JPS6245685A - Liquid crystal composition - Google Patents

Liquid crystal composition

Info

Publication number
JPS6245685A
JPS6245685A JP18683885A JP18683885A JPS6245685A JP S6245685 A JPS6245685 A JP S6245685A JP 18683885 A JP18683885 A JP 18683885A JP 18683885 A JP18683885 A JP 18683885A JP S6245685 A JPS6245685 A JP S6245685A
Authority
JP
Japan
Prior art keywords
liquid crystal
voltage
transmittance
chain alkyl
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18683885A
Other languages
Japanese (ja)
Inventor
Rei Miyazaki
礼 宮崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP18683885A priority Critical patent/JPS6245685A/en
Publication of JPS6245685A publication Critical patent/JPS6245685A/en
Pending legal-status Critical Current

Links

Landscapes

  • Liquid Crystal Substances (AREA)

Abstract

PURPOSE:To provide a nematic liq. crystal compsn. which has excellent dynamic drive characteristics, steepness, chemical stability, moisture resistance and light resistance, a rapid response with respect to transmittance and a wide operating temp. range and which comprises particular three compds. CONSTITUTION:7-72wt% compd. of formula I (wherein R1-R2 are each a 1-12C straight-chain alkyl) is mixed with 5-38wt% compd. of formula II (wherein R3 is a 1-8C straight-chain alkyl) and 5-30wt% compd. of formula III (R4 is a 1-10C straight-chain alkyl).

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は表示装置用液晶組成物、特に電界効果モードに
於てダイナミック駆動特性が良好なる液晶組成物に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a liquid crystal composition for display devices, and particularly to a liquid crystal composition that has good dynamic drive characteristics in field effect mode.

〔本発明の概要〕[Summary of the invention]

本発明は、液晶組成物において、少なくとも一般式R1
−@→◇−0−R2で表わされる化合物、一般式R3−
◎−弓ト◎−CN  で表わされる化合物、一般式R4
ベトc Oo−@−ON で表わされる化合物を用いる
こと止り、光学的しきい値電圧の低下、急峻性の向上、
応答速度を速めるようにしたものである。
The present invention provides a liquid crystal composition in which at least general formula R1
Compound represented by -@→◇-0-R2, general formula R3-
◎-Yumito◎-CN Compound represented by general formula R4
No need to use the compound represented by Oo-@-ON, lowering of optical threshold voltage, improvement of steepness,
This is designed to speed up the response speed.

〔従来の技術〕[Conventional technology]

従来、表示装置用液晶組成物は、例えば特開昭54−8
5694号公報などに示されているように、一般式R−
@−Co oぺpo−R’ (R、R’は各々任意の炭
素数の直鎮アルキル基を示す)で表わされる化合物(以
後本文中に於て]!IC!Hと略記する)などのNn液
晶をベースにして、これらに一般式” ’−@−c o
 o−◎−ON (R”ハ任意の炭素数)直鎖アルキル
基を示す−)で表わされる化合物(以後本文中に於てp
−zと略記する)などのNp液晶を添加し、光学的しき
い値電圧を低下せしめる。但し、Np液晶の添加量が多
くなると後述の急峻性などの電気光学特性が低下するの
で必要以上にNp液晶を添加することは得策でない。
Conventionally, liquid crystal compositions for display devices have been disclosed, for example, in Japanese Patent Application Laid-Open No. 54-8
As shown in Publication No. 5694, etc., the general formula R-
Compounds represented by @-Co opepo-R' (R and R' each represent a straight alkyl group with an arbitrary carbon number) (hereinafter abbreviated as !IC!H in the text), etc. Based on Nn liquid crystal, these have the general formula "'-@-c o
Compounds represented by o-◎-ON (R" represents an arbitrary number of carbon atoms) representing a straight-chain alkyl group (hereinafter referred to as p in the text)
-z) is added to lower the optical threshold voltage. However, if the amount of Np liquid crystal added increases, electro-optical properties such as steepness, which will be described later, will deteriorate, so it is not a good idea to add more Np liquid crystal than necessary.

〔一本発明が解決しようとする問題点及び目的〕今日ネ
マチック液晶m成物に要求される特性の条件は ■ 電圧−透過率曲線の光学的しきい値電圧の付近の立
ち上がりが急峻であること(以後本文中に於て急峻性と
略記する) ■ 電圧の変化に対して透過率の応答速度が速いこと ■ 室温を中心として広い温度範囲で駆動できること、
即ち広いネマチック液晶範囲を持つこと ■ 化学的に安定で耐湿性・耐光性に優れること ■ 駆動電圧(または光学的しきい値電圧)が自由に選
べること などがある。
[Problems and objectives to be solved by the present invention] The characteristics required for nematic liquid crystal compositions today are: ■ The rise of the voltage-transmittance curve near the optical threshold voltage is steep. (Hereinafter abbreviated as "steepness" in the text) ■ Fast response speed of transmittance to changes in voltage ■ Capable of driving in a wide temperature range centered around room temperature,
That is, it must have a wide nematic liquid crystal range; It must be chemically stable and have excellent moisture resistance and light resistance; and it must be able to freely select the driving voltage (or optical threshold voltage).

単純マトリクス表示体に於てダイナミック駆動をした時
、駆動回路によって選択電極部または非選択電極部の液
晶に印加される実効電圧を各々Von、Voff  と
し、走査電極の本数をn本とすれば、比Von/Vof
f  は Von/Voff= (−/n+1)/(v’n−1)
  ・・(1)なる関係があり、nが多くなるにつれて
比VOn/ V o f fも小さくなって行く。
When a simple matrix display is dynamically driven, if the effective voltages applied by the drive circuit to the liquid crystal of the selected electrode part or non-selected electrode part are Von and Voff, respectively, and the number of scanning electrodes is n, then Ratio Von/Vof
f is Von/Voff= (-/n+1)/(v'n-1)
There is a relationship (1), and as n increases, the ratio VOn/Vof also decreases.

一方、液晶表示装置の一つであるツイスト・ネマチック
・モードの液晶セルを直交偏光子間に置き、第1図に示
す電気光学特性測定装置を用いて該セル4の透過率を光
電増倍管で観察しながら駆動回路6により該セル4に印
加する実効電圧を変えて行くと第2図に示される如き実
効電圧−相対透過率曲線が得られる。電圧を上げて行き
透過率が変化し始める実効電圧な光学的しきい値電圧v
th(本門細宿生に於ては透過率を10%だけ変化させ
るのに必要な実効電圧値をvthとする)、更に電圧を
上げて行き透過率が光学的飽和電圧をvaat(本明細
書に於ては透過率を90%変化させるのに必要な実効電
圧値をVsatとする)とすると、非選択電極部では印
加される実効電圧Voffが光学的しきい値電圧vth
より小さければ、即ち、 v o t t <、 v t h    ・−” (
2)であれば電圧が印加されていない時と比較してその
透過率は変化せず全く選択されなく、選択電極部では印
加される実効電圧VOnが飽和電圧Vsatより大きけ
れば、即ち、 VOn≧Vsat    ……(3) であれば透過率は十分変化し選択された事になる従って
(8)式を(2)式で割れば v  o  n        Vsat≧ □   
・・・・・・(4) Voff        Vth となり、この関係式が成り立つ時非選択電極と選択電極
の透過率の差が十分となる。更に(1)式と(4)式か
ら ・・・・・・(5) となる。走査線の本数nが多くなるにつれ右辺は小さく
なり1に近づいて行く。このため選択電極と非選択電極
で十分なコントラスト?得るにはV s a t / 
V t hも1に近い方が有利となる。即ち第2図の電
圧−透過率曲線の光学的しきい値電圧から光学的飽和電
圧にかけての勾配が急峻な程、コントラストを一定(ま
たは良くした上に)走査線本数を増やす事ができる。以
上が条件■が必要となる理由である。しかし従来、電気
光学特性に於ける温度依存性の除去が重要視されていた
為条件■そのものを改良する具体的方策が示されておら
ず問題である。これに対して温度依存性は工0が安価に
なった現在温度補償回路を駆動回路に組み込む事により
容易に取り除く事が出来るように成った。
On the other hand, a twisted nematic mode liquid crystal cell, which is one type of liquid crystal display device, is placed between orthogonal polarizers, and the transmittance of the cell 4 is measured using the electro-optic characteristic measuring device shown in FIG. By changing the effective voltage applied to the cell 4 by the drive circuit 6 while observing the cell 4, an effective voltage-relative transmittance curve as shown in FIG. 2 is obtained. The optical threshold voltage v is the effective voltage at which the transmittance begins to change as the voltage is increased.
th (in the case of Honmon Hoshosei, the effective voltage value required to change the transmittance by 10% is vth), and as the voltage is further increased, the transmittance increases the optical saturation voltage by vaat (in this specification). In this paper, the effective voltage value required to change the transmittance by 90% is Vsat), then the effective voltage Voff applied to the non-selected electrode portion is equal to the optical threshold voltage Vth.
If it is smaller, that is, v ot t <, v th ・−” (
In case 2), the transmittance does not change compared to when no voltage is applied and is not selected at all, and if the effective voltage VOn applied to the selection electrode section is larger than the saturation voltage Vsat, that is, VOn≧ If Vsat...(3), the transmittance has changed sufficiently and has been selected.Therefore, if you divide equation (8) by equation (2), v o n Vsat≧ □
(4) Voff Vth When this relational expression holds true, the difference in transmittance between the non-selected electrode and the selected electrode becomes sufficient. Furthermore, from equations (1) and (4), we get (5). As the number n of scanning lines increases, the right side becomes smaller and approaches 1. Is there enough contrast between the selective and non-selective electrodes for this? To obtain V sat /
It is also advantageous for V th to be close to 1. That is, the steeper the slope from the optical threshold voltage to the optical saturation voltage of the voltage-transmittance curve shown in FIG. 2, the more the number of scanning lines can be increased while maintaining (or improving) the contrast. The above is the reason why condition (2) is necessary. However, since conventionally, emphasis has been placed on eliminating temperature dependence in electro-optical characteristics, no concrete measures have been proposed to improve condition (2) itself, which is a problem. On the other hand, temperature dependence can now be easily eliminated by incorporating a temperature compensation circuit into the drive circuit, as the cost of manufacturing has become cheaper.

他の問題点として応答速度がある。Another problem is response speed.

静止画像を表示する場合応答速度はそれ程問題とならな
い。しかしコンビエータ端末やワード・プロセッサーな
どの様に画像を頻繁に切シ換える必要のある場合、高速
応答性が要求されるようになる。テレビ画像などの動画
を表示する場合更に速い応答性が要求されるのは言うま
でもない。
When displaying still images, response speed is not so much of an issue. However, in cases where images need to be changed frequently, such as in combiator terminals and word processors, high-speed responsiveness is required. Needless to say, even faster response is required when displaying moving images such as television images.

一本発明は以上の問題点を解決するもので、その目的と
するところは表示装置用のネマチック液晶組成物の急峻
性を改良しダイナミック駆動特性を向上させ、かつネマ
チック液晶温度範囲を広くし動作温度範囲を広げ、更に
化学的に安定なネマチック液晶組成物を提供する事にあ
る。
One purpose of the present invention is to solve the above problems, and its purpose is to improve the steepness of nematic liquid crystal compositions for display devices, improve dynamic drive characteristics, and widen the nematic liquid crystal temperature range for operation. The object of the present invention is to provide a nematic liquid crystal composition that has a wider temperature range and is chemically stable.

〔問題点分解法するための手段〕[Means for problem decomposition method]

本発明の液晶組成物は少なくとも一般式が下記Aで表わ
される化合物の少なくとも一種、一般式が下記Bで表わ
される化合物の少なくとも一種、及び一般式が下記Cで
表わされる化合物の少なくとも一種から成る事を特徴と
する。
The liquid crystal composition of the present invention comprises at least one compound whose general formula is represented by the following A, at least one compound whose general formula is represented by the following B, and at least one compound whose general formula is represented by the following C. It is characterized by

A・・・・・・R1−@一つ一〇−R2B・・・・・・
R3÷←ON C・−=・R4−@−00o−@−c N但し、 R1及びR2は炭素Wi1〜12個の直鎖アルキル基 R3は炭素数1〜8個の直鎖アルキル基R4は炭素数1
〜10個の直鎖アルキル基を表わす。
A...R1-@One 10-R2B...
R3÷←ON C・-=・R4-@-00o-@-c N However, R1 and R2 are straight chain alkyl groups having 1 to 12 carbon atoms R3 are straight chain alkyl groups having 1 to 8 carbon atoms R4 is Carbon number 1
~10 straight-chain alkyl groups.

一般式Aで表わされる化合物(以後本文中に於て化合物
Aと略記する〕は応答速度を速くするために有効なNn
液晶であり7重量%未満では効果が小さくその含有量は
多い程良い。しかし透明点が比較的低いため化合物Aの
含有量が72重it%を越えるとネマチック液晶組成物
の透明点も低くなり、ひいてはネマチック液晶組成物の
ネマチック液晶範囲を狭くするため好ましくない。従り
て化合物Aの含有量は7重ffi%〜72重量%が望ま
しい。
The compound represented by the general formula A (hereinafter abbreviated as compound A in the text) is an effective Nn compound for increasing the response speed.
It is a liquid crystal, and if it is less than 7% by weight, the effect is small, so the higher the content, the better. However, since the clearing point is relatively low, if the content of Compound A exceeds 72 wt %, the clearing point of the nematic liquid crystal composition will also become low, which is undesirable because it will narrow the nematic liquid crystal range of the nematic liquid crystal composition. Therefore, the content of compound A is desirably 7% by weight to 72% by weight.

一般式Bで表わされる化合物(以後本文中に於て化合物
Bと略記する)はNp液晶でありその含有量の多少によ
り光学的しきい値電圧を低くまた高くできる。また、透
明点を高くするのに有利である。しかし、含有量を多く
し過ぎると急峻性などの電気光学特性の性能を低下させ
、また、共晶組成からのズレが大きくなり過ぎて凝固点
降下の効果が得られず低温に於て析出するように成る。
The compound represented by general formula B (hereinafter abbreviated as compound B in the text) is an Np liquid crystal, and the optical threshold voltage can be lowered or increased depending on its content. It is also advantageous in increasing the clearing point. However, if the content is too high, the performance of electro-optical properties such as steepness will deteriorate, and the deviation from the eutectic composition will become too large, making it impossible to obtain the effect of lowering the freezing point and causing precipitation at low temperatures. becomes.

従って化合物Bの含有量は、5重量%から38重社%が
望ましい。
Therefore, the content of compound B is preferably from 5% by weight to 38% by weight.

一般弐〇で表わされる化合物(以後本文中に於て化合物
Cと略記する)もNp液晶でありその含有量の多少によ
り光学的しきい値電圧を低くまた高くできる。光学的し
きい値電圧が低ければそれに比例して液晶駆動用回路の
最大定格出力電圧も低くて済み、安価なIOが使えるた
め有利となる。しかしP−E液晶の含有量を多くし過ぎ
ると急峻性などの電気光学特性の性能を低下させ、透明
点な低くし液晶温度範囲を狭くするなどの好ましくない
影響が出る可能性があるのでこの含有量は過度にしない
方が良い。即ち5重量%から30重黛%が望ましく、よ
り望ましくは8重■%から22.5重量%である。
The compound represented by the general symbol 2 (hereinafter abbreviated as compound C in the text) is also an Np liquid crystal, and the optical threshold voltage can be lowered or increased depending on its content. If the optical threshold voltage is low, the maximum rated output voltage of the liquid crystal driving circuit can be proportionally low, which is advantageous because inexpensive IO can be used. However, if the content of P-E liquid crystal is too large, it may cause undesirable effects such as deterioration of electro-optical properties such as steepness, lowering the clearing point and narrowing the liquid crystal temperature range. It is better not to exceed the content. That is, it is preferably from 5% by weight to 30% by weight, more preferably from 8% by weight to 22.5% by weight.

〔実施例〕〔Example〕

以下、本発明について実施例に基づき詳細に説明する。 Hereinafter, the present invention will be described in detail based on examples.

尚、液晶組成物の特性の測定は次の如く行った。第1図
は電気光学特性に対する測定系を表わしたものである。
The characteristics of the liquid crystal composition were measured as follows. FIG. 1 shows a measurement system for electro-optical characteristics.

測定セル4はガラス製基板の片面に蒸着などの操作によ
り酸化錫などの透明電極を設け、更にその而を有機薄膜
で覆い配向処理を施した上、スペーサーの役割を兼ねた
ナイロン・フィルム製の枠を間に挾んで液晶を封入した
時液晶層が所望の厚みと成るように二枚の該ガラス基板
を対向させて固定したものであり、該セルの両面には各
々一枚ずつの偏光板を電圧が印加されていない時光が透
過し、電圧が印加された時光が遮断されるように偏光軸
の向きを調整して貼付けである。尚、本文中に於てガラ
ス基板とガラス基板の間隔(即ち、液晶層の厚さ)をセ
ル厚と略記する。白色光源1から出た光線はレンズ系5
を通りセル4に垂直方向から入射し、後方に設けられた
検出器でその透過光強度が測定される。この時セル4に
は駆動回路5によって任意の実効値電圧を持つ周波数1
キロ・ヘルツの交番矩形電圧を印加されている。第1図
の測定系を用いて液晶セルを測定した実効電圧−相対透
過率曲線が第2図である。第2図に於て透過率は通常の
印加電圧範囲で最も明るくなった時及び最も暗くなりた
時の透過率を各々100%及び0%として表わし印加電
圧な透過率100%の電圧から始めて除々に上げて行き
透過率が10%だけ変化した時の実効値電圧を光学的し
きい値電圧vthまた更に印加電圧を上げて透過率が1
00%の時から90%変化した時の実効値電圧を光学的
飽和電圧Vsatと各々定める。この時、電圧−透過率
曲線の光学的しきい値電圧付近の立ち上がり(即ち急峻
性)は下式に於けるβ値として定められる。
The measurement cell 4 has a transparent electrode made of tin oxide or the like formed by vapor deposition on one side of a glass substrate, which is then covered with an organic thin film and subjected to alignment treatment, and then a nylon film that also serves as a spacer is formed. The two glass substrates are fixed facing each other so that the liquid crystal layer has the desired thickness when the liquid crystal is sealed with a frame in between, and one polarizing plate is placed on each side of the cell. The direction of the polarization axis is adjusted and pasted so that light is transmitted when no voltage is applied and light is blocked when voltage is applied. In the text, the distance between the glass substrates (ie, the thickness of the liquid crystal layer) is abbreviated as cell thickness. The light beam emitted from the white light source 1 passes through the lens system 5.
The light enters the cell 4 from the vertical direction, and the intensity of the transmitted light is measured by a detector provided at the rear. At this time, the cell 4 is supplied with a frequency 1 having an arbitrary effective value voltage by the drive circuit 5.
A kilohertz alternating rectangular voltage is applied. FIG. 2 shows an effective voltage-relative transmittance curve obtained by measuring a liquid crystal cell using the measurement system shown in FIG. In Figure 2, the transmittance is expressed as the brightest and darkest transmittance in the normal applied voltage range as 100% and 0%, respectively. The effective value voltage when the transmittance changes by 10% by increasing the applied voltage is the optical threshold voltage vth, or by further increasing the applied voltage, the transmittance changes by 1.
The effective value voltage when the voltage changes by 90% from the time of 00% is defined as the optical saturation voltage Vsat. At this time, the rise (that is, the steepness) of the voltage-transmittance curve near the optical threshold voltage is determined as the β value in the following equation.

Vsat β=7.h 点燈時(マ) IJクス・セルに於て選択された時)の
実効値電圧(Vonと表わす)がVsatに等しく、非
点燈時(非選択時)の実効値電圧(Voffと表わす)
がvthに等しい電気信号が印加された時各々透過率が
90%及び10%と成り、画素の点燈及び、非点燈が認
識される事と成る。更に言えばVoHがVsatよりや
や大きく、VOffがvthよりやや小さければ各々の
透過率は90%以上と10%以下と成る。この時v o
n/ V o f f ) V s a t / V 
t h =βである。これとは逆にVOnがvsatよ
り小さく、Voffがvthより大きければ各々の透過
率は90%以下と10%以上と成り視認性が悪くなって
しまう。即ちV o n / V o f f (V 
e a t / V t h =βなる信号電圧が印加
された場合視認性が悪くなるのである。この様にβ値が
電気信号の実効電圧比V o n / V Of fよ
り小さければ視認性の良い画素表示が得られ、同じ画像
表示を得るのにβ値が小さい程V On / V Of
 f比も小さく済む。単純マ) +Jクス表示体では走
査線本数を多くする程V On / V Of fが小
さくなるためβ値も小さい(1に近づく)事が必要であ
る。以上β値はVon/VOffが許容される最小値を
示すためマルチプレックス特性の指標となる。
Vsat β=7. h The effective value voltage (represented as Von) when the light is on (when selected in the IJ cell) is equal to Vsat, and the effective value voltage (represented as Voff) when the light is not on (when not selected) )
When an electric signal equal to vth is applied, the transmittance becomes 90% and 10%, respectively, and it is recognized whether the pixel is lit or not. Furthermore, if VoH is slightly larger than Vsat and Voff is slightly smaller than vth, the respective transmittances will be 90% or more and 10% or less. At this time vo
n/ V o f f ) V sat / V
th = β. On the contrary, if VOn is smaller than vsat and Voff is larger than vth, the respective transmittances will be 90% or less and 10% or more, resulting in poor visibility. That is, V on / V o f f (V
When a signal voltage of e a t /V th =β is applied, visibility deteriorates. In this way, if the β value is smaller than the effective voltage ratio V on / V Of of the electric signal, a pixel display with good visibility can be obtained, and the smaller the β value is, the more V On / V Of
The f ratio can also be made small. In a +J display, as the number of scanning lines increases, V On /V Off decreases, so the β value must also be small (approaching 1). Since the β value indicates the minimum value of Von/Voff allowed, it serves as an index of multiplex characteristics.

印加電圧の変化に対する応答速度は次の通りとする。印
加する実効値電圧を瞬間的にvthからVsatへ切シ
換えた時定常状態での各々の実効電圧に対する透過率同
志の差の90%だけ透過率が変化するのに要する時間(
即ち透過率が90%から18%へ変化するのに要する時
間)をミリ秒単位でTon表わし、同様にVsatから
vthへ実効値電圧を瞬間的に切り換えた時定常状態で
の各々の実効電圧に対する透過率同志の差の90%だけ
透過率が変化するのに要する時間(即ち透過率が90%
から18%へ変化するのに要する時間)をi IJ秒単
位でTon表わし、同様にVsatからvthへ実効値
電圧を瞬間的に切シ換えた時定常状態での各々の実効電
圧に対する透過率同志の差の90%だけ透過率が変化す
るのに要する時間(透過率が10%から82%へ変化す
るのに要する時間)をミリ秒単位でTOffと表わす。
The response speed to changes in applied voltage is as follows. When the applied effective value voltage is instantaneously switched from vth to Vsat, the time required for the transmittance to change by 90% of the difference between the transmittances for each effective voltage in a steady state (
In other words, the time required for the transmittance to change from 90% to 18% is expressed in Ton in milliseconds, and similarly, when the effective value voltage is instantaneously switched from Vsat to vth, for each effective voltage in the steady state, The time required for the transmittance to change by 90% of the difference between the transmittances (i.e., the time required for the transmittance to change by 90%)
The time required to change from 18% to 18% is expressed in Ton in units of i IJ seconds, and similarly, when the effective value voltage is instantaneously switched from Vsat to vth, the transmittance for each effective voltage in the steady state is the same. The time required for the transmittance to change by 90% of the difference between (the time required for the transmittance to change from 10% to 82%) is expressed in milliseconds as Toff.

τOnとToffを足したT(ミリ秒単位)を以て応答
速度の指標とする。
T (in milliseconds), which is the sum of τOn and Toff, is used as an index of response speed.

尚、一般に印加電圧を0から任意の電圧v(V)へ瞬間
的に切り換えてから透過率が0の状態から90%へ変化
するのに要する時間をton、印加電圧をνから0へ瞬
間的に切シ換えてから透過率が100%の状態から10
%変化するのに要する時間をtoffとすると下記の式
で表わされる事が知られている(参考文献: M、5c
hadt 、  日本学術振興会情報科学用有機材料第
142委員会A部会(液晶グループ)第11回研究会資
料、1978年)。
Generally, the time required for the transmittance to change from 0 to 90% after instantaneously switching the applied voltage from 0 to an arbitrary voltage v (V) is ton, and the time required for the transmittance to change from 0 to 90% is ton, and the time required for the transmittance to change from 0 to 90% is ton. After switching to , the transmittance changed from 100% to 10
It is known that if the time required for a % change is toff, it can be expressed by the following formula (Reference: M, 5c
hadt, Japan Society for the Promotion of Science, 142nd Committee on Organic Materials for Information Science, Subcommittee A (Liquid Crystal Group), 11th Study Group Materials, 1978).

t o n = yl / (t oΔgK” −K(
−)” )=6”、η/(guΔg u” −に7c”
 )toff=−7,/K(−)” = d2・η/ K ?I:2 (ここでηはバルク粘度、eυは真空誘電率、Δeは相
対誘電率の異方性、Eは電場、Kはに11 +x、、 
 2に22 ) / 4なる弾性定数項、dはセル厚を
各々表わし、η、ΔεおよびKは液晶組成物に個有であ
る)。従ってton及びtoffは共にd2に比例して
長くなる。
t on = yl / (t oΔgK” −K(
−)” )=6”, η/(guΔg u” −7c”
)toff=-7,/K(-)"=d2・η/K?I:2 (where η is the bulk viscosity, eυ is the vacuum permittivity, Δe is the anisotropy of the relative permittivity, E is the electric field, K hani 11 +x,,
2 to 22)/4, where d represents the cell thickness, η, Δε and K are specific to the liquid crystal composition). Therefore, both ton and toff become longer in proportion to d2.

本実施例で定餞したでなる応答速度もセル厚と密接な関
係があり、定性的ではあるがセル厚が薄いとでは短かく
、セル厚が厚いと長い傾向を見出した。これらの関係は
当業者ならば納得するに難くなし)。従って同じ液晶組
成物を用いて液晶表示体を作った場合セル厚を薄くする
程応答速度を速くする事ができる。
The response speed determined in this example also has a close relationship with the cell thickness, and although it is qualitative, it was found that the response speed tends to be shorter when the cell thickness is thinner, and longer when the cell thickness is thicker. Those skilled in the art will understand these relationships. Therefore, when a liquid crystal display is made using the same liquid crystal composition, the response speed can be increased as the cell thickness becomes thinner.

一方、急峻性βはセル厚d(μ)と屈折率異方性Δnの
積であるΔn−dが(L8〜1.0付近の特設も小さく
なる(最良となる)事が見出されている(参考文献:山
崎淑夫、竹下裕、永田光夫、宮地幸夫、Proceed
ings of the 5rd工nternatio
nalDisplay Re5earch 0onfe
renee −JAPAN  D工5PLAY’83”
1320頁;1985年、■5xD)。従ってコントラ
ストを重視する場合セル厚dをΔn−dが0.8〜1.
 Q付近に成る様に液晶表示体を作るのが最も得策であ
り、液晶組成物の急峻性の比較もこのセル厚で行うのが
最も妥当であると考えられる。応答時間も先に記した如
くセル厚と関係するため液晶組成物の応答時間を比較す
るには適当な厚みで測定する事が必要である。
On the other hand, it has been found that the steepness β is the product of the cell thickness d (μ) and the refractive index anisotropy Δn, which is Δn−d, which is also small (best) in the vicinity of L8 to 1.0. (References: Yoshio Yamazaki, Yutaka Takeshita, Mitsuo Nagata, Yukio Miyaji, Proceed
ings of the 5th internship
nalDisplay Re5earch 0onfe
renee -JAPAN D-5PLAY'83"
1320 pages; 1985, ■5xD). Therefore, if contrast is important, the cell thickness d should be set so that Δn-d is 0.8 to 1.
It is most advisable to manufacture a liquid crystal display so that the cell thickness is around Q, and it is considered to be most appropriate to compare the steepness of liquid crystal compositions using this cell thickness. As mentioned above, the response time is also related to the cell thickness, so in order to compare the response times of liquid crystal compositions, it is necessary to measure at an appropriate thickness.

以上を鑑み、本実施例では急峻性、応答速度及び光学的
しきい値電圧の測定は全て急峻性βが最小となるセル厚
のセルを用いて測定した。
In view of the above, in this example, steepness, response speed, and optical threshold voltage were all measured using a cell having a cell thickness that minimized steepness β.

測定温度は全て摂氏20度とした。The measurement temperature was 20 degrees Celsius in all cases.

また配向の均一性を高めるため本発明のネマチック液晶
組成物に微量のコレステリック物質を添加したものをセ
ルに封止した。
Further, in order to improve the uniformity of alignment, the nematic liquid crystal composition of the present invention with a trace amount of cholesteric substance added thereto was sealed in a cell.

ネマチック液晶相の安定性はセルに封入した状態で高温
液晶性及び低温液晶性を以て表わした。
The stability of the nematic liquid crystal phase was expressed by high-temperature liquid crystallinity and low-temperature liquid crystallinity when sealed in a cell.

即ち年平均気温の平年値が東京で15℃、部組で22℃
である(総理府統計局線「日本の統計」昭和55年度版
 6,7頁)から室温を20”Cと仮定したセルを恒温
槽に設置し、それより更に50℃高1/λ温度に於てネ
マチック相が安定か否がを高温液晶性と称することにし
、ネマチック相が安定なら○印)等方性液体(1sot
ropicliquid )なら工で表わす。低温液晶
性はセルを設置した恒温槽の温度を20℃から始め1日
につき5℃づつ下げて行った時、室温として仮定した2
0℃より30℃低くなった時(即ち恒温槽温度−1o’
c)、ネマチック液晶相が安定か否かを低温液晶性と称
し、ネマチック相が安定なら○印を、スメクチック液晶
相ならSmを固体状態を呈しているかまたは析出を生じ
ていればx印を以って表わす。
In other words, the average annual temperature is 15℃ in Tokyo and 22℃ in Bugumi.
(Prime Minister's Office Statistics Bureau, Japan Statistics, 1980 edition, pages 6 and 7), we installed a cell in a constant temperature bath assuming that the room temperature was 20"C, and then set it at a temperature of 1/λ that was 50C higher than that. Whether the nematic phase is stable or not is referred to as high temperature liquid crystallinity.If the nematic phase is stable, it is marked as an isotropic liquid (1 set).
ropicliquid) is expressed in engineering. Low-temperature liquid crystallinity was determined by lowering the temperature of the thermostatic chamber in which the cell was installed starting from 20°C by 5°C per day, assuming that it was room temperature2.
When the temperature is 30°C lower than 0°C (i.e. thermostat temperature -1o'
c) Whether or not the nematic liquid crystal phase is stable is referred to as low-temperature liquid crystallinity. It is expressed as

〔実施例−1〕 本発明による実施例−1の組成及び特性を第1表に示す
。但し本実施例は化合物Bとして一般式B3−◎−くト
◎→ON (式中R3は炭素数1〜8個の直鎖アルキル
基な示す)で表わされる化合物(以後本文中に於てPM
Bと略記する)を14.3重社%とP−1を9.8重量
%含有して成る事を特徴としている。
[Example-1] Table 1 shows the composition and properties of Example-1 according to the present invention. However, in this example, Compound B was a compound represented by the general formula B3-◎-kuto◎→ON (in the formula, R3 is a straight-chain alkyl group having 1 to 8 carbon atoms) (hereinafter referred to as PM in the text).
It is characterized by containing 14.3% by weight of P-1 (abbreviated as B) and 9.8% by weight of P-1.

また、従来例としてEOH及びP−Eを含有して成る液
晶組成物の組成及び特性を第2表に示す従来例−1で急
峻性を表わすβ値が1.265であるのに対して、実施
例−1のβ値は1.256でかなり改良されている。
Furthermore, as a conventional example, the composition and characteristics of a liquid crystal composition containing EOH and P-E are shown in Table 2. In contrast to conventional example 1, which represents steepness, the β value is 1.265. The β value of Example-1 was 1.256, which was considerably improved.

光学的しきい値電圧vthは、従来例−1が2.59V
であるのに対して、実施例−1のVthは1.85 V
と大幅に低くなっている。
The optical threshold voltage vth is 2.59V in conventional example-1.
On the other hand, Vth in Example-1 is 1.85 V
is significantly lower.

更に、応答速度も従来例−1が444 ミIJ秒である
のに対して、実施例−1は225ミリ秒とかなり速くな
っている。
Furthermore, the response speed of Conventional Example-1 is 444 milliJ seconds, whereas Example-1 is considerably faster at 225 milliseconds.

実施例−1は摂氏50度に於ける高温液晶性及び摂氏マ
イナス10度に於ける低温液晶性もあり、十分安定で、
通常の表示体に用いるのには十分広いネマチック液晶温
度範囲を有している。
Example-1 has high-temperature liquid crystallinity at 50 degrees Celsius and low-temperature liquid crystallinity at minus 10 degrees Celsius, and is sufficiently stable.
It has a sufficiently wide nematic liquid crystal temperature range for use in ordinary displays.

以上、本発明による実施例−1は、従来例−1と比較し
て、光学的しきい値電圧vthは大幅に低下し、β値も
かなり改善されている。更に応答速度も速く、ネマチッ
ク液晶温度範囲も十分である。
As described above, in Example-1 according to the present invention, as compared with Conventional Example-1, the optical threshold voltage vth is significantly lowered, and the β value is also significantly improved. Furthermore, the response speed is fast and the nematic liquid crystal temperature range is sufficient.

〔実施例−2〕 本発明による実施例−2の組成及び特性を第5表に示す
。但し本実施例はPMBを162重量%とP−Kを12
.2重量%含有して成る事を特徴としている。
[Example-2] Table 5 shows the composition and properties of Example-2 according to the present invention. However, in this example, PMB was 162% by weight and P-K was 12% by weight.
.. It is characterized by containing 2% by weight.

また、従来例−1の組成及び特性を第2表に示す。Further, the composition and characteristics of Conventional Example-1 are shown in Table 2.

従来例−1で急峻性を表わすβ値が1.265であるの
に対して、実施例−2のβ値は1.220とたいへん良
好である。即ち単純マ) IJクス電極を用いた液晶パ
ネルに於て透過率を選択電極で10%以下(暗状態)に
、非選択電極で90%以上(明状態)に各々するために
は、従来例−1では走査電極の数は、17本以下しか駆
動できないのに対して、実施例−2では26本以上駆動
することができる。
While the β value representing steepness in Conventional Example-1 is 1.265, the β value in Example-2 is 1.220, which is very good. In other words, in a liquid crystal panel using IJ square electrodes, in order to make the transmittance less than 10% (dark state) for selective electrodes and more than 90% (bright state) for non-selective electrodes, conventional methods are used. In Example-1, only 17 or less scanning electrodes can be driven, whereas in Example-2, 26 or more scanning electrodes can be driven.

光学的しきい値電圧vthは、従来例−1が2.597
であるのに対して、実施例−2のvthは1.84 V
で大幅に低下している。
The optical threshold voltage vth of conventional example-1 is 2.597.
On the other hand, vth in Example-2 is 1.84 V
has decreased significantly.

更に、応答速度も従来例−1が444 ” IJ秒であ
るのに対して、実施例−2は244ミリ秒とかなり速く
なっている。
Further, the response speed of the conventional example-1 is 444"IJ seconds, whereas the response speed of the example-2 is considerably faster at 244 milliseconds.

実施例−2は摂氏50度に於ける高温液晶性及び摂氏マ
イナス10度に於ける低温液晶性もあり十分安定で、通
常の表示体に用いるのには十分広イネマチック液晶温度
範囲を有している。更に、詳しくは、高温側では摂氏6
0度に於ても、また低温側では摂氏マイナス25度に於
ても液晶性を有し、苛酷な条件下での表示体にも用いる
ことが可能である。
Example-2 has high temperature liquid crystal properties at 50 degrees Celsius and low temperature liquid crystal properties at minus 10 degrees Celsius, and is sufficiently stable, and has a sufficiently wide ricematic liquid crystal temperature range for use in ordinary displays. There is. Furthermore, in detail, on the high temperature side, the temperature is 6 degrees Celsius.
It has liquid crystal properties even at 0 degrees Celsius and even at -25 degrees Celsius on the low temperature side, and can be used for displays under severe conditions.

以上、本発明による実施例−2は、従来例−1と比較し
て、光学的しきい値電圧vthが大幅に低くなり、β値
が大きく改善されている。更に応答速度も速く、ネマチ
ック液晶温度範囲も十分広い。
As described above, in Example-2 according to the present invention, compared to Conventional Example-1, the optical threshold voltage vth is significantly lowered and the β value is greatly improved. Furthermore, the response speed is fast and the nematic liquid crystal temperature range is sufficiently wide.

第1表 第2表 第  5  表 〔発明の効果〕 以上述べたように、本発明によれば、少なくとも一般式
旧一〇−[有]−〇−R2で表わされる化合物、一般式
R3−◎−弓←◎−CN  で表わされる化合物、一般
式Ri−◎−c o o−@−c Nで表わされる化合
物を用いてネマチック液晶組成物を構成した事により最
もネマチック液晶温度範囲の広いものでは摂氏マイナス
25度から摂氏60度の温度範囲で駆動でき、急峻性が
優れ、応答速度が速く、更に、光学的しきい値電圧が低
く、ダイナミック駆動特性に優れたネマチック液晶組成
物を得ることができる。
Table 1 Table 2 Table 5 [Effects of the Invention] As described above, according to the present invention, at least the compound represented by the general formula 10-[Y]-〇-R2, the general formula R3-◎ -bow←◎-CN The compound represented by the general formula Ri-◎-c o o-@-c N is used to compose the nematic liquid crystal composition, making it the one with the widest nematic liquid crystal temperature range. It is possible to obtain a nematic liquid crystal composition that can be driven in a temperature range of -25 degrees Celsius to 60 degrees Celsius, has excellent steepness, has fast response speed, has a low optical threshold voltage, and has excellent dynamic drive characteristics. can.

本発明によるネマチック液晶組成物を用いればツイスト
ネマチックモードを始めとし、ゲスト・ホスト効果モー
ド(ゲスト液晶として)などの表示素子に於て優れた表
示コントラストを得るのに多大の効果がある。
The use of the nematic liquid crystal composition according to the present invention is highly effective in obtaining excellent display contrast in display elements such as twisted nematic mode and guest-host effect mode (as guest liquid crystal).

【図面の簡単な説明】[Brief explanation of drawings]

第1図は実施例に於て用いた測定装置を表わすハード図
、第2図は該測定装置を用いて一般的に得られる相対透
過率−実効電圧の変化を示した曲線図。 1・・・・・・光 源 2・・・・・・光 源 3・・・・・・レンズ及びフィルター系4・・・・・・
セ ル 5・・・・・・受光部(充電増倍管) 以  上
FIG. 1 is a hardware diagram showing the measuring device used in the examples, and FIG. 2 is a curve diagram showing changes in relative transmittance versus effective voltage generally obtained using the measuring device. 1...Light source 2...Light source 3...Lens and filter system 4...
Cell 5... Light receiving part (charge multiplier tube)

Claims (1)

【特許請求の範囲】[Claims] (1)少なくとも一般式が下記Aで表わされる化合物の
少なくとも一種、一般式が下記Bで表わされる化合物の
少なくとも一種、及び一般式が下記Cで表わされる化合
物の少なくとも一種から成る事を特徴とする液晶組成物
。 A・・・・・・▲数式、化学式、表等があります▼ B・・・・・・▲数式、化学式、表等があります▼ C・・・・・・▲数式、化学式、表等があります▼ (但し、 R1及びR2は炭素数1〜12個の直鎖アルキル基 R3は炭素数1〜8個の直鎖アルキル基 R4は炭素数1〜10個の直鎖アルキル基を表わす。)
(1) It is characterized by comprising at least one compound whose general formula is represented by the following A, at least one compound whose general formula is represented by the following B, and at least one compound whose general formula is represented by the following C. liquid crystal composition. A・・・・・・▲ There are mathematical formulas, chemical formulas, tables, etc. ▼ B・・・・・・▲ There are mathematical formulas, chemical formulas, tables, etc. ▼ C・・・・・・▲ There are mathematical formulas, chemical formulas, tables, etc. ▼ (However, R1 and R2 are straight chain alkyl groups having 1 to 12 carbon atoms. R3 is a straight chain alkyl group having 1 to 8 carbon atoms. R4 is a straight chain alkyl group having 1 to 10 carbon atoms.)
JP18683885A 1985-08-26 1985-08-26 Liquid crystal composition Pending JPS6245685A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18683885A JPS6245685A (en) 1985-08-26 1985-08-26 Liquid crystal composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18683885A JPS6245685A (en) 1985-08-26 1985-08-26 Liquid crystal composition

Publications (1)

Publication Number Publication Date
JPS6245685A true JPS6245685A (en) 1987-02-27

Family

ID=16195513

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18683885A Pending JPS6245685A (en) 1985-08-26 1985-08-26 Liquid crystal composition

Country Status (1)

Country Link
JP (1) JPS6245685A (en)

Similar Documents

Publication Publication Date Title
JPS6245685A (en) Liquid crystal composition
JPS62100581A (en) Liquid crystal composition
JPS6213484A (en) Liquid crystal composition
JPS6245684A (en) Liquid crystal composition
JPS6245686A (en) Liquid crystal composition
JPS62218479A (en) Liquid crystal composition
JPS60243193A (en) Nematic liquid crystal composition
JPS62184090A (en) Liquid crystal composition
JPS62100584A (en) Liquid crystal composition
JPS62100583A (en) Liquid crystal composition
JPH0232308B2 (en)
JPS62218480A (en) Liquid crystal composition
JPS62184089A (en) Liquid crystal composition
JPS61243887A (en) Liquid crystal composition
JPS6346289A (en) Liquid crystal composition
JPS62100585A (en) Liquid crystal composition
JPS62218482A (en) Liquid crystal composition
JPS61271384A (en) Liquid crystal composition
JPS61271383A (en) Liquid crystal composition
JPH01247482A (en) Liquid crystal composition
JPS62243683A (en) Liquid crystal composition
JPS61236893A (en) Liquid crystal composition
JPS62215687A (en) Liquid crystal composition
JPS6213485A (en) Liquid crystal composition
JPH06220454A (en) Liquid crystal composition