一般式
RI +COo−Q−o−a、で表わされる化合物、一
般式R3→h+R4で表わされる化合物、−般式R11
−o−000−CF−CNで表わされる化合物を用いて
ネマチック液晶組成物を構成した事により、摂氏マイナ
ス10度から摂氏50度まで最もネマチック液晶温度範
囲の広いものでは高温側で摂氏63度でも駆動でき、急
峻性が優れ、応答速度が速く、光学的しきい値電圧が低
く、光学的しきい値電圧が低くダイナミック駆動特性に
優れたネマチック液晶組成物を得る事ができた。
Table 2 [Effects of the Invention] As described above, according to the present invention, at least a compound represented by the general formula RI +COo-Q-o-a, a compound represented by the general formula R3→h+R4, a compound represented by the general formula - R11
By constructing a nematic liquid crystal composition using a compound represented by -o-000-CF-CN, the nematic liquid crystal composition has the widest temperature range from -10 degrees Celsius to 50 degrees Celsius, and even 63 degrees Celsius on the high temperature side. It was possible to obtain a nematic liquid crystal composition that can be driven, has excellent steepness, has a fast response speed, has a low optical threshold voltage, and has excellent dynamic drive characteristics.

本発明によるネマチック液晶組成物を用いればツイスト
ネマチックモードを始めとし、ゲスト−ホスト効果モー
ド(ホスト液晶として)などの表示素子に於て優れた表
示コントラストを得るのに多大の効果がある。
The use of the nematic liquid crystal composition according to the present invention is highly effective in obtaining excellent display contrast in display elements such as twisted nematic mode and guest-host effect mode (as a host liquid crystal).

【図面の簡単な説明】[Brief explanation of drawings]

第1図は実施例に於て用いた測定装置を表わすハード図
、第2図は該測定装置を用いて一般的に得られる相対透
過率−実効電圧の変化を示した曲線図。 1・・・・・・光源 2・・・・・・光線 3・・・・・・レンズ及びフィルター系4・・・・・・
セル 5・・・・・・受光部(充電増倍管)。 以上
FIG. 1 is a hardware diagram showing the measuring device used in the examples, and FIG. 2 is a curve diagram showing changes in relative transmittance versus effective voltage generally obtained using the measuring device. 1...Light source 2...Light ray 3...Lens and filter system 4...
Cell 5... Light receiving section (charge multiplier tube). that's all

Claims (1)

【特許請求の範囲】 少なくとも一般式が下記Aで表わされる化合物の少なく
とも一種、一般式が下記Bで表わされる化合物の少なく
とも一種、及び一般式が下記Cで表わされる化合物の少
なくとも一種から成る事を特徴とする液晶組成物。 A……▲数式、化学式、表等があります▼ B……▲数式、化学式、表等があります▼ C……▲数式、化学式、表等があります▼ 但し、 R_1及びR_2は炭素数1〜10個の直鎖アルキル基 R_3及びR_4は炭素数1〜10個の直鎖アルキル基 R_5は炭素数1〜10個の直鎖アルキル基を表わす。
[Scope of Claims] Consists of at least one compound whose general formula is represented by the following A, at least one compound whose general formula is represented by the following B, and at least one compound whose general formula is represented by the following C. Characteristic liquid crystal composition. A...▲There are mathematical formulas, chemical formulas, tables, etc.▼ B...▲There are mathematical formulas, chemical formulas, tables, etc.▼ C...▲There are mathematical formulas, chemical formulas, tables, etc.▼ However, R_1 and R_2 have 1 to 10 carbon atoms. Straight chain alkyl groups R_3 and R_4 represent a straight chain alkyl group having 1 to 10 carbon atoms R_5 represents a straight chain alkyl group having 1 to 10 carbon atoms.
JP5982686A 1986-03-18 1986-03-18 Liquid crystal composition Pending JPS62218479A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5982686A JPS62218479A (en) 1986-03-18 1986-03-18 Liquid crystal composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5982686A JPS62218479A (en) 1986-03-18 1986-03-18 Liquid crystal composition

Publications (1)

Publication Number Publication Date
JPS62218479A true JPS62218479A (en) 1987-09-25

Family

ID=13124417

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5982686A Pending JPS62218479A (en) 1986-03-18 1986-03-18 Liquid crystal composition

Country Status (1)

Country Link
JP (1) JPS62218479A (en)

Similar Documents

Publication Publication Date Title
US4120567A (en) Electro-optic device
JPS62218479A (en) Liquid crystal composition
JPS62100581A (en) Liquid crystal composition
JPS60243193A (en) Nematic liquid crystal composition
JPS6245685A (en) Liquid crystal composition
JPS62100583A (en) Liquid crystal composition
JPS6245686A (en) Liquid crystal composition
JPS6245684A (en) Liquid crystal composition
JPS6213484A (en) Liquid crystal composition
JPH01247482A (en) Liquid crystal composition
JPH0232308B2 (en)
JPS62184090A (en) Liquid crystal composition
JPS62218481A (en) Liquid crystal composition
JPS62218482A (en) Liquid crystal composition
US4621900A (en) Liquid crystal compositions
JPS61275386A (en) Liquid crystal composition
JPS61243887A (en) Liquid crystal composition
JPS62184089A (en) Liquid crystal composition
JPS62218480A (en) Liquid crystal composition
JPS62215687A (en) Liquid crystal composition
JPS61271383A (en) Liquid crystal composition
JPS61236893A (en) Liquid crystal composition
JPS6346289A (en) Liquid crystal composition
JPS61271384A (en) Liquid crystal composition
JPH06220454A (en) Liquid crystal composition